

The Large Hadron Collider at CERN

From Big Data to Physics Discovery

M-Lecture, 14-October 2016

Die Erde, ein kleiner blauer Punkt im Weltall ...

... unsere Sonne ist ein Stern unter 300 Milliarden ...

... unsere Milchstrasse ist eine Galaxie unter Milliarden

Das Universum entstand im Urknall

Urknall: Standard-Modell der Kosmologie Mathematisches Modell für die Entwicklung des Universums Urknall WMAP Satellit 13.7 Milliarden Jahre heute 10²⁸ cm

Woraus besteht alles ?

Alles was wir sehen und anfassen können, besteht aus <mark>punktförmigen Teilchen</mark>

CERN

und wird durch vier Kräfte zusammengehalten:

- Elektromagnetismus
- schwache Kraft
- starke Kraft
- Gravitation

Das Standard-Modell der Teilchenphysik

Ein mathematisches Modell für die Welt im Kleinsten

Das Standard-Modell der

Erklärt das alles ?

Nein !

Woraus besteht das Universum?

Planck-Satellit: Aufnahme der kosmischen Hintergrundstrahlung

95% des Universums besteht aus exotischer Dunkler Materie und Dunkler Energie

Die Rätsel des Universums

Was ist Dunkle Materie ?

Was ist Dunkle Energie ?

Wieso haben elementare Teilchen Masse ? (Die Suche nach dem Higgs-Teilchen)

CERN

Warum ist die Antimaterie verschwunden ?

Das europäische Forschungszentrum CERN

CERN

Das weltgrößte Labor für Teilchenphysik

CERN

CERN: founded in 1954, 12 European States Today: 22 Member States

~ 3700 staff or paid personnel
~ 12300 scientific users
Budget (2016) ~1000 MCHF

Member States: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Romania, Slovak Republic, Spain, Sweden, Switzerland and United Kingdom

Associate Member States: Pakistan, Turkey, Ukraine

States in accession to Membership: Cyprus,, Serbia

Applications for Membership or Associate Membership: Brazil, Croatia, India, Ireland, Russia, Slovenia

Observers to Council: India, Japan, Russia, United States of America; European Union, JINR and UNESCO

Wer arbeitet am CERN ?

22 Mitgliedsstaaten und weitere 64 Länder sind an CERN-Experimenten beteiligt

Dr. Markus Elsing Dr. Daniel Wicke

Gemeinsame Forschungsprojekte am CERN

DELPHI Experiment: (1995-1997)

Entwicklung innovativer
 Algorithmen zur
 Mustererkennung
 (Ereignisrekonstruktion)

CERN und der Large Hadron Collider

Der größte Teilchenbeschleuniger der Welt

Vier grosse LHC-Experimente

Der LHC Ringbeschleuniger

9000 high-tech Magnete in 27 km langem Tunnel, 100 Meter unter der Erde

Warum Protonen auf hohe Energien beschleunigen und kollidieren lassen ?

Albert Einstein, 1905: → die spezielle Relativitätstheorie

Energie kann in Materie umgewandelt werden !

Warum Protonen auf hohe Energien beschleunigen und kollidieren lassen ?

LHC kollidiert Protonen bei extremen Energien um neue seltene, schwere Teilchen zu erzeugen

Das ATLAS Experiment am Large Hadron Collider

Das ATLAS Experiment am Large Hadron Collider

[im Hollywood Film "Illuminati"]

Der echte ATLAS Kontrollraum

Experimente laufen rund um die Uhr, 7 Tage die Woche, betrieben von Studenten, Doktoranden und Post-Docs

Die Kollaboration - Ein globales Team

hier bin ich

~3000 Physiker aus 35 Ländern, ein gemeinsames Ziel 20 Jahre: vom Bau zum Betrieb und Auswertung der Data

Der ATLAS-Detektor als Kamera

Messung einer Kollision mit 90 Millionen Kanäle, 2.5 MB pro Aufnahme, 40 Million pro Sekunde

Der ATLAS-Detektor als Kamera

Das entspricht 10.000 mal der Information der kompletten Encyclopedia Britannica (in jeder Sekunde)

Mit Big Data zu physikalischen Entdeckungen

Die Nadel in hunderttausend Heuhafen

Eine Kollision von 100 Milliarden könnte ein Higgs-Teilchen enthalten

Interessante Kollisionen müssen selektiert werden !

