
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other 

copyright owners. A copy can be downloaded for personal non-commercial 

research or study, without prior permission or charge. This thesis cannot be 

reproduced or quoted extensively from without first obtaining permission in writing 

from the copyright holder/s. The content must not be changed in any way or sold 

commercially in any format or medium without the formal permission of the 

copyright holders.

  

 When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name 

of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/


UNIVERSITY OF SOUTHAMPTON

Distributed Data Management

for Large Scale Applications

by

Miguel Branco

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

November 2009

http://www.soton.ac.uk
mailto:msbranco@gmail.com
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk


UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY of ENGINEERING, SCIENCE and MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Miguel Branco

Improvements in data storage and network technologies, the emergence of new high-
resolution scientific instruments, the widespread use of the Internet and the World Wide
Web and even globalisation have contributed to the emergence of new large scale data-
intensive applications.

These applications require new systems that allow users to store, share and process data
across computing centres around the world. Worldwide distributed data management
is particularly important when there is a lot of data, more than can fit in a single
computer or even in a single data centre. Designing systems to cope with the demanding
requirements of these applications is the focus of the present work.

This thesis presents four contributions. First, it introduces a set of design principles
that can be used to create distributed data management systems for data-intensive
applications. Second, it describes an architecture and implementation that follows the
proposed design principles, and which results in a scalable, fault tolerant and secure
system. Third, it presents the system evaluation, which occurred under real operational
conditions using close to one hundred computing sites and with more than 14 petabytes
of data. Fourth, it proposes novel algorithms to model the behaviour of file transfers on
a wide-area network.

This work also presents a detailed description of the problem of managing distributed
data, ranging from the collection of requirements to the identification of the uncertainty
that underlies a large distributed environment. This includes a critique of existing work
and the identification of practical limits to the development of transfer algorithms on a
shared distributed environment.

The motivation for this work has been the ATLAS Experiment for the Large Hadron
Collider (LHC) at CERN, where the author was responsible for the development of the
data management middleware.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:msbranco@gmail.com


Contents

Declaration of Authorship ix

Acknowledgements x

1 Introduction 1
1.1 The Problem of Managing Distributed Data . . . . . . . . . . . . . . . . . 2
1.2 Theory and Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Presentation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Literature Review 10
2.1 Distributed File Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Cluster File Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Wide-area File Systems . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Replica Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Peer-to-Peer Data Management . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Overlay Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Storage Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Replica Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Grid Data Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Data Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Storage Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.3 Replica Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Cloud Data Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 File-based Storage Systems . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Structured Data Storage Systems . . . . . . . . . . . . . . . . . . . 31
2.4.3 Cloud Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Scientific Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 System Motivation 37
3.1 Data-Intensive Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 The ATLAS Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ii



CONTENTS iii

3.2.1 Experimental Process . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Computing Resources . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.3 Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.4 Usage Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 System Requirements and Architecture 49
4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.2 Managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.3 Administrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.1 Data Model and Unit . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.2 Replication and Consistency Model . . . . . . . . . . . . . . . . . . 60
4.3.3 Logical and Physical Data Units . . . . . . . . . . . . . . . . . . . 62
4.3.4 Data and Fabric Independence . . . . . . . . . . . . . . . . . . . . 63
4.3.5 Layered System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.1 System Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.2 System Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.3 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 System Design 80
5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 Dataset Catalogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.1 Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.2 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.3 Naming Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2.5 Fault Tolerance and Scalability Properties . . . . . . . . . . . . . . 88

5.3 Storage Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.1 Storage Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.2 Lookup Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.3 Deletion Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.4 Transfer Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.5 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Dataset Master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.4.1 Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.4.2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.4.3 Redirection Service . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4.5 Fault Tolerance and Scalability Properties . . . . . . . . . . . . . . 112

5.5 Administrative Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.5.1 Monitoring Service . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



CONTENTS iv

5.5.2 Fabric Information Service . . . . . . . . . . . . . . . . . . . . . . . 115
5.6 Client Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6 System Evaluation and Simulation 119
6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2.1 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2.2 Usage Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.3 Infrastructure Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.2 Successful Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.3.3 Failed Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.4 Modelling and Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.4.1 Modelling Principles . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.4.2 Model for Successful Transfers . . . . . . . . . . . . . . . . . . . . 144
6.4.3 Model for Failed Transfers . . . . . . . . . . . . . . . . . . . . . . . 145
6.4.4 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.5 Distributed Data Management under Uncertainty . . . . . . . . . . . . . . 149
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7 Conclusion and Future Work 152
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.2.1 Data Access Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.2.2 Routing of Very Large Datasets . . . . . . . . . . . . . . . . . . . . 154

7.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A Dataset Catalogue API 157

B Brief Description of the SRM v2.2 API 159

C Simulator 161

Bibliography 165



List of Figures

1.1 Representation of the domain coverage of existing distributed data man-
agement contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Representation of the intended domain coverage for a new distributed
data management system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 A schematic representation of the ATLAS Experiment site. The LHC par-
ticle accelerator tunnel is also shown, crossing the ATLAS underground
cave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Representation of a Higgs Boson event. . . . . . . . . . . . . . . . . . . . . 39
3.3 The scale of the LHC. The area under which the LHC tunnel can be found

is near Geneva and Lac Leman. The French Alps and Mont Blanc can
also be seen in the background. . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Simplified overview of the ATLAS data flow. . . . . . . . . . . . . . . . . 43

4.1 Representation of the methodology. . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Representation of a tiered storage. . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Representation of a data centre storage and processing facility. . . . . . . 57
4.4 Evolution of a dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5 Overview of the system architecture. . . . . . . . . . . . . . . . . . . . . . 72

5.1 Overview of the dataset catalogue. . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Schema of the dataset catalogue (primary keys are underlined). . . . . . . 82
5.3 Example of RDF usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4 Overview of storage system, SRM and storage services. . . . . . . . . . . . 90
5.5 Interactions when writing a file to SRM. . . . . . . . . . . . . . . . . . . . 91
5.6 Overview of the transfer service. . . . . . . . . . . . . . . . . . . . . . . . 97
5.7 Example of fair shares. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.8 Schema of the transfer service. . . . . . . . . . . . . . . . . . . . . . . . . 99
5.9 Fair shares and bu↵ers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.10 Schema of the dataset master (primary keys are underlined). . . . . . . . 104
5.11 States of a subscription. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.12 Types of a file request. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.13 States of a file request. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.14 States of a file replica. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.15 Schema of the fabric information service. . . . . . . . . . . . . . . . . . . . 116
5.16 Example of close storages. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.1 Representation of the Tier-0 and Tier-1s in DQ2. . . . . . . . . . . . . . . 121
6.2 Representation of a subset of Tier-1s and Tier-2s in DQ2. . . . . . . . . . 122

v



LIST OF FIGURES vi

6.3 Evolution plots of the data stored in DQ2 as of June 10, 2009 (plots
provided by the Accounting Service and used with permission of Fernando
Barreiro). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4 Evolution of the number of petabytes stored in DQ2 in the last 30 days,
as of June 10, 2009 (plots also by Fernando Barreiro). . . . . . . . . . . . 126

6.5 DQ2 hourly performance during STEP09 (plots provided by the Moni-
toring Service and used with permission of Ricardo Rocha). . . . . . . . . 128

6.6 DQ2 daily performance during STEP09 (plots provided by the Monitoring
Service and used with permission of Ricardo Rocha). . . . . . . . . . . . . 129

6.7 DQ2 hourly performance during STEP09 for all data management activ-
ities (plots provided by the Monitoring Service and used with permission
of Ricardo Rocha). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.8 Time to complete dataset transfers during STEP09 (plots used with the
permission of Alexei Klimentov and Alexey Anisyonkov). . . . . . . . . . 131

6.9 Illustration of workflow for production activities. . . . . . . . . . . . . . . 133
6.10 Queued jobs in last 24 hours as of June 11, 2009 (plots provided by the

Monitoring Service and used with permission of Ricardo Rocha). . . . . . 134
6.11 Weekly view of the job execution as of June 11, 2009 (plots provided by

the Monitoring Service and used with permission of Ricardo Rocha). . . . 135
6.12 Scatter plot for duration of successful transfers for two di↵erent channels. 137
6.13 Histogram for duration of successful transfers for two di↵erent channels. . 138
6.14 Scatter plot for duration of successful transfers for two di↵erent channels. 140
6.15 Stacked bins with failures for channel G-H . . . . . . . . . . . . . . . . . . 140
6.16 Duration of failures for channel G-H . . . . . . . . . . . . . . . . . . . . . 141
6.17 Arrivals of failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.18 Overview of both observed and simulated throughput results. . . . . . . . 147
6.19 Distribution of successful transfers, 2 GB files . . . . . . . . . . . . . . . . 147
6.20 Quantile-Quantile plot for distributions on Figure 6.19 . . . . . . . . . . . 148



List of Tables

3.1 ATLAS event data sizes per data type. . . . . . . . . . . . . . . . . . . . . 41
3.2 ATLAS resource pledges in 2008. . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 ATLAS data export rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Monitoring messages generated by the storage services. . . . . . . . . . . . 115
5.2 Monitoring messages generated by the dataset masters. . . . . . . . . . . 115

6.1 Resources used by DQ2 as of June 10, 2009. . . . . . . . . . . . . . . . . . 123
6.2 Data stored in DQ2 as of June 10, 2009. . . . . . . . . . . . . . . . . . . . 124
6.3 Overview of the analysis period. . . . . . . . . . . . . . . . . . . . . . . . 136

vii



Listings

4.1 Example of a dataset definition. . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1 Example of redirection rules. . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Pseudo-code for the lookup service. . . . . . . . . . . . . . . . . . . . . . . 92
5.3 Example of a dataset master lookup request. . . . . . . . . . . . . . . . . 92
5.4 Example of a lookup service reply. . . . . . . . . . . . . . . . . . . . . . . 93
5.5 Example of a dataset master transfer request. . . . . . . . . . . . . . . . . 98
5.6 Pseudo-code for the queueing component of the transfer service (error-

handling not included). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.7 Example of a dataset master transfer reply. . . . . . . . . . . . . . . . . . 101
5.8 Pseudo-code for the execution component of the transfer service (error-

handling not included). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

viii



Declaration of Authorship

I, Miguel Sérgio de Oliveira Branco, declare that the thesis entitled Distributed Data
Management for Large Scale Applications and the work presented in it are my own. I
confirm that:

• this work was done wholly or mainly while in candidature for a research degree at
this University;

• where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

• where I have consulted the published work of others, this is always clearly at-
tributed;

• where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published as references [28], [30], [29].

Signed:

Date:

ix



Acknowledgements

Every thesis is unique. But allow me to claim this uniqueness title as well. Throughout
these past years, I was given a privileged opportunity: to work in a first-class research
laboratory and pursue a PhD in a first-class university in another country. Yes, the
constant plane trips were really fun early on (and really boring later on), but only now I
begin to truly appreciate the opportunity I’ve been given. For this I have first to thank
two people: Luc Moreau and Markus Elsing. Luc, although this thesis didn’t really work
out as we both expected, I have to thank you for first exposing me to what research is
all about. Markus, the manner by which you get people excited and moving continuous
to surprise me. I can’t thank you enough for giving me the opportunity to work on such
a relevant problem, and for the outstanding support you showed throughout the years!

Then there’s the best supervisors I could have wished for: Ed Zaluska and David de
Roure. From Ed I learnt many many things but let me single one out: the attention to
detail! This is proving to be a very powerful tool and it was certainly a required one to
reach this phase. The care you put on your students is something that inspired me, and
I hope someday to pass it on! Dave, first and above all, thank you for the opportunity.
You gave me “research shelter” when I was adrift! Be it in the confidence you instilled in
me, or in the occasional informal conversations, I see all attributes of a great visionary,
and I feel privileged to have worked with you! (And thank you also to your wife, Gillian,
for editing this thesis!)

Even if this thesis is my own, much of its implementation has been a team e↵ort. Many
thanks to the DDM guys throughout these years: David Cameron with whom I started
the project and found out what data management was all about, Pedro Salgado for his
great (and substantial!) work and discipline, and to Mario Lassnig and Vincent Garonne
with whom I spent my last years in ATLAS, sharing the occasional successes and the
many frustrations :) Mario, Vincent, you guys kept me inspired, and I couldn’t have
wanted better o�ce mates: but perhaps a few more end-of-afternoon beers would have
been a good idea...

x



LISTINGS xi

But it was not only the DDM team: it was also Torre Wenaus, Luc Goossens, Alexei Kli-
mentov, Dario Barberis, Gilbert Poulard, Kaushik De, Armin Nairz, Massimo Lamanna,
Simone Campana, Stephane Jezequel, Graeme Stewart, Kors Bos, Ricardo Rocha and
Gavin McCance (and many others!). Torre, you’ve been extremely influential in this
work, in my career and even to me personally, and for that I thank you. Luc, also
one big thank you: whatever the coincidences that led me to CERN, it’s you I have
to thank first for all these opportunities and for keeping me grounded. Alexei, thank
you for keeping up with me and my work throughout these amazing years: I learnt a
tremendous deal from you. Dario, thank you for your constant support and investment
in my development. Gilbert, you were the first person I met at CERN and indeed it was
a great way to start: thank you also for this opportunity. Kaushik: I guess it’s only you
left from the early team now; thank you for the confidence and for the good humour!
Armin, you’ve been a really great o�ce mate and a terrific friend. Hope we get to meet
often because I enjoy that subtle but great humour. Massimo: thanks for putting up
with me :) Looking back, I have to remark the wisdom in your character: that ability
to discuss and disagree yet listen, to influence yet compromise. I really learnt a lot from
you. Simone, Stephane, Graeme, people, thanks! Thank you for being the first to help
out after my occasional (co↵ co↵) operational screw ups and for that outstanding ability
to maintain good humour under stress. Kors, one sentence: I want to be like you when
I grow up (plane trips included :) Outstanding manager and what an inspiration you
have been! Rocha: who would have though that car trip to Switzerland would get this
far? And Gavin, many thanks particularly in giving me access to much of the required
data for this thesis; it proved very important.

Life really didn’t stop at work though, and there’s many friends to thank for that. Cesar
for his really bad jokes that made me run back to the o�ce, Ricardo Silva for the widest
smile on the earth, Miguel Santos for his only slightly better jokes :), Parracho, Martins
and Moreira for great friendship, Frodo whose geekness was welcomed during the lunch,
to Bastos and Vanita for keeping me social and even somewhat trendy, to Miguel Anjo
for keeping me in shape, to Paulo Campos whose caipirinhas got me out of shape, and
to Huguinho and Melo for... humm... I’m sure there was something... Oh yes, and to
Elias for his insanity and dating tips: they proved valuable :) Then there’s Pedro and
Teresa; that would require an acknowledgement page of its own so let me keep it short:
Obrigado! And thank you to my big brother, Pedro Branco, which has been my biggest
inspiration to obtain a doctoral degree in the first place (and not to mention, go into
computer science). But if I have to say only one word, let it be the one that really
matters: Anki! Thank you. This wouldn’t have happened without you and without
your example; many things wouldn’t have, but I’m really happy they did. Thank you
for making these great times... but the best times are just starting!



Para os meus pais, por tudo!

xii



Chapter 1

Introduction

Let us start with two examples.

A distributed team of scientists collaborate in a scientific experiment. The scientists
work for di↵erent research centres, located in several countries. The research centres
have joined to create a large multi-national scientific experiment, which shares each
centre’s computational resources across national, geographical and political borders.
The question now is to develop a system that allows these collaborations to operate,
and in particular for scientists to share and collectively work on their scientific data
undisturbed by political or technical constraints.

A large commercial company provides services to customers around the world. It has
built several data centres throughout the past years, and as the technology evolved, these
data centres have become more heterogeneous, relying on di↵erent and sometimes newer
technologies. In addition, the recent acquisition of a competitor brought in additional
data centres, yet again with di↵erent internal architectures. The company’s core business
requires the ability to store and process vast amounts of data collected regionally, as well
as the sharing of data between company analysts worldwide. The challenge now becomes
how to develop a data management system that allows for massive data processing in a
worldwide distributed and heterogeneous computing environment.

The emergence of large scale data-intensive applications illustrated in the previous exam-
ples is not a new trend but has been greatly amplified in recent years. The improvements
in data storage technologies, the development of new high-resolution scientific instru-
ments, the widespread use of the Internet and the World Wide Web and increasing
globalisation have all been contributing factors.

For these applications data is the core component. In fact, a recent publication discusses
“The Unreasonable E↵ectiveness of Data” [85], where access to very large amounts of
noisy, unlabelled and human generated data can be used to build high-quality models
in a very e↵ective manner and embrace the complexity of some domains.

1



Chapter 1 Introduction 2

Others go further, signalling the “The End of Theory” and how the data deluge can
make the scientific method obsolete [8]. Even without such a radical modification to the
philosophy of science, clearly increased data processing capabilities have been remarkably
useful. These increased capabilities have allowed new businesses to merge, such as
Google, and new experiments with complex computational requirements to be realised,
such as the Large Hadron Collider project at CERN.

But for data to be useful, systems must exist that allow users to store, share and process
the data. In particular when there is a lot of data, more than can fit on a single computer
or even in a single data centre. Designing such systems is the focus of this work.

Unfortunately, even if the modern experience of using a computer for analysing data
can be less than pleasant, then to rely on a large set of distributed computers to store
and process data can be far worse:

“A distributed system is one in which the failure of a computer you didn’t
even know existed can render your own computer unusable.”
(Leslie Lamport, email exchange in 1987)

Although the well-known quotation above dates from 1987, few would disagree that it
still remains applicable today. This is one of the problems addressed in this work. In
addition to masking failures and addressing the complexity of distributed systems, this
thesis also solves new issues that originate from widely distributed environments, such
as how to organise very diverse storage resources into a single and unified user interface.

Extensive work has already been undertaken into this problem by a number of di↵er-
ent researchers in the context of distributed file systems, peer-to-peer, grid or cloud
computing. These contributions are analysed in Chapter 2. The work in this thesis
builds from those foundations and defines a new application-layer middleware for man-
aging distributed data. Before introducing these previous contributions, the next section
describes the overall problem of managing distributed data in more detail.

1.1 The Problem of Managing Distributed Data

The shift from using a single computer to using sets of distributed computing resources
resulted in the creation of a new domain of computer science, which is distributed com-
puting. Distributed computing has enabled new methods for solving increasingly com-
plex problems by dividing problems into smaller tasks that run on a number of remote
hardware or software systems. Many important results have been established, from the
creation of the ARPANET in the late 1960s, to the first widely used distributed file
system [151], to theoretical results that establish the limits of asynchronous consensus
algorithms under unannounced crashes [71].



Chapter 1 Introduction 3

Figure 1.1: Representation of the domain coverage of existing distributed data man-
agement contributions.

More recently a new approach to distributed computing has emerged, which is charac-
terised by the existence of distributed resources around the world. Dedicated or shared
data centres are used by multiple organisations, enabling access to a much larger set
of resources. This new paradigm provides new opportunities but also raises a set of
challenges, some of which are shared with classical distributed computing, while others
are unique to this new environment.