Strategie der Datenselektion:

➡ Kollisionen erzeuge seltene, schwere Teilchen

- Schwere Teilchen zerfallen in stabile bekannte Teilchen
- Suche in Ereignissen nach Signaturen dieser bekannten Teilchen

Rekonstruktion der Teilchen aus der Messung im Detektor

Spezielle Programme zu Mustererkennung, Art und Eigenschaften der produzierten Teilchen

Selektion in Stufen, genannt Trigger

ATLAS-Detektor

40 MHz 100 TB pro Sekunde

1.Stufe: spezielle Elektronik

80 kHz 200 GB pro Sekunde

2.Stufe: Software, PC-Farm

1000 Hz , 2.5 GB pro Sekunde

ATLAS produziert im Jahr 20 PB an selektierten Daten

Daten werden auf dem GRID verteilt

Mehr als 130 Rechenzentren weltweit, Universitäten und große Forschungszentren

LHC Computing ist Big Data

Planung begann mehr als 10 Jahre bevor die Welt über Big Data und Cloud redete !

Umgesetzt innerhalb eines wissenschaftlichen Budgets, im Gegensatz zu Google und Facebook

Markus Elsing

Worldwide LHC Computing Grid

Die Suche nach dem Higgs-Teilchen

Internationale Forschungsteams, Entwicklung von ausgefeilten Algorithmen und Strategien zur Analyse der Daten

Die Entdeckung des Higgs-Teilchens

CERN Seminar 4. Juli 2012

François Englert, Peter Higgs

Fabiola Gianotti, Joe Incandela

Blick in die aktuelle Forschung

Blick in die aktuelle Forschung

Große Durchbrüche sind Ergebnis jahrelanger Arbeit

> "Doch Forschung strebt und ringt, ermüdend nie, nach dem Gesetz, dem Grund, Warum und Wie." Johann Wolfgang von Goethe

Viele offene Fragen, um die Rätsel des Universum zu entschlüsseln, insbesondere:

Verstehen wir, wie das Higgs-Teilchen allen Teilchen Masse gibt ?

Studium der Eigenschaften des Higgs-Teilchens

Gibt es neue Physik mit Teilchen, die die dunkle Materie im Universum bilden ?

Eigenschaften des Higgs-Teilchens

Messungen aller Eigenschaften

- → Masse des Higgs-Teilchens
- → Bestimmung des Spin und der Parität
- → Kopplungen des Higgs an alle Teilchen

Higgs-Teilchen scheint sich wie vorhergesagt zu verhalten !

Präzisionsmessungen des Standardmodels

Modellanpassung an kombinierte Ergebnisse

➡ bisher keine Abweichungen durch Effekte neuer Physik

Top-Quark Masse

ATLAS+CMS Preliminary LHCtop WG	m _{top} summary, √s = 7-8 TeV	Aug 2016
World Comb. Mar 2014, [7]		
stat		
total uncertainty	Iotal Stat	
$m_{top} = 173.34 \pm 0.76 (0.36 \pm 0.67) \text{ GeV}$	m _{top} ± total (stat ± syst)	√s Ref.
ATLAS, I+jets (*)	172.31 ± 1.55 (0.75 ± 1.35)	7 TeV [1]
ATLAS, dilepton (*)	$173.09 \pm 1.63 \ (0.64 \pm 1.50)$	7 TeV [2]
CMS, I+jets	$173.49 \pm 1.06 \ (0.43 \pm 0.97)$	7 TeV [3]
CMS, dilepton	172.50 ± 1.52 (0.43 ± 1.46)	7 TeV [4]
CMS, all jets	173.49 ± 1.41 (0.69 ± 1.23)	[¹]
LHC comb. (Sep 2013)	173.20 (ບ.ວວ ± 0.88)	7 TeV [6]
World comb. (Mar 2014)	173.34 ± 0.76 (0.36 ± 0.67)	1.96-7 TeV [7]
ATLAS, I+jets	172.33 ± 1.27 (0.75 ± 1.02)	7 TeV [8]
ATLAS, dilepton	173.79 ± 1.41 (0.54 ± 1.30)	7 TeV [8]
ATLAS, all jets	175.1 ± 1.8 (1.4 ± 1.2)	7 TeV [9]
ATLAS, single top	172.2 ± 2.1 (0.7 ± 2.0)	8 TeV [10]
ATLAS, dilepton	172.99 ± 0.81 (0.34 ± 0.74)	8 TeV [11]
ATLAS, all jets	173.80 ± 1.15 (0.55 ± 1.01)	8 TeV [12]
ATLAS comb. (June 2016)	172.84 ± 0.70 (0.34 ± 0.61)	7+8 TeV [11]
CMS, I+jets	172.35 ± 0.51 (0.16 ± 0.48)	8 TeV [13]
CMS, dilepton	172.82 ± 1.23 (0.19 ± 1.22)	8 TeV [13]
CMS, all jets	172.32 ± 0.64 (0.25 ± 0.52)	o reV [13]
CMS, single top	172 ± 1.22 (0.77 ± 0.95)	8 TeV [14]
CMS comb. (Sep 2015) ⊢ ⊭ ⊣ ──	172.44 ± 0.48 (0.13 ± 0.47)	7+8 TeV [13]
[1] ATLJ	AS-CONF-2013-046 [6] ATLAS-CONF-2013-102 [1 AS-CONF-2013-046 [6] ATLAS-CONF-2013-102 [1	1] arXiv:1606.02179
(*) Superseded by results	P 12 (2012) 105 [8] Eur.Phys.J.C75 (2015) 330 [1]	3] Phys.Rev.D93 (2016) 072004
snown below the line	Phys.J.C74 (2014) 2758 [10] ATLAS-CONF-2014-055	
165 170 17	5 180	185
m.	[GeV]	
· · ·top	[]	