A new opportunity concerns failure handling, which has always been an integral part
of distributed computing. Worldwide distributed computing allows for more robust
solutions. Companies can now protect their data from catastrophic failures caused by
accidents (fires), natural disasters (earthquakes, floods) or even terrorist attacks by
distributing their data around the world. Worldwide distributed computing also enables
greater sharing of resources and the formation of new collaboration models, where several
entities join existing resources into a single set, increasing the computational power
available to all parties.

Unfortunately worldwide computing also creates new problems and more complex ver-
sions of existing problems. For instance, latency has always been a limiting factor when
distributing a task between several computers. But when there is a dependency on re-
sources around the world, the physical limits imposed by the speed of light become a
much greater restriction. Latency is no longer an annoyance but can become a major
bottleneck and design restriction. For instance, the Google developers have conditioned
their Google App Engine data store transaction model more severely than they desired,
due to the latency in the communication across data centres1.

The goal in this thesis is to address an (important) subset of these problems. They are
1Refer to http://code.google.com/events/io/sessions/TransactionsAcrossDatacenters.html.



Chapter 1 Introduction 4

related to the management of distributed data. I start by introducing my definition of
distributed data management, as the computer science domain describing methodologies
applied to applications running on distributed systems where application data is the pri-
mary resource in the system. A distributed data management system can be represented
by two main axes, as shown in the Figure 1.1. These are the Bookkeeping infrastructure
and the Data distribution system.

The vertical axis of the figure corresponds to the bookkeeping infrastructure, which is
responsible for handling all aspects related to the bookkeeping of data. These range
from tracking locations of individual data files in the geographically-distributed data
storages2 and knowing the properties of each file (e.g. file size or access control lists)
to higher-level user or domain-specific metadata properties. Additional examples are
shown in the figure. The bookkeeping infrastructure is also responsible for establishing
the organisational infrastructure of the data, which defines the relationship between data
files, including for instance the provenance relationships in the data.

The other axis in Figure 1.1 is the data distribution, which uses the information from the
data bookkeeping layer and handles, potentially in an automated way, the distribution
of data around data centres. This involves interactions with data transfer services and
storages, and movement of data between (typically wide-area) networks. The data dis-
tribution axis also includes the enforcement of quality of service in the data transfers and
issues such as security, consistency of data, monitoring and recovery of failed transfers.
The figure attempts to illustrate the coverage of existing work on both bookkeeping
and data distribution, which is marked in the “grey” areas of the picture and where
“richer” services for end-users are represented in the topmost and rightmost portions of
the graph.

Looking at Figure 1.1, there is a portion of the domain that is not covered. This is
the gap in the top-right portion of the graph, which corresponds to contributions that
would tightly integrate the two aspects of distributed data management. This part of the
domain is nowadays typically covered by end-user applications that create application-
specific distributed data management systems. This in a sense is the distributed data
management problem, which is to create general solutions to cover this and the remaining
domains, as opposed to the repeated development of custom solutions.

I now introduce Figure 1.2 that illustrates the coverage of the distributed data man-
agement system introduced in this thesis. From the perspective of an application or
end-user, it is precisely the convergence between the two axes that produces the most
functional system. This is represented in the figure as Area X, which is where the system
functionality is considered richer.

2In this thesis, the terms storages and storage systems are used interchangeably. A storage system
can be loosely defined as a container of user data, be it in a file system, relational database or other
forms.



Chapter 1 Introduction 5

Figure 1.2: Representation of the intended domain coverage for a new distributed
data management system.

A key objective is that the data distribution must attempt to make optimal use of the
bookkeeping properties of the data. This allows the system to provide a given quality
of service and address issues such as consistency of data in the distributed system by
exploiting the bookkeeping structures for data distribution.

As an example, when an end-user needs to locate a piece of data, the query often starts
with a metadata query. This (high-level) metadata query - e.g. “retrieve all data that
has properties X, Y and Z, which I require for my analysis” - results in a set of data items
whose properties, such as the physical location, are tracked by the bookkeeping system.
The user does not know directly what are the data items or where they are physically
located. The distributed data management system, by linking both the bookkeeping
and data distribution functionalities, can serve the user request, translating high-level
metadata queries to physical files for transfer by the data distribution system.

Similarly, any consistency issues encountered during regular activities - e.g. a transfer
failure is determined by the data distribution system to be caused by a lost file - must be
propagated up from low-level file transfer layers to the higher-level monitoring services
also part of the data distribution system. In addition, these occurrences must also be
communicated to the bookkeeping system so that users are informed of potential data
inconsistency issues even in response to high-level metadata queries.

There is a raft of technologies that partially provide the required functionality. How-
ever, existing technologies fail in one fundamental aspect: they are not integrated to-
gether to form a complete system. Instead, these technologies provide a set of rather
loosely-coupled components, which are provided to the applications as building-blocks
for building application-specific systems.



Chapter 1 Introduction 6

1.2 Theory and Practice

Several research areas have contributed to the distributed data management problem.
The data management theory provides many of the underlying principles, such as the
definition of data and consistency models. Within distributed computing, there has
been significant work on distributed file systems, peer-to-peer systems, grid and cloud
computing. The relevant contributions are discussed in Chapter 2.

In addition, specialised areas within theoretical computer science have developed algo-
rithms for routing (e.g. packet routing), data placement (i.e. how best to place data
given expected access patterns) and data migration (i.e. how best to change from one
placement layout to another).

Nonetheless, several open questions remain.

• What are the exact requirements that define the distributed data management
problem?

• Is it possible to define a set of high level design principles that can be used to
create a distributed data management system that is more general-purpose and
feature-rich than existing contributions?

• Can the resulting system be demonstrated to work under real operational condi-
tions, managing petabytes of data for a real application?

In addition, there are some more specific questions that are of interest:

• Is it possible to design a distributed data management system that can be easily
integrated with an existing application without enforcing significant changes to
that application?

• In addition, is it reasonable to maintain or augment the file modus operandi, in
which users create and share data files in the wide-area network without having
to move the data onto new systems (such as relational databases) that employ
di↵erent data models?

• What are the practical limits to the development of algorithms for data placement
and data migration? In particular, what is the impact of real operational conditions
on the distributed data management system?

The next section follows from these open questions by discussing the contributions pre-
sented in this thesis.



Chapter 1 Introduction 7

1.3 Thesis Contributions

The contributions in this thesis are:

• The introduction of a set of design principles that can be applied to the creation
of a non-intrusive and scalable distributed data management system.

• The description of an architecture and implementation that follows the proposed
design principles, and which results in a scalable, fault tolerant and secure system.

• The evaluation of the proposed system in real operational conditions, which in-
clude using close to one hundred computing sites and the management of several
petabytes of data.

• The creation of novel algorithms to model the behaviour of file transfers on a wide-
area network. The resulting models have the advantage of being simpler to apply
compared to existing simulation tools.

Throughout this thesis I also present a more accurate description of the problem of
managing distributed data in real operational systems, ranging from the collection of re-
quirements to the identification of the uncertainty that underlies a large and distributed
environment. Therefore, a very important implication of this work is an analysis of
systems that rely on predictive frameworks and simplistic infrastructure models. This
thesis demonstrates that the real world is significantly complex and that important the-
oretical challenges remain. As such, the discussion on future work directions is also an
important contribution as it presents tentative work directions to address these issues
in the future.

1.4 Presentation Overview

Chapter 2 (“Literature Review”) reviews existing contributions that are closely related
to the distributed data management problem. This includes systems developed within
the domains of distributed file systems, peer-to-peer systems, grid and cloud computing.
Several systems developed for specific scientific applications are also discussed.

Chapter 3 (“System Motivation”) discusses a specific distributed data management prob-
lem, which provides a focus for the research. In this chapter, a large scale application -
the ATLAS Experiment for the Large Hadron Collider at CERN - is described in detail.
The ATLAS Experiment has served as the primary motivation for this work, but its re-
quirements and data flow include common topics with other data-intensive applications,
which are also discussed in the chapter.



Chapter 1 Introduction 8

Chapter 4 (“System Requirements and Architecture”) introduces the set of generic de-
sign principles for the distributed data management system. The chapter discusses the
methodology taken as well as the system requirements, which are defined for users,
managers and data centre administrators. It also includes a high-level overview of an
architecture that follows from these generic design principles.

Chapter 5 (“System Design”) describes the implementation of the system in greater
detail. The presentation is organised by each of the components in the system. For
each component, the relevant behaviour and properties are described, in addition to the
algorithms, schema and interfaces. This is done in su�cient detail to allow the work to
be replicated.

Chapter 6 (“System Evaluation and Simulation”) starts by presenting the usage of the
system for a real world application. This is followed by substantial evidence of its
scalability and performance. The second part of Chapter 6 introduces new modeling
techniques. These techniques result from studying some of the observed behaviour as
well as the need to develop a simulation framework for the system.

Chapter 7 (“Conclusion and Future Work”) is divided into three parts. In the first part,
the contributions are revisited in more detail. The second part outlines future directions
for this research, and the third part presents the traditional concluding remarks.

1.5 Publications

The following peer-reviewed publications include some of the content described in this
thesis:

M. Branco, E. Zaluska, D. De Roure, P. Salgado, V. Garonne, M. Lassnig, R. Rocha.
Managing Very-Large Distributed Datasets. In Proceedings of the OTM Conferences,
volume 5331/2008 of Lecture Notes in Computer Science, pages 775–792. Springer, 2008.
([30])

This conference publication includes the architecture described in Chapter 4 and the
implementation details described in Chapter 5.

M. Branco, E. Zaluska, D. De Roure, M. Lassnig, V. Garonne. Managing very large
distributed datasets on a Data Grid. Accepted for publication in Concurrency and
Computation: Practice & Experience (in press). ([29])

This journal publication includes a summary of Chapter 4 and Chapter 5, and describes
the modelling and simulation techniques presented in Chapter 6.

M. Branco, L. Moreau. Enabling Provenance on Large Scale e-Science Applications. In
Provenance and Annotation of Data, volume 4145/2006 of Lecture Notes in Computer



Chapter 1 Introduction 9

Science, pages 55–63. Springer, 2006. ([28])

This conference publication discusses how to enable provenance gathering in a large scale
experiment, through the integration of the distributed data management system with
external metadata systems and by using provenance recording protocols. These issues
are discussed in Chapter 5 and Chapter 7.



Chapter 2

Literature Review

This chapter introduces previous research contributions. In the first section I start by
introducing relevant contributions from the domain of distributed file systems. This is
followed in the second section by peer-to-peer contributions and grid computing in the
third section. Grid computing in particular presents many important similarities in the
working environment and serves as the foundation for the system introduced in later
chapters. I also describe recent work on cloud computing in the fourth section, which is
interesting given its novel approach to data management issues. This is followed by im-
plementation examples from several scientific applications. The final section summarises
the important points from the literature and highlights the lessons learnt and applied
to my work.

In each section, with the exception of cloud computing and scientific applications, I
include a dedicated discussion on replica placement. There are two main motivations
for this choice. First, there is a large set of important contributions that explicitly
address replica placement issues in each of these domains. Second, understanding replica
placement strategies often provides valuable insight into how the systems work internally.

In addition, there are several criteria used in the discussion of each contribution. These
are: scalability, support for heterogeneous environments, support for quality of service
guarantees, availability, reliability and fault tolerance.

Scalability is discussed both in terms of load (i.e. the ability to store and manage
petabytes of data) and geography (i.e. the support for world-wide distributed storage).
Heterogeneous environments are discussed because, as presented in Chapter 1, this work
requires the ability to merge many di↵erent distributed storage systems into a single
unified layer. Therefore, it is important to describe to what extent (and how) existing
systems support this capability.

The third criteria concerns the support for quality of service guarantees. This support
is necessary given the goal to provide more advanced data management functionality,

10



Chapter 2 Literature Review 11

as represented by the desired domain coverage in Figure 1.2 of Chapter 1. Quality of
service guarantees are loosely defined as the properties that allow users control over the
behaviour of the system and include, for instance, the ability to establish the relative
importance of competing requests.

The remaining criteria are important properties for any distributed system. Availability
(i.e. the degree to which the system is operable when its functions are requested), relia-
bility (i.e. the ability of the system to perform its functions under stated circumstances)
and fault tolerance (i.e. the properties that enable the system to continue operating
properly in the event of failures) are therefore discussed in the following analysis.

In particular, the discussion on fault tolerance encompasses both byzantine and non-
byzantine fault tolerance. Byzantine fault tolerance is the ability to protect against a
byzantine failure, which occurs when a component not only behaves erroneously but fails
to behave consistently. This type of “failure” is characteristic of environments where
malicious attacks can occur. In this thesis, the focus is not on malicious environments:
the assumption is that reasonable protection mechanisms can be put in place to protect
the communication between components, but that deployed components are not altered
in any malicious manner.

One area that is not included in the following review is the large set of theoretical contri-
butions on network routing and data replication. Instead, the focus has been to describe
complete middleware systems. When theoretical contributions have been integrated into
existing systems these are discussed. Some additional theoretical contributions are in-
cluded as part of future work directions in Chapter 7, where novel research directions
will be proposed.

2.1 Distributed File Systems

In this section I introduce relevant work in the area of distributed file systems. I start by
the most common variant, which are distributed file systems for clusters. This is followed
by a few examples of file systems for wide-area networks. I then present additional details
on the replica placement algorithms used in these systems and present conclusions.

2.1.1 Cluster File Systems

NFS [151] is one of the early distributed file systems and continues to be widely used.
It is based on a stateless (up to version 4) client/server protocol implemented using
remote procedure calls and supports POSIX-like semantics. Experience has established
that this is a reasonable goal on fast networks without many clients and simpler usage
patterns [27]. However, with large numbers of users or with bandwidth constraints, the



Chapter 2 Literature Review 12

POSIX-like semantics hinder the performance and scalability, resulting in NFS being an
unattractive choice to manage datasets at the petabyte scale.

AFS [89] was the first distributed file system to introduce caching of file and directory
information on the client machine. This property increases the scalability of AFS but
introduces additional complexity when handling updates. UNIX “last file write wins”
semantics are especially hard to implement in a scalable manner. To address this, AFS
introduces “last file close wins” semantics, where the last file close operation becomes
immediately visible to other clients. This limits the universal applicability of AFS to
general work patterns but increases the scalability for the common cases of multiple
reads with infrequent writes. Nonetheless, in the literature I have not found any AFS-
based system handling petabytes of data over a wide-area network. This is likely due
to fundamental AFS design decisions, such as the requirement to support POSIX-like
semantics. There are two important lessons to be learnt from the AFS design: the scal-
ability benefits from client-side caching and the need to adapt the file-locking semantics
for specific usage patterns.

Coda [152] is a file-system originally based on AFS that introduces support for dis-
connected operations when the network connection is lost. Coda provides mechanisms
to resolve conflicts. In addition, while AFS uses pessimistic replication, allowing only
one read/write server to receive updates and other servers to act as read-only replicas,
Coda allows all servers to receive updates, increasing scalability and providing greater
protection against server failures. Nonetheless, at the petabyte-scale, Coda su↵ers from
exactly the same issues as AFS.

Another modern cluster file-system is the block-based IBM General Parallel File System
(GPFS) [153]. GPFS provides high-performance I/O due to its ability to stripe blocks
of data from individual files over multiple disks, as well as reading and writing these
blocks in parallel.

The Lustre [155] distributed file system was originally developed by Cluster File Sys-
tems and later acquired by Sun Microsystems. Lustre is inspired by the (very clean)
architecture devised for the Digital VAXClusters, which were built on top of a local file
system by requiring data access to interact closely with a distributed lock manager. The
core components of Lustre are the distributed lock manager, the metadata servers and
object storage targets. By exploring a well-designed distributed locking manager and
caches, Lustre scales to the data handling requirements discussed previously: tens of
thousands of nodes and petabytes of storage. Lustre is widely used in both commercial
and scientific environments and is the backend to several supercomputers.

An important lesson from Lustre is on how scalability is achieved by moving from a
block-based approach to an object-based approach, which changes the fundamental
mechanisms used to access data. Lustre, contrary to traditional block-based devices,
assumes that storage devices are intelligent devices and makes use of more advanced



Chapter 2 Literature Review 13

protocols to access data. Lustre clients do not talk directly to the block-based device
but rather to a component called Object Storage Target (OSTs). This approach elim-
inates many of the bottlenecks of traditional block-based I/O in the communication
between clients and block-based storage devices.

Although object-based approaches induce scalability gains, there is still a problem in
scaling up the metadata access: in principle, adding OSTs allows the storage to scale
almost linearly but the required metadata (e.g. directory information) does not. The
Ceph file system [171] aims to address this problem by replacing traditional allocation
and inode tables with a pseudo-random data distribution function, designed for dy-
namic clusters. It also uses a new reliable object storage called RADOS [173]. Overall,
Ceph achieves better scalability by reducing the bottlenecks associated with maintaining
metadata on a distributed file system.

Google has designed and implemented the Google File System (GFS) [80], which pro-
vides a scalable system for distributed data-intensive applications. It is designed for
applications handling very large files with many reads and few writes. GFS drops some
of the assumptions of the earlier systems, such as POSIX-like semantics. It consists of a
master node (the metadata server) and multiple chunkservers. The master node maps a
user file to multiple chunks (a chunk is a block of 64 Mbytes), which are placed in various
chunkservers. The file system supports parallel read, write and update operations and
has built-in fault tolerance features.

This simple design allows GFS to scale to large clusters while running on inexpensive
commodity hardware. Hadoop HDFS 1, a top-level Apache project, is a system inspired
by the design of GFS but Open Source and therefore considerably better documented.
HDFS implements some additional functionality such as the ability to expose its data
through the WebDAV protocol [66].

A core lesson from these systems is that scalability is achieved by taking advantage of
environment constraints. For instance, GFS eliminates the complex distributed locking
models of the earlier systems by allowing append operations only and adopting simple
mechanisms for fault tolerance.

Farsite [3] is a distributed file system with the goal of ensuring secrecy of file contents
by using cryptographic techniques. It maintains the integrity of file and directory data,
employs local caching, lazy update propagation, and varying content and duration of
leases. Farsite is not meant for high-performance I/O or wide-area environments but for
local-area networks with reduced write sharing scenarios. Its interesting properties lie
in the mechanisms employed to achieve fault tolerance and data protection.

1Refer to http://hadoop.apache.org/core/docs/current/hdfs design.html.



Chapter 2 Literature Review 14

2.1.2 Wide-area File Systems

A major goal in this research is e�cient operation over wide-area environments. In this
section I describe existing work that customises or builds file systems for the wide-area
network.

LegionFS [175] is an object-based system for the wide-area network, with the goal of
supporting heterogeneous environments. It is an object-based system where objects im-
plement a set of characteristics and exchange messages. It does not handle replication
or load balancing but instead provides interfaces and protocol stacks that can be ex-
tended by application developers. The scalability it achieves is limited because of the
object-based approach and extensive use of messaging.