LHC Ergebnisse

- → präzise Messung der Masse des Higgs-Teilchens
- ➡ neueste Messungen der Top-Quark Masse
- erwarten sehr bald erste Präzisionsmessung der W Masse am LHC

Dr. Markus Elsing

Suche nach neuer Physik

Viele Theorien sagen neue Teilchen vorher, inklusive möglicher Kandidaten für dunkle Materie

Viele Suchen haben bisher keine Anzeichen f
ür neue Teilchen in den LHC Daten geliefert

								s Such	nen 🔤	
AT Sta	LAS Exotics Setup: August 2016	earch	es* - 9	95%	CL	Exclusion	LAOUC.		ATL	AS Prelimina
014	Model	l a	lote÷	Emiss	10440	11	1	$\int \mathcal{L} dt = 0$	3.2 - 20.3) fb ⁻¹	$\sqrt{s} = 8, 13$ le
	Model	ι,γ	Jeist	Ът	J2 at[ii	, l	Limit	<u> </u>		Reference
Extra dimensions	$\begin{array}{l} \text{ADD } G_{KK} + g/q \\ \text{ADD non-resonant } \ell\ell \\ \text{ADD } \text{OBH} - \ell q \\ \text{ADD } \text{OBH} - \ell q \\ \text{ADD } \text{OBH} \\ \text{ADD } \text{BH high } \sum_{PT} \\ \text{ADD } \text{BH multijet} \\ \text{RSI } G_{KK} \to \ell\ell \\ \text{RSI } G_{KK} \to \gamma\gamma \\ \text{Bulk } \text{RS } G_{KK} \to \gamma\gamma \\ \text{Bulk } \text{RS } G_{KK} \to tt \\ \text{Bulk } \text{RS } K_{KK} \to tt \\ \text{2UED / RPP} \end{array}$	$\begin{array}{c} - \\ 2 \ e, \mu \\ 1 \ e, \mu \\ - \\ \geq 1 \ e, \mu \\ 2 \ \gamma \\ 1 \ e, \mu \\ - \\ 1 \ e, \mu \end{array}$	$ \geq 1 j - 1 j 2 j \geq 2 j \geq 3 j - 1 J 4 b \geq 1 b, \geq 1 J/2 \geq 2 b, \geq 4 j $	Yes - - - Yes - Yes Yes	3.2 20.3 20.3 15.7 3.2 3.6 20.3 3.2 13.2 13.3 20.3 3.2	Mo Ms Ma Ma Ma G _{KK} mass G _{KK} mass G _{KK} mass G _{KK} mass KK mass	2.68 1 3 1.24 TeV 360-860 GeV 2.2 TeV 1.46 TeV	6.58 TeV 4.7 TeV 5.2 TeV 8.7 TeV 8.2 TeV 9.55 TeV 12 TeV 2.2 TeV	$ \begin{split} n &= 2 \\ n &= 3 \ \text{HLZ} \\ n &= 6 \\ n &= 6 \\ n &= 6, \ M_D &= 3 \ \text{TeV}, \text{rot BH} \\ n &= 6, \ M_D &= 3 \ \text{TeV}, \text{rot BH} \\ k/M_{PI} &= 0.1 \\ k/M_{PI} &= 0.1 \\ k/M_{PI} &= 1.0 \\ BR &= 0.925 \\ \text{Ter} (1,1), \ BT & 4^{1,1} \\ \text{HL} &= 1 \end{split} $	1604.07773 1407.24 1311.3 ATLAS_012016-0 .6.02265 1405.4123 1606.03833 ATLAS_CONF-2016-0 1505.07018 ATLAS_CONF-2016-0
Gauge bosons	$\begin{array}{l} \mathrm{SSM}\; Z' \to \ell\ell \\ \mathrm{SSM}\; Z' \to \tau\tau \\ \mathrm{Leptophobic}\; Z' \to bb \\ \mathrm{SSM}\; W' \to \ell\nu \\ \mathrm{HVT}\; W' \to WZ \to qqq\nu\nu \mbox{ model } A \\ \mathrm{HVT}\; W' \to WZ \to qqqq \mbox{ model } B \\ \mathrm{HVT}\; V' \to WH/ZH \mbox{ model } B \\ \mathrm{LRSM}\; W_R \to tb \\ \mathrm{LRSM}\; W_R \to tb \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 1 \ e, \mu \\ A \\ 0 \ e, \mu \\ B \\ - \\ multi-channe \\ 1 \ e, \mu \\ 0 \ e, \mu \end{array}$	- 2 b - 1 J 2 J ຢ 2 b, 0-1 j ≥ 1 b, 1 J	- - Yes - Yes -	13.3 19.5 3.2 13.3 13.2 15.5 3.2 20.3 20.3	2' mass 2' mass 2' mass W' mass W' mass V' mass V' mass W mass W mass	2.02 TeV 1.5 TeV 2.4 Te 3.0 2.31 TeV 1.92 TeV 1.76 TeV	4.05 TeV 4.74 TeV V 1) TeV	$g_{V} = 1$ $g_{V} = 3$ $g_{V} = 3$	ATLAS-CONF-2016-0 1502.07177 1603.08791 ATLAS-CONF-2016-0 ATLAS-CONF-2016-0 ATLAS-CONF-2016-0 1607.05621 1410.4103 1408.0886
G	Cl qqqq Cl ℓℓqq Cl uutt	2 e, μ 2(SS)/≥3 e,μ	2 j _ µ ≥1 b, ≥1 j	_ Yes	15.7 3.2 20.3	Λ Λ Λ		4.9 TeV	$\begin{array}{c c} 19.9 \text{ TeV} & \eta_{LL} = -1 \\ \hline 25.2 \text{ TeV} & \eta_{LL} = -1 \\ C_{RR} = 1 \end{array}$	ATLAS-CONF-2016-0 1607.03669 1504.04605