Lustre was initially designed as a cluster file system for a closed network but has since
been expanding to accommodate deployments across clusters and data centres. [128]
briefly describes future plans for a “Lustre Router Control Panel” to allow adjusting the
quality of service within a cluster and wide-area network. [158] demonstrates a scenario
where Lustre runs over several wide-area computing centres. This is done with dedicated
10 Gbit links and some tuning of the settings in Lustre.

GPFS has been demonstrated to work over a wide-area network in [9]. Nonetheless,
this was done with strict deployment constraints and considerable tuning much like the
previous example with Lustre.

WheelFS [162] is a wide-area distributed storage system that implements a POSIX
interface. It allows applications to adjust the trade-o↵ between prompt visibility of
updates from other data centres and the ability for centres to operate independently
despite failures and long delays, hence relaxing the stricter POSIX semantics. It relies on
“semantic cues” that provide applications with control over consistency, failure handling,
and file and replica placement. WheelFS has been implemented as a user-level file system
but its evaluation focuses on smaller files (O(10) MBytes) and smaller data rates.

2.1.3 Replica Placement

Most of the systems previously presented, particularly earlier work, employ rather simple
replica placement strategies. Some do not even employ any technique and leave the
issue of availability to underlying RAID systems. Other systems employ only minimal
replication: e.g. GPFS optionally creates two replicas of a file if RAID is not available.

The Google File System has a more complex algorithm. The replica placement in GFS
tries to place replicas in uncorrelated devices, which are typically storage devices in
di↵erent racks. This strategy is clearly optimised for a data centre environment. Its



Chapter 2 Literature Review 15

architecture presents a decisive advantage for replica placement: the master-based ar-
chitecture allows GFS to achieve close to ideal resource balancing, since placement de-
cisions can use global knowledge. Nonetheless, the master-based architecture can result
in a scalability problem and in a single point of failure. Additionally, the master needs
to detect and react quickly to failures in all its storage nodes.

The Ceph file system introduces an interesting replica placement strategy. This is called
CRUSH [172], a scalable pseudo-random data distribution function designed for dis-
tributed object-based storage systems that does not rely on a central directory. It
allows dynamic addition and removal of storage devices. It also accommodates a vari-
ety of data replication and reliability mechanisms and distributes data in terms of user
defined policies that enforce separation of replicas across failure domains.

CRUSH places objects in storage devices according to a per-device weight value, ap-
proximating a uniform probability distribution. This distribution is controlled by a
hierarchical cluster map. The data distribution policy is defined in terms of placement
rules that are applied onto the cluster map. The di�culty in CRUSH is handling changes
to the hierarchical cluster map as these may lead to significant data reshu✏ing. In addi-
tion, CRUSH’s cluster map is designed for a cluster environment and provides no specific
hooks for wide-area environments.

Kinesis [122] is another recent replica placement algorithm used for distributed file sys-
tems. Unlike CRUSH, Kinesis has not yet been applied to an existing distributed file
system. Kinesis divides servers into a few failure isolated segments, following the prin-
ciples of GFS or CRUSH. Similarly to CRUSH, it also makes use of pseudo-random
functions to spread replicas in the system. Unlike CRUSH, Kinesis allows some freedom
of choice when placing replicas.

In Kinesis the storage servers are partitioned into disjoint segments of approximately
equal size. Servers with correlated failures (e.g. those on the same rack) are assigned to
the same segments. An independent hash function is associated with each segment and
maps identifiers for data items to servers in the segment. The hash function dynamically
adjusts to accommodate for changes in the set of servers due to failures or addition of
servers.

Kinesis makes use of the multi-choice paradigm [13] when choosing the segments to
place a replica. Within each segment Kinesis uses linear hashing [117]. These decisions
ensure that the algorithm maintains a balanced resource utilisation even in moderately
dynamic environments. Nonetheless, like CRUSH, it has no specific functionality for
the wide-area network (e.g. knowledge of network latency for replicating data), as it
assumes a data centre environment and makes simplistic assumptions to compensate for
possible heterogeneity of the underlying storage resources.



Chapter 2 Literature Review 16

2.1.4 Discussion

In the literature, there is no file system with native support for heterogeneous systems
or the wide-area environment. Nonetheless, most active projects have ongoing work
intended to extend to a wide-area environment (e.g. GPFS, Lustre). Currently, such
proposals require manual tuning between any two hops but these developments confirm
that the goals discussed in this work are relevant.

There are several common architectural design decisions adopted in the systems dis-
cussed above. One is that metadata is handled by a separate service (e.g. GFS, Lustre
or CRUSH). Even though a central metadata service (such as in GFS) is su�cient for
most usages, this approach has potentially limited scalability. Another observation is
that the more recent systems do not store user files as individual files on the storage
(e.g. Lustre). GPFS, GFS and Hadoop also adopt a similar approach: files on the disk
servers have no direct correlation with user files. Finally, most distributed file systems
maintain at most POSIX-like semantics and systems such as GFS or Hadoop are not
POSIX compliant at all. This is done to increase scalability. Apparently, users have no
significant di�culties in adapting their systems to these new interfaces.

Replica placement algorithms provide an interesting insight into how distributed file
systems actually work. Nonetheless, existing algorithms are designed for a data centre
environment (e.g. CRUSH requires a cluster map and Kinesis requires the definition of
failure isolated segments). As such, these systems make simplistic assumptions regarding
network connectivity, do not deal with transfer latency and have simple mechanisms for
detection of faulty nodes, often building on top of data centre specific tools.

2.2 Peer-to-Peer Data Management

Peer-to-peer (P2P) systems are based on decentralised architectures [165] where, from
a high-level perspective, all processes in the system are equal and their interactions
symmetric. Each process can act both as a client or server at the same time. In
addition, P2P systems implement self-organisation and distributed control [148].

P2P systems are interesting for their scalability and associated fault tolerance properties.
An example of a P2P system in widespread usage is BitTorrent [48], a file distribution
system that in 2007 was responsible for approximately 70% of overall Internet tra�c
and accounted for over 66% of the P2P user population [91].

In the next section I describe how the processes in a P2P system are organised into
overlay networks in order to understand how scalability is achieved. This is followed by a
description of P2P systems used to store and share files among users. Replica placement



Chapter 2 Literature Review 17

strategies are discussed in the third section. Finally, I conclude with a discussion of the
relative advantages and disadvantages of each system.

2.2.1 Overlay Networks

Participating processes (or nodes) in the P2P system are organised to form an overlay
network, which is a virtual network with a link between any two nodes that communi-
cate directly with each other. There are multiple types of overlay networks identified
in the literature [120]. These overlay networks have been classified as centralised or
decentralised, in which case they can be considered as structured or unstructured [121].

Early systems, such as Napster2, were based on a constantly updated centralised di-
rectory. This central directory was used to find other nodes: in the case of Napster it
was used to locate nodes that had the desired music or video files. Nonetheless, this
approach does not scale well since it contains a single point of failure and has since been
mostly abandoned.

Decentralised but structured systems have no central server but implement a significant
amount of structure. Literature shows that most such systems make use of distributed
hash tables (DHTs). This allows for building e�cient and deterministic mapping of keys
to nodes based on some distance metric. Examples of DHT-based systems are Chord
[161], Freenet [47], Pastry [149], Tapestry [180] and the Content Addressable Network
(CAN) [144].

Decentralised and unstructured systems rely on randomised algorithms to build the
overlay network. Each node maintains a list of its neighbours built in a more or less
random manner. The final network has certain properties but there is no deterministic
mechanism to locate nodes (e.g. based on some key as in DHT-based systems).

The presence or absence of structure in the overlay network is very influential to the
design of P2P applications. The most common P2P application is a file distribution
service: this involves searching and transferring a file to a user node. In the presence
of structured systems, searches can make use of structural information. In the case of
unstructured systems, a query usually involves flooding the network [147], which may
impair its scalability for large numbers of nodes.

Recent literature shows a prevalence of some form of structure in most systems, following
work by [39]. Note that the classification between structured and unstructured is not
entirely strict and [87] has introduced a P2P classification based instead on the existence
and location of an index, following classical database research terminology.

In the next section I describe relevant work on P2P storage systems.
2Refer to http://www.napster.com.



Chapter 2 Literature Review 18

2.2.2 Storage Systems

P2P systems became popular through file distribution applications where users share
music and video files. The inherent properties of P2P systems allowed for significant
scalability improvements. These were quickly exploited by the research community,
which followed and improved on this trend by introducing distributed storage systems.
Some early examples are CFS [52] and PAST [65], which both make use of (structured)
overlay networks. In the case of CFS, Chord [161] is used for the overlay network. Other
examples are OceanStore [102] (and its prototype Pond [146]) and Ivy [130]. These
systems target a wide-area environment and have in common the use of distributed
hash tables. In the case of OceanStore, the authors aimed at designing a wide-area
network system capable of storing all the World’s data.

One of the major issues with early P2P storage systems was the lack of any quality of
service guarantees. This is addressed in [25] under the suggestive title “High availability,
scalable storage, dynamic peer networks: pick two”. One influential factor is called
churn, which is the impact on the system of constant changes in the set of participating
nodes due to joins, graceful leaves, and failures [82]. This is particularly problematic for
DHT-based systems, which may require repairing hash tables.

An attempt to solve the lack of service guarantees is provided by TotalRecall [24]. Total-
Recall is a P2P storage system that automatically manages availability in a dynamically
changing environment. It adapts the degree of redundancy and frequency of repair to
the distribution of failures. As such, it can guarantee user-specified levels of availability
while attempting to minimise the overhead needed to provide these guarantees. Car-
bonite [46] claims to improve on this principle by devising a new algorithm that requires
substantially less network overhead and still guaranteeing data durability.

A slightly di↵erent approach is taken by Kosha [34]. Kosha is an P2P enhancement to
the NFS file system and is built on top of Pastry. It allows for distribution of directories
instead of files across multiple nodes, reducing the NFS-related overhead.

More recently, some researchers have focused on creating P2P-based solutions for a more
benign environment. In this environment, it is assumed that there is a better control
(ownership) of the storage resources, hence less churn. In this scenario, it is possible
to achieve a better load and storage balance. An example of such a system is BitVault
[179].

2.2.3 Replica Placement

The P2P literature also shows extensive research on algorithms for replica placement.
The goal of a P2P replica placement algorithm is to place data in the system in such a
way that a query, propagated through broadcast or random walk, finds the data with a



Chapter 2 Literature Review 19

certain probability within a bounded search. This avoids the need for queries to span
the entire network.

Work on replica placement was initially motivated by unstructured systems and the
reference work is by [121] and [49]. The authors showed that the optimal search per-
formance can be attained when the number of copies of a data item are proportional to
the square root of its popularity. [115] shows how to implement such a strategy.

[129] introduced protocols that implement a random walk followed by a deterministic
walk that ends in a local minimum for the current item. The result is exponentially
increasing success probability as the number of replicas increases. [159] improves these
contributions with provable results, adding the ability to deal with more dynamic churn
situations and also addressing where to place replicas. It is worth noting that whilst
most of this research is motivated by unstructured networks, it is also relevant for the
structured case.

In the next section, I discuss the relative advantages of these contributions in more detail
as well as their applicability to my problem.

2.2.4 Discussion

P2P systems are interesting because they address both the heterogeneity and the wide-
area problems. These systems are layered on top of the existing file systems in each
participant’s computer, which are linked through overlay networks spanning the Internet,
allowing users to share their data files. The fact that most P2P systems have evolved
to have some sort of structure through overlay networks highlights the di�culties with
working with a completely random environment.

Nonetheless, P2P systems come short of my stated requirement as they do not provide
significant quality of service guarantees. P2P systems are designed for a very large num-
ber of participating nodes in a byzantine environment, while I aim for non-completely
byzantine scenarios. This in part is the reason why P2P systems have limited ability
to provide service guarantees. In addition, P2P systems for the most part support very
limited functionality as I describe next.

PAST and CFS do not provide advanced data management capabilities. For instance,
CFS assigns all objects the same number of replicas and disregards popularity skews,
which may not be suitable for some applications where all data items are equally impor-
tant and should be retrieved even if less popular. CFS has also has been documented
not to have good performance [173] apparently due to its reliance on Chord. PAST
also caches popular objects along the query path, which may cause storage utilisation
imbalances: that is, some P2P nodes host data that they will never use, resulting in
wasted disk space.



Chapter 2 Literature Review 20

Ivy, which is built on top of DHash [53], does not provide for balanced storage utilisation
either. It is reported to cause excessive bandwidth and storage waste by creating new
replicas in response to transient failures [46]. This derives from the di�culties in distin-
guishing short-term transient failures from permanent failures where nodes permanently
leave the network or lose data.

OceanStore is designed for a totally untrusted and constantly changing environment.
Like PAST, CFS and Ivy, OceanStore only provides probabilistic guarantees. Unlike
PAST and CFS, it provides for write sharing. As a result, it has the disadvantage of
a complex architecture featuring a byzantine agreement protocol for conflict resolution
and a complex protocol to implement the location service (the authors assumed the core
system could be maintained by commercial providers). Its scalability has also not been
evaluated at a very large scale.

Both TotalRecall and Carbonite are optimized for the wide-area network and attempt to
reduce the number of replicas created by temporary failures. These systems essentially
focus on data availability and not other classes of requirements, such as priorities in
accessing data or more advanced data bookkeeping. Also, their scalability has not been
extensively studied and the simulation results are for scenarios with a large number of
nodes but a comparatively small number of stored files.

Kosha implements a simplistic replica placement strategy where replicas are maintained
in neighbour nodes in a fairly random assignment. Neighbours in the node identifier
space have no relationship in terms of physical proximity. As such, it is not clear
whether Kosha can achieve adequate storage utilisation balance.

In addition, none of the previous systems fits very well in a more benign environment with
less churn. One of the main reasons is that the replication of data is fully decentralised,
being done sequentially from a root node. This fully decentralised approach leads to
di�culties in attaining balanced storage utilisation (“global optimums”) as there is no
global information to make use of.

An example of a P2P system for a more benign environment is BitVault. It is primarily
concerned with management and availability of data and is characterised by a massively
parallel repair functionality. Unfortunately, it assumes a completely benign environment:
all resources are fully controlled in a uniform environment, making it applicable to a
data centre environment rather than a wide-area system.

Finally, the work presented on replica placement algorithms is geared towards more
unstructured and dynamic environments. It often su↵ers from practical limitations that
a↵ect the viability of the proposed solution. For instance, the work by [49] requires
knowing the overall popularity of a data item; in reality, this can be very di�cult.
It also does not solve the problem of where to place replicas, giving only the best
replication factor. [159] addresses most of these issues in great detail and also tackles



Chapter 2 Literature Review 21

implementation issues. Nonetheless, it continues to aim at more dynamic environments.
Its applicability to situations with a reduced number of nodes but comparatively very
large number of files per node is also not obvious: but this has not been the goal for
their system. As such, if implemented in a more benign environment, it is likely that
the resource usage would not be ideal.

2.3 Grid Data Management

Grid Computing [74] is a distributed computing paradigm that proposes to aggregate
geographically distributed and heterogeneous resources to provide a unified, secure and
pervasive access to their combined capabilities. As a result, Grid applications can take
advantage of many networked resources and distribute their usage across a large infras-
tructure.

Grid computing is therefore an appropriate paradigm for handling very large datasets
in heterogeneous environments. This follows naturally from its initial intent, which is
to focus on large scale resource sharing. In this section, the relevant work in the Grid
Computing domain is introduced.

The Grid Computing community has created a set of technologies to address many of
the associated challenges. These include authentication, authorisation, resource access
and resource discovery among dynamic collections of individuals [77]. These dynamic
collections are called Virtual Organisations (VOs).

A VO defines the resources available to its users and their usage conditions. A VO also
provides protocols and mechanisms for applications to determine the suitability and
accessibility of available resources. In practical terms a VO is defined using mechanisms
such as Certificate Authorities (CAs) and trust chains for security and is implemented
through mechanisms such as GSI [76].

Grids are usually constructed using a service oriented paradigm. This began with the
definition of an open grid services architecture [75] and infrastructure [167], which were
later superseded by the Web Services Resource Framework (WSRF) specification [72].
In WSRF, resources are o↵ered through the invocation of Web services with enriched
functionality such as life cycle and state management.

An example of a Grid service is the OGSA-based Data Access and Integration (OGSA-
DAI) [10]. OGSA-DAI is a middleware product that allows data resources, such as
relational or XML databases, to be accessed, integrated and federated via web services.
OGSA-DAI aims to hide the lower level data handling issues (e.g. file replication) from
the users, enabling users to depend only on integrated database technologies. Some work
remains though, to have OGSA-DAI services operating at the required petabyte scale.



Chapter 2 Literature Review 22

2.3.1 Data Grids

One of the early Grid Computing contributions to the data management problem is
GASS or “Global Access to Secondary Storage” [23]. It consists of a system designed
to manage secondary caches, which can be seen as a logical evolution of the client-
side caches built into distributed file systems such as AFS. GASS claims to support
bandwidth management rather than latency management of distributed file systems,
but its functionality is very limited.

Based on the experience of GASS and the Grid Computing paradigm, Data Grids [43]
were defined as specialised Grid architectures designed to handle distributed manage-
ment and analysis of large datasets. These architectures are loosely defined to accom-
modate various models of operation and are tightly integrated with “Grid dynamics”:
security, awareness of virtual organisations and access to fast-changing large sets of
resources.

The “Data Grid architecture” consists of two main components: one responsible for
storing and retrieving data and another for bookkeeping. [43] also introduces higher-level
services to integrate all the individual lower-level services into a coherent set, defining
a Replica Management service, capable of moving files between Grid centres and doing
all the necessary bookkeeping. In addition, it also defines the Replica Selection and
Filtering service that would decide on-demand replication.

An early attempt to implement the Data Grid architecture was done by Reptor [104], a
prototype implementation whose scalability has not been thoroughly evaluated. On the
bookkeeping aspect, “Giggle” [42] is the reference work. Giggle consists of catalogues
mapping logical names to physical replicas so that users can reference data by a logical
name independently of its physical location. These catalogues can be layered similarly
to LDAP. Not surprisingly, as the scale increases, there have been proposals to move to
a P2P-based approach for searching data, based on distributed hash-tables [35]. In fact,
such convergence between P2P and Grid Computing has been defended by the Grid
authors as a way to tackle increasingly complex problems [73].

[169] has proposed a taxonomy for the organisation of Data Grids. These can be
monadic, where all data is aggregated in a central repository that users contact to
retrieve data; hierarchical, where there is a single source of data distributed in a tree-
like form across di↵erent resources; federated, a model first proposed by [139] and based
on distributed databases where each resource owner maintains ownership of its data but
shares it with others; or hybrid, which is a combination of the other models.