MQ	Axial-vector mediator (Dirac DM) Axial-vector mediator (Dirac DM) $ZZ_{\chi\chi}$ EFT (Dirac DM)	0 e, μ 0 e, μ, 1 γ 0 e, μ	$\begin{array}{c} \geq 1 j \\ 1 j \\ 1 J, \leq 1 j \end{array}$	Yes Yes Yes	3.2 3.2 3.2	m _A m _A M _*	1.0 TeV 710 GeV 550 GeV		$\begin{array}{l} g_q{=}0.25, \ g_{\chi}{=}1.0, \ m(\chi) < 250 \ {\rm GeV} \\ g_q{=}0.25, \ g_{\chi}{=}1.0, \ m(\chi) < 150 \ {\rm GeV} \\ m(\chi) < 150 \ {\rm GeV} \end{array}$	1604.07773 1604.01306 ATLAS-CONF-2015-0
ЪЛ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ	$\begin{array}{c} \geq 2 \ j \\ \geq 2 \ j \\ \geq 1 \ b, \geq 3 \ j \end{array}$	_ Yes	3.2 3.2 20.3	LQ mass LQ mass LQ mass	1.1 TeV 1.05 TeV 640 GeV		$\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \beta = 0 \end{array}$	1605.06035 1605.06035 1508.04735
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ TY \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ QQ \rightarrow WqWq \\ VLQ \ T_{5/3} T_{5/3} \rightarrow WtWt \end{array} $	$\begin{array}{c} 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 2 / \geq 3 \ e, \mu \\ 1 \ e, \mu \\ 2 (\text{SS}) / \geq 3 \ e, $	$\begin{array}{l} \geq 2 \ b, \geq 3 \ j \\ \geq 1 \ b, \geq 3 \ j \\ \geq 2 \ b, \geq 3 \ j \\ \geq 2 \ b, \geq 3 \ j \\ \geq 2 \ b, \geq 4 \ j \\ \geq 4 \ j \\ \mu \geq 1 \ b, \geq 1 \ j \end{array}$	Yes Yes - Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 3.2	T mass Y mass B mass B mass Q mass T _{5/3} mass	855 GeV 770 GeV 735 GeV 755 GeV 690 GeV 990 GeV		T in (T,B) doublet Y in (B,Y) doublet isospin singlet B in (B,Y) doublet	1505.04306 1505.04306 1505.04306 1409.5500 1509.04261 ATLAS-CONF-2016-0
Excited fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow bW$ Excited lepton ℓ^* Excited lepton ν^*	1 γ - 1 or 2 e, μ 3 e, μ 3 e, μ, τ	1 j 2 j 1 b, 1 j 1 b, 2-0 j - -	- - Yes -	3.2 15.7 8.8 20.3 20.3 20.3	q* mass g* mass b* mass f* mass y* mass	2.3 TeV 1.5 TeV 3.0 1.6 TeV	4.4 TeV 5.6 TeV 7	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $f_g = f_L = f_R = 1$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1512.05910 ATLAS-CONF-2016-0 ATLAS-CONF-2016-0 1510.02664 1411.2921 1411.2921
Other	LSTC $s_T \rightarrow W\gamma$ LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow ee$ Higgs triplet $H^{\pm\pm} \rightarrow tr$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	1 e, μ, 1 γ 2 e, μ 2 e (SS) 3 e, μ, τ 1 e, μ - -	- 2 j - 1 b - -	Yes - - Yes - -	20.3 20.3 13.9 20.3 20.3 20.3 20.3 7.0	a _T mass N [#] mass H ^{±±} mass Spin-1 invisible particle mass multi-charged particle mass monopole mass	960 GeV 2.0 TeV 570 GeV GeV 657 GeV 785 GeV 1.34 TeV		$\begin{split} & m(W_R) = 2.4 \text{ TeV}, \text{ no mixing} \\ & \text{DY production, BR}(H_L^{\pm\pm} \to ee) = 1 \\ & \text{DY production, BR}(H_L^{\pm\pm} \to \ell \tau) = 1 \\ & \text{a}_{\text{non-res}} = 0.2 \\ & \text{DY production, } q = 5e \\ & \text{DY production, } g = 1_{\text{ED}}, \text{ spin } 1/2 \end{split}$	1407.8150 1506.06020 ATLAS-CONF-2016-0 1411.2921 1410.5404 1504.04188 1509.08059
	√s	s = 8 TeV	√s = 13	TeV		10 ⁻¹	1	1	⁰ Mass scale [TeV]	-