To handle file transfers in a Data Grid, GridFTP [5] is the most commonly used protocol.
GridFTP is a set of extensions to the File Transfer Protocol (FTP) that define a general-
purpose mechanism for secure, reliable, high-performance data movement. GridFTP
functionality continues to evolve with e.g. support for transfer stripping [6] or pipelining



Chapter 2 Literature Review 23

of small files [32], with the goal of increased performance for large scale data movement.
In [101], a detailed analysis of GridFTP use is made, which confirms its widespread
popularity.

Influenced by the Data Grid principles, work started at CERN on GDMP (Grid Data
Mirroring Package) [150]. The goal was to provide a mechanism to transfer Objectivity
database files between computing centres on the Grid. This work was later expanded
[160] to become a generic file and object replication tool. It introduced the concept of
a storage system subscribing to collections of files in a producer-consumer model. Files
were moved using GridFTP. GDMP was envisaged as a limited prototype system for file
movement and its scalability was not investigated.

A di↵erent concept is introduced in Stork [100]. The goal is to “make data place-
ment activities first class citizens in the Grid just like the computational jobs”, where
data placement tasks can be queued, scheduled, monitored, managed, check-pointed,
and more importantly completed without human interaction. Stork is a scheduler that
defines semantics suitable for data placement activities (e.g. “transfer”, “release” or
“reserve” jobs). The Stork scheduler then integrates the data placement jobs with the
corresponding computational jobs, leading to better coordination between CPU and I/O
activities.

More recently, there have been several important examples of integrated replica man-
agement services. One such system is by Lamehamedi [107]. It consists of a P2P-based
system for replica location and an “intelligent” framework for replication based on user
demand and calculations of replication cost. This paper, despite being one of the most
comprehensive approaches to managing large datasets on the Grid to date, stills does
not address real-life problems such as bandwidth management and does not address
issues such as replica consistency or support for tertiary storages, which were modelled
as arbitrary file access penalties.

Another recent and thorough attempt to provide more sophisticated Data Grid function-
ality is detailed in [44]. The system, called Data Replication Service (DRS) is built on
top of Grid services such as the replica location services, GridFTP and the Globus Reli-
able File Transfer (RFT) service [124] (which is a wrapper around GridFTP to increase
its reliability). DRS, which uses WSRF, is based on a pull model for data replication,
and implements a distributed metadata architecture, an interface to local storage sys-
tems and a file transfer validation component. It uses a plug-in approach for custom
deployment of data centre-specific configurations.

Despite the examples of Data Grid contributions, it is clear that many important chal-
lenges remain to be addressed. Recently, in [58] some of these open issues are discussed
with some insight given on the interactions between workflow execution and data man-
agement.



Chapter 2 Literature Review 24

2.3.2 Storage Systems

Several storage systems have been developed in the context of Data Grids. These are
typically middleware built on top of existing file systems, which are linked together into
a coherent set using Grid technologies. In this section, I present the most relevant work
in this context.

The Storage Resource Broker (SRB) [17] is a middleware that aims to provide a unified
view of the data files stored in disparate media (disks, tape archives or databases)
and locations. It provides the capability to organise its data into virtual collections
independent of their physical location and organization.

An SRB installation follows a three-tier architecture, where the bottom tier is the storage
resource, the middleware lies in between and at the top is the Application Programming
Interface (API) and the metadata catalogue (MCAT). SRB hosts collectively form a
Data Grid where each server implements trust virtualisation using mechanisms such as
GSI that allow SRB servers to share data on behalf of the user.

SRB supports the standard set of POSIX functionality but has been extended with mul-
tiple APIs particularly for bulk request manipulation. One of the di�culties in SRB is
managing the underlying heterogeneous environment. For this it implements consistency
checks and multiple reliability mechanisms. This underlying complexity has nonetheless
motivated the authors to start a new project, called iRODS [140], which implements
management policies as rules that control the execution of remote micro-services, while
managing persistent-state information that can be used to validate management asser-
tions. This can be used by end-users to build additional functionality onto iRODS,
instead of layering directly into the system as was the case with SRB.

Whilst SRB provides an interesting approach at tackling the heterogeneity of the envi-
ronment, which is demonstrated by its use by several applications, it does not directly
address a data-intensive environment. A data-intensive environment is characterized
not only by hosting large amounts of data but also by the need to access and manipu-
late these large amounts of data near the limits of the available resources. Much of the
mechanisms to regulate transfers for replica placement in SRB provide only low-level
mechanisms for this tuning.

A very di↵erent approach at tackling the heterogeneity problem is adopted by SRM, or
Storage Resource Manager [157]. SRM is a specification that can be implemented by
existing storage systems to expose their data onto a Data Grid. SRM defines a set of
functionalities such as “prepare to get a file” or “move a file to the top storage hierarchy”.
The SRM specification is designed to accommodate multiple underlying storage systems
with storage hierarchies, such as tape systems and various levels of disk bu↵ers (hence
the need for a “prepare to get” prior to a download, bringing the file first to the correct
storage hierarchy layer). Various storage systems provide an SRM interface. Examples



Chapter 2 Literature Review 25

are the CERN Advanced Storage Manager, CASTOR [16], dCache [79] and the LCG
Disk Pool Manager3 (DPM).

Another example of a Data Grid storage system is Gfarm [166]. Gfarm aims to provide
transparent access to remote files in a Data Grid, via a POSIX compliant interface. It
aims to scale to tens of thousands of nodes but no such studies have yet been conducted.

2.3.3 Replica Placement

The Grid Computing literature includes a wide range of work on replica placement in the
context of Data Grids. In this section, I introduce the initial motivation to the replica
placement problem, which is the job scheduling problem on the Grid. I then discuss
multiple replication strategies, which are classified into early work, economic-based,
quorum-based and cost-based strategies. All these strategies require global knowledge.
This is followed by a discussion of replication strategies that require only local knowledge.
I then discuss other replica placement work that tackles closely related problems like
maximising availability or ensuring a well defined quality of service. Finally, there
is a discussion on the importance of file grouping, workload analysis and file transfer
optimisation.

In [142] a comparison is made between scheduling strategies that take into account repli-
cation and those that do not. The authors conclude that “clearly dynamic replication
helps to reduce hotspots created by popular data and enables load sharing” and “if data
locality issues are not considered, even the best scheduling algorithms fall prey to data
transfer bottlenecks”. The conclusion also states that decoupling job scheduling and
data replication makes the Data Grid simpler, permits highly decentralised implemen-
tations and actually achieves better performance.

In [143] the same authors build upon previous work with more realistic models and also
conclude that correlations in file usage could help design better replication strategies.
In [123] the authors study “intelligent” staging in a Data Grid. They propose three
techniques: detecting sets of files that are needed by other jobs and stage them together
and quickly; use time-to-replication to compute scheduling metrics; overlap the execution
of data staging and compute bound tasks. The authors claim that while data staging
tuning is important, overall performance can be improved by taking into account job
expectations and scheduling jobs that stage data with CPU-intensive jobs. This allows
a reduction in the overall waiting time.

More recently, [138] followed the same principles by introducing a “data di↵usion” tech-
nique, which is the ability to provision resources dynamically, handle caches and imple-
ment data-aware scheduling. A di↵erent view to the scheduling and replica placement

3Refer to https://twiki.cern.ch/twiki/bin/view/LCG/DpmGeneralDescription.



Chapter 2 Literature Review 26

problem is given by [168], where the authors assume data is pre-placed and create a
heuristic-based scheduling algorithm to schedule the computation.

The work described above has shown the many interconnections between replica place-
ment and job scheduling but also demonstrated the possibility to decouple the two.
Based on these principles, many replica placement techniques have been developed. An
early example is [141], where the authors define a model with Grid centres organised
onto trees and create six di↵erent replication strategies: no replication or no caching;
best client (create replica on client that generated the most requests); cascading repli-
cation (once a threshold is passed, replicate data to lower level in the tree); caching
(client always caches data but as files are large and space is small there is a large cache
turnover); caching and cascading (combines both); FastSpread (replicate data along the
request path). They conclude that if user requests are random, the best strategy is Fast-
Spread. If there is enough geographical locality on the requests then cascading performs
best. Finally, depending on whether the application requires lower response times or
lesser bandwidth it could opt for FastSpread instead of cascading, as the latter has lower
response times but requires more bandwidth while FastSpread performs reasonably with
lesser bandwidth.

Following from this initial work, [37] and [21] introduce an economic model for replica
placement. This is based on Vickrey auctions done by each storage system. Vickrey
auctions are second-price sealed-bid single round auctions: there is a single bid round
where each bidder does not see the bids from others and whoever wins pays the price of
the second highest bid. As such, bidders have no interest in manipulating prices. [36]
provides a formal evaluation of the economic model using Petri nets.

One of the main goals of replica placement is increased availability. Nonetheless, as
previously discussed, this goal can conflict with the need for consistency on the Grid.
Quorum-based protocols address this problem by guaranteeing consistent information
while trying to maximise performance. In [62] data centres are structured as a three
dimensional grid structure. Given N copies of a data object, the proposed protocol
logically organises the N copies into a box-shaped structure with four planes. Reads
require any pair of nodes on the hypotenuse to agree. Any pair is su�cient which
increases fault tolerance. Writes require any hypotenuse copies and all vertices copies
to be updated.

In [105] yet another replica placement algorithm is introduced, which is based on cost
estimation: as users request data to be copied to a data centre, the system decides to
read it directly or to replicate it. The cost function takes into account link bandwidth
as well as read and write request rates, where adding a replica decreases read cost but
increases write cost. A run time system compares the replication gains to the replication
costs and then decides whether to create a new replica. In [106] more details are given
on the associated replica placement simulator, including the impact on the algorithm



Chapter 2 Literature Review 27

by having node additions and removals (in a manner very similar to the churn e↵ect of
P2P systems).