Ag	TLAS SUSY Sear	rch	s* - 9	5%	CL L	ower Limits	Sr Suchen	ATLAS Preliminary
01	Model e,	,μ,τ,	Jets	$E_{\rm T}^{\rm miss}$	∫ <i>L dt</i> [fb	Mass limit	$\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$	Reference
II ICIUSIVE CERICITES	$ \begin{array}{ccc} MSUGRACMSSM & 0-3\ e,\\ \bar{q}\bar{q},\bar{q}-q\bar{\chi}_{1}^{F}\\ \bar{q}\bar{q},\bar{q}-q\bar{\chi}_{1}^{F}\\ \bar{g}\bar{x},\bar{g}-q\bar{q}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{x},\bar{g}-q\bar{q}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{x},\bar{g}-\bar{q}\bar{q}\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{x},\bar{g},\bar{g}-\bar{q}\bar{q}\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{x},\bar{g},\bar{g}-\bar{q}\bar{q}\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{x},\bar{g},\bar{g}-\bar{q}\bar{q}\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{g}\bar{x},\bar{g}-\bar{q}\bar{q}\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{g}\bar{x},\bar{g}-\bar{q}\bar{q}\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{g}\bar{x},\bar{g}-\bar{q}\bar{q}\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{g}\bar{g}\bar{x},\bar{g}-\bar{q}\bar{q}\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{g}\bar{g}\bar{x},\bar{g}-\bar{q}\bar{q}\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{g}\bar{g}\bar{x},\bar{g}-\bar{q}\bar{q}\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{g}\bar{g}\bar{x},\bar{g}-\bar{q}\bar{q}\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{\chi},\bar{g}-\bar{q}\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{g}\bar{g}\bar{g}\bar{\chi},\bar{g}-\bar{q}\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{g}\bar{g}\bar{\chi},\bar{g}-\bar{q}\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{g}\bar{g}\bar{\chi},\bar{g}-\bar{q}\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{g}\bar{g}\bar{\chi},\bar{g}-\bar{q}\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{g}\bar{\chi},\bar{g}-\bar{q}\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{g}\bar{\chi},\bar{g}-\bar{q}\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{g}\bar{\chi},\bar{g}-\bar{q}\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{g}\bar{\chi},\bar{g}-\bar{q}\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{\chi},\bar{g}-\bar{q}\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{\chi},\bar{g}-\bar{q}\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{\chi},\bar{g}-\bar{q}\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{\chi},\bar{g}-\bar{q}\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{\chi},\bar{g}-\bar{q}\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{\chi},\bar{g}-\bar{q}\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{g}\bar{\chi},\bar{\chi},\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{\chi},\bar{\chi},\bar{\chi}^{F}\bar{\chi}^{F}\bar{\chi}_{1}^{F}\\ \bar{\chi},\bar{\chi},\bar{\chi}^{F}\bar{\chi}^{F}\bar{\chi}^{F}\bar{\chi},\bar{\chi}$	$\mu/1-2\tau$ 0 mono-jet 0 3 e,μ e,μ (SS) 2 τ + 0-1 i 2 γ γ γ 2 e,μ (Z) 0	10 jets/3 <i>l</i> 2-6 jets 1-3 jets 2-6 jets 2-6 jets 2-6 jets 4 jets -3 jets 2-2 jets - 1 <i>b</i> jets jets	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 3.2 13.3 13.3 13.2 13.2 3.2 3.2 20.3 13.3 20.3 20.3	4.2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	1.85 TeV m(i)=m(i) 1.35 TeV m(i) ² :200 GeV m(1 ¹ e gen. i)=m(2 ^{ad} gen. i) 1.36 TeV m(i) ² :1.200 GeV m(1 ² en. i)=m(2 ^{ad} gen. i) 1.83 TeV m(i) ² :1.400 GeV, m(i) ² =1.05(m(i) ²)+m(i)) 1.7 TeV m(i) ² :1.400 GeV 1.85 TeV m(i) ² :1.400 GeV 1.87 TeV m(i) ² :1.500 GeV 1.87 TeV m(i) ² :1.500 GeV 1.87 TeV m(i) ² :1.500 GeV, cr(NLSP)<0.1 mm, µ<0	1507.05525 ATL-S-CONF-2016.078 ATL-S-CONF-2016.078 ATL-S-CONF-2016.078 ATL-S-CONF-2016.077 ATL-S-CONF-2016.037 ATL-S-CONF-2016.037 1606.00150 1507.05493 ATL-S-CONF-2016.066 1500.028200 1500.01518
ĝ med.	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow bb\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow tt\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow bt\tilde{\chi}_{1}^{+}$	0 0-1 e,μ 0-1 e,μ	, b	Yes Yes Yes	14.8 14.8 20.1	2 2 2 2	1.89 TeV m(k ⁰ ₁)=0 GeV 1.89 TeV m(k ⁰ ₁)=0 GeV 1.37 TeV m(k ⁰ ₁)<300 GeV	ATLAS-CONF-2016-052 ATLAS-CONF-2016-052 1407.0600
direct production	$ \begin{array}{c} \bar{b}_1 \bar{b}_1, \bar{b}_1 \rightarrow b \bar{k}_1^0 \\ \bar{b}_1 \bar{b}_1, \bar{b}_1 \rightarrow b \bar{k}_1^0 \\ \bar{h}_1 \bar{b}_1, \bar{b}_1 \rightarrow b \bar{k}_1^0 \\ \bar{n}_1 \bar{n}_1, \bar{n}_1 \rightarrow W \bar{k}_1^0 \\ \bar{n}_1 \bar{n}_1, \bar{n}_1 \rightarrow W \bar{k}_1^0 \\ \bar{n}_1 \bar{n}_1, \bar{n}_1 \rightarrow \bar{k}_1 \\ \bar{n}_1 \bar{n}_1 - \bar{n}_1 - \bar{n}_1 \\ \bar{n}_1 \bar{n}_1 - \bar{n}_1 - \bar{n}_1 \\ \bar{n}_1 \bar{n}_1 - \bar{n}_1 - \bar{n}_1 \\ \bar{n}_1 - \bar{n}_1 - \bar{n}_1 \\ \bar{n}_1 - \bar{n}_1 - \bar{n}_1 \\ \bar{n}_1 - \bar{n}_1 \\ \bar{n}_1 - \bar$	0 e, µ (SS) 0·2 e, µ 0·2 e, µ 0 2 e, µ (Z) 3 e, µ (Z) 1 e, µ	2 b 1 b 1-2 b 0-2 jets/1-2 i mono-jet 1 b 1 b 6 jets + 2 b	Yes Yes Yes Yes Yes Yes Yes Yes	3.2 13.2 4.7/13.3 4.7/13.3 3.2 20.3 13.3 20.3	Is- 840 GeV \$\bar{b}_1\$ 325-685 GeV \$\bar{1}\$ 200-720 GeV \$\bar{t}_1\$ 90-198 GeV \$\bar{t}_1\$ 90-323 GeV \$\bar{t}_1\$ 90-323 GeV \$\bar{t}_2\$ 290-700 GeV \$\bar{t}_2\$ 320-620 GeV	$\begin{split} m_1^{(2)}(-100 \text{GeV} \\ m_1^{(2)}(-150 \text{GeV}, m_1^{(2)}) &= m_1^{(2)}(+100 \text{GeV} \\ m_1^{(2)}) &= 2m_1^{(2)}(-100 \text{GeV} \\ m_1^{(2)}) &= 16 \text{GeV} \\ m_1^{(2)}(-16) &= 16 \text{GeV} \\ m_1^{(2)}(-150 \text{GeV} \\ m_1^{(2)}(-150 \text{GeV} \\ m_1^{(2)}(-150 \text{GeV} \\ m_1^{(2)}(-160 \text{GeV} \\ m_1^$	1608.08772 ATLAS-CONF-2016-037 1209.2102, ATLAS-CONF-2016-077 1508.08618, ATLAS-CONF-2016-077 1604.07773 1403.5222 ATLAS-CONF-2016-038 1506.08616
direct	$ \begin{array}{c} \tilde{t}_{1,\mathbf{E}}\tilde{t}_{1,\mathbf{E}},\tilde{t} \rightarrow \ell \chi_{1}^{0} \\ \tilde{x}_{1}^{*}\tilde{x}_{1}^{*},\tilde{x}_{1}^{*} \rightarrow \ell \pi (\tilde{r}) \\ \tilde{x}_{1}^{*}\tilde{x}_{1}^{*},\tilde{x}_{1}^{*} \rightarrow \ell \pi (\tilde{r}) \\ \tilde{x}_{1}^{*}\tilde{x}_{2}^{*} \rightarrow \ell \pi (\tilde{r}) \\ \tilde{x}_{1}^{*}\tilde{x}_{2}^{0} \rightarrow \ell \pi^{2} \tilde{t}_{1}^{\ell} (\tilde{r}), \ell \tilde{r} \tilde{t}_{1} \ell (\tilde{r}) \\ \tilde{x}_{1}^{*}\tilde{x}_{2}^{0} \rightarrow \ell \pi^{2} \tilde{t}_{2}^{\ell} (\tilde{r}) \\ \tilde{x}_{1}^{*}\tilde{x}_{2}^{0} \rightarrow \ell \pi^{2} \tilde{t}_{2}^{\ell} \\ \tilde{x}_{1}^{*}\tilde{x}_{2}^{0} \rightarrow \ell \pi^{2} \tilde{t}_{2}^{\ell} \\ GGM (wino NLSP) weak prod. 1 \\ GGM (bino NLSP) weak prod. \\ \end{array}$	$2 e, \mu$ $2 e, \mu$ 2τ $3 e, \mu$ $2 \cdot 3 e, \mu$ e, μ, γ $4 e, \mu$ $1 e, \mu + \gamma$ 2γ	0 0 2 jets 0-2 b 0 	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 14.8 13.3 20.3 20.3 20.3 20.3 20.3 20.3	Z 90-335 GeV 540 GeV X ⁺ 1 580 GeV 1.0 TeV X ⁺ 1, X ⁺ 2 425 GeV 1.0 TeV X ⁺ 1, X ⁺ 2 425 GeV X ⁺ 2 X ⁺ 1, X ⁺ 2 270 GeV 635 GeV X ⁺ 2, X ⁺ 2 635 GeV W 115-370 GeV 590 GeV 590 GeV	$\begin{split} m(\tilde{t}_{1}^{2}) &= O \text{GeV} \\ m(\tilde{t}_{1}^{2}) &= O \text{GeV} (m(\tilde{t}_{1}^{2}) + m(\tilde{t}_{1}^{2})) \\ m(\tilde{t}_{1}^{2}) &= O \text{GeV} (m(\tilde{t}_{1}^{2}) + m(\tilde{t}_{1}^{2})) \\ m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) \\ m(\tilde{t}_{1}^{2}) \\ m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) \\ m(\tilde{t}_{1}^{2}) \\ m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) \\ m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) \\ m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) \\ m(\tilde{t}_{1}^{2$	1405.5294 ATLAS-CONF-2016-066 ATLAS-CONF-2016-066 ATLAS-CONF-2016-066 1403.5294,1402.7029 1501.07110 1405.5086 1507.05493 1507.05493
particles	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	lisapp. trk dE/dx trk 0 trk dE/dx trk 1-2 μ 2 γ ol. $ee/e\mu/\mu$ ol. vtx + je	1 jet - 1-5 jets - - - - μμ - tts -	Yes Yes - - Yes - Yes	20.3 18.4 27.9 3.2 19.1 20.3 20.3 20.3	x ⁺ 270 GeV x ⁺ 495 GeV z 850 GeV z 850 GeV z 850 GeV z 537 GeV x ⁺ 540 GeV x ⁺ 440 GeV x ⁺ 1.0 TeV x ⁺ 1.0 TeV	$\begin{split} m(\tilde{t}^{2}), m(\tilde{t}^{2}) & -160 \ \text{MeV}, r(\tilde{t}^{2}) & -0.2 \ \text{ns} \\ m(\tilde{t}^{2}), m(\tilde{t}^{2}) & -160 \ \text{MeV}, r(\tilde{t}^{2}) & -15 \ \text{ns} \\ m(\tilde{t}^{2}) & -100 \ \text{GeV}, 10 \ \text{ns} & -r(\tilde{t}^{2}) & -10 \ \text{ns} \\ \textbf{1.57 TeV} \\ \textbf{1.57 TeV} \\ m(\tilde{t}^{2}) & -100 \ \text{GeV}, r > 10 \ \text{ns} \\ 10 \ \text{targ} & -50 \ \text{targ} & -50 \ \text{ns} \\ r(\tilde{t}^{2}) & -30 \ \text{ns} & -578 \ \text{model} \\ 7 \ \text{cr}(\tilde{t}^{2}) & < 40 \ \text{nm}, m(\tilde{g}) & = 1.1 \ \text{TeV} \\ \textbf{6} \ \text{cr}(\tilde{t}^{2}) & < 40 \ \text{nm}, m(\tilde{g}) & = 1.1 \ \text{TeV} \end{split}$	1310.8765 1568.05322 1310.6584 1666.05129 1664.04520 1411.6795 1409.5542 1564.05162
	$\begin{array}{ll} LFV pp \!$	$e\mu,e\tau,\mu\tau$ e,μ (SS) $4e,\mu$ $3e,\mu+\tau$ 0 $1e,\mu$ $1e,\mu$ 0 $2e,\mu$	- 0-3 b - - 1-5 large-R je 8-10 jets/0-4 8-10 jets/0-4 2 jets + 2 b 2 b	Yes Yes Yes ts - ts - b - b -	3.2 20.3 13.3 20.3 14.8 14.8 14.8 14.8 14.8 15.4 20.3	k₂ 1.14 T X₁ 1.14 T X₁ 450 GeV Z₂ 1.08 Te Z₂ 2.04 Te	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1807.08079 1404.2500 ATLAS-CONF-2016.075 1405.5086 ATLAS-CONF-2016.057 ATLAS-CONF-2016.057 ATLAS-CONF-2016.094 ATLAS-CONF-2016.094 ATLAS-CONF-2016.094 ATLAS-CONF-2016.094 ATLAS-CONF-2016.015
ner	Scalar charm, č→c∛ ⁰ *Only a selection of the ava states or phenomena is st	0 ailable m hown.	2 c nass limits	Yes on ne	20.3 W 1	2 510 GeV	m(² ²).<200 GeV Mass scale [TeV]	1501.01325

Was wäre, wenn... wir keine neue Physik bei hohen **Energien finden ?**

Verhalten des Standardmodels bei höchsten Energien

- → Vorhersage für Higgs-Selbstkopplung wird negativ
- → Vakuum möglicherweise meta-stabil mit Lebensdauer >> Alter des Universums

Degrassi et al.,

Teilchenphysik und Innovation

Teilchenphysik und Innovation

Teilchenbeschleuniger Teilchendetektoren

Datenverarbeitung

Ehrgeizige Ziele, pragmatisches Ausnutzen von Hochtechnologie

Teilchenbeschleuniger in der Medizin

Weltweit gibt es etwa 30.000 Teilchenbeschleuniger → etwa 17.000 für medizinische Anwendungen

 Hadron-Therapie gegen Krebs
 → 70.000 behandelte Patienten in 30 Zentren weltweit
 → einer der Pioniere: Ugo Amaldi

Bildgebende Verfahren in der Medizin Positronen-Emmissions-Tomographie (PET)

1997 erste PET-Aufnahme an CERN, heute weltweit verwendet in der Medizin

CERN Entwicklung von Detektoren

Georges Charpak, Nobelpreis 1992

Wie durchleuchtet man einen LKW ? ➡ Industrielle Anwendung von Drahtkammern

CERN und das World Wide Web

Erfunden 1989 am CERN

Vielen Dank für Ihre Aufmerksamkeit!