One problem with the work mentioned so far is that it requires global knowledge to make
a replica placement decision. While these algorithms could potentially attain a global
optimum by using global information, it would be very hard to implement in practice.
Also, being centralised, their scalability can be questioned. In [178] a decentralised
algorithm is proposed. This relies on a set of heuristics for decision making. One of the
caveats is that this algorithm only works for an hierarchical (tree-based) topology.

In [114] and [113] a di↵erent goal (and algorithm) is proposed. The goal is to maximise
data availability and for this two new metrics are introduced. These are the “System
File Missing Rate” (the number of files potentially unavailable) and the “System Bytes
Missing Rate” (the number of bytes potentially unavailable). The proposed algorithm
is greedy and relies on a prediction function.

[116] and [118] study the problem of optimal placement of replicas on a hierarchical Grid.
The goal is to balance the workload on all the available storages. These contributions,
which include provable behaviour, make nonetheless rather simplistic assumptions about
workload modelling and quality of service: e.g. quality of service is defined by how many
nodes can be queried to find a data item.

Essentially all of the work presented relies on simulations and makes a set of assumptions
about both the infrastructure and the workload. In [133] more accurate models are
proposed for storage systems in the Grid. In [101] a detailed analysis of one year and
a half of GridFTP transfer traces is introduced. The authors come to some surprising
conclusions such as that most transfers are actually for small data files (the intuition was
that mostly large data files were used). They also confirmed some known assumptions
that stated that the network resource provisioning in a Grid is typically good and most
transfers are routed through fast links.

Another example of Data Grid work based on real workloads is presented in [64], where
an analysis of real experiment traces (from the High Energy Physics DZero experiment)
is done. This analysis is based on 27 months of running. The authors discover that
the file sizes are arbitrary and mostly limited by the maximum size supported by the
underlying storage system. They also show that the scientific community data is more
uniformly popular than Web data, which is known to follow a Zipf-like distribution
[31]. This contradicts the models used in many of the previous contributions. The
authors also show the emergence of groupings of files they call “filecules”. Filecules
were initially presented in [1], and are defined as disjoint groups of files characterized
by having simultaneous access. The authors then develop a set of scheduling algorithms
based on this concept and show it outperforms other alternatives. Future work aims to
continue this work by exploiting correlations between “filecules”.



Chapter 2 Literature Review 28

Previous analysis also showed some limitations with the GridFTP protocol, which is
the most widely used for Data Grid transfers. In [177] a technique is proposed to
improve transfer times in GridFTP by using multiple parallel source storages at the same
time. Recently, in [94] a more elaborate technique is proposed that employs adaptive
replica selection to transfer di↵erent chunks of the same file by taking into account
dynamically changing network bandwidth. This work has lead to the emerge of GridFTP
overlay networks in [96] and [95]. The authors propose two optimisation strategies to
improve the performance of data transfers over shared public networks: multi-hop path
splitting and multi-pathing. Multi-hop path splitting consists of replacing direct TCP
connections between source and destination by a multi-hop chain. It is well known
that shorter TCP connections (with more hops) have advantages as the network round-
trip time is shorter and packet loss more quickly detected. Multi-pathing consists of
stripping data into chunks and sending disjoint pieces through multiple overlay networks
in parallel. In addition, the authors propose a path determination heuristic and a file
transfer scheduling heuristic for batch transfers.

2.3.4 Discussion

Grid Computing aims at creating a set of technologies that enable large, dynamic organi-
sations to operate in distributed environments. This is accomplished with the integration
of distributed resources by a set of middleware services, with the goal of providing a co-
herent interface. The applications that motivated the emergence of Grid Computing
- and the Data Grid architecture in particular - are the same large scale applications
addressed in this work. Therefore, Grid Computing and the Data Grid architecture
are of special importance to my own proposed solution in later chapters, which can be
classified as an instantiation and extension of the Data Grid architecture.

The Data Grid architecture defines multiple, decoupled services to handle manage-
ment of data. It focuses especially on the replica placement and bookkeeping services.
Nonetheless, no implementation currently exists that provides more advanced data man-
agement capabilities in a satisfactory manner. For instance, DRS [44] provides higher
level tools to manage data replication. Nonetheless, it does not include mechanisms to
automatically handle data loss and recovery. Instead, following the Data Grid architec-
ture, these are left as separate services to be coupled at the application level.

Grid storage systems can be split into those that provide only a thin interface (in the
case of SRM) or a thicker middleware (e.g. SRB). Nonetheless, none of the proposed
systems is shown in the literature to operate across multiple data centres and at the
petabyte scale. However, the manner by which these systems are integrated with lower-
level middleware is noteworthy, not only for the resulting uniform interface but also for
the many di�culties authors faced in maintaining the consistency of data.



Chapter 2 Literature Review 29

Explorations into the Data Grid architecture quickly came to the conclusion that a sep-
aration of concerns is desirable between the scheduling and replica placement problems.
As a result, many authors proposed several replica placement models. Unfortunately,
none of these contributions meet simultaneously the following three goals: to be based on
realistic assumptions of the underlying infrastructure (e.g. to include network latency
and parallelism considerations in the transfer layer); to be evaluated against realistic
workloads (e.g. not assuming Zipf distributions for data access requests); and to encom-
pass more advanced quality of service guarantees (e.g. priorities in the transfers).

Finally, it is important to note that many contributions signal the use of increasingly
complex and configurable policies (iRODS), more advanced data organisation techniques
(“filecules”), near optimal replica placement techniques as well as the optimisation of the
lower level file transfer layers (GridFTP overlay networks). These are goals important
to this work.

2.4 Cloud Data Management

Cloud Computing is a recent distributed system paradigm, which has been loosely de-
fined as “a nexus of hardware, software, data and people which provides online services”
[67]. This designation encompasses many di↵erent aspects. In this section I start by de-
scribing existing clouds and then move on to specific technologies, which are divided by
file-based storage systems, structured data storage systems, and programming systems
for the cloud.

Clouds are designed to make scalable computing easier. This is achieved by a combi-
nation of both infrastructure and software services [174]. For a start, clouds hide the
data centre operations away from the application developers. Cloud providers achieve
economies of scale by building their own homogeneous data centre infrastructures. Users
and developers then build and host diverse systems on top of these homogeneous infras-
tructures by using virtualisation. Because clouds are provided by private entities, they
are based on the Utility Grid concept4, re-implementing the old business model of paid,
time-shared, resource usage.

An example is Amazon’s Elastic Computing Cloud5 (EC2). EC2 allows users to create
machine images. These are then uploaded and executed on a set of distributed resources
hosted by Amazon, while giving the user many operating options, including the choice
of operating systems and static IP addresses, etc.

One disadvantage with cloud computing is the lack of user control [86] since the in-
frastructure (unlike desktop PCs or local clusters) is not owned by the users. Data

4Not to be confused with the Grid Computing concept. The Utility Grid refers to the electrical power
grid.

5Refer to http://aws.amazon.com/ec2/.



Chapter 2 Literature Review 30

ownership issues may arise when a cloud provider goes down or disappears. Also, the
development environments are neither uniform across clouds nor very rich when com-
pared to traditional development environments.

2.4.1 File-based Storage Systems

In addition to the EC2 service, Amazon provides a storage service called Simple Storage
Service6 (S3). S3 is a commodity-priced storage utility, which provides web service
interfaces to store and retrieve data. It is a fundamentally di↵erent approach to a
distributed file system as it encompasses both the hardware and software layers.

S3 is primarily designed for storing large data objects. Independent studies [134] have
confirmed this, with small objects su↵ering from transaction overhead. There are other
interesting observations such as the metadata bookkeeping in S3, the write-sharing se-
mantics and the internal data placement strategies.

S3 stores objects. Each object is identified by a unique key and may have a custom set
of metadata assigned as key/value pairs. Objects are organised into “buckets”. A single
user account is allowed 100 buckets in a shared namespace. Although the motivation for
this design feature is not documented, it is probably to prevent abuses of the namespace.

Whenever data is stored on S3, it may not be visible until the changes are fully “propa-
gated”. Although no working details are given in the available documentation, it is likely
that internally S3 makes multiple copies of the data items. Similarly, when deleting data,
the objects may be visible whilst the deletion is not propagated.

In [134] the authors also noticed di↵erent data access performance depending on the
downloading node, leading to the authors’ suspicion that S3 operates multiple data cen-
tres and makes data placement decisions depending on the location of the user creating
the bucket that stores the data. Also, S3 supports BitTorrent as the download protocol,
allowing for substantial bandwidth savings if multiple concurrent clients demand the
same set of objects.

Several studies (e.g. [60]) have made a case for the applicability of S3 for a scientific envi-
ronment, characterized by dynamic communities and potentially large amounts of data.
[59] is one such detailed study, which concludes that for a data-intensive application
with a small computational granularity the storage costs are insignificant as compared
to the CPU costs, in which case cloud computing o↵ers a cost-e↵ective solution.

While S3 provides a very good service with a low number of failures [134], it is not
adequate for large collaborations. One limitation is its simple security model that is
inadequate to manage large, dynamic, sets of groups. Also, the authors argue that

6Refer to http://aws.amazon.com/s3/.



Chapter 2 Literature Review 31

the S3 storage model should allow for the un-bundling of its infinite durability, high
availability and fast access into independent components with di↵erent cost-models,
making the service more attractive for large users.

2.4.2 Structured Data Storage Systems

In this section, I describe two cloud-based systems that support structured data, with the
goal of understanding the internal design decisions, in particular concerning scalability.

Google’s BigTable [41] resembles at first a database but has a significantly di↵erent
interface. There is no support for the full relational model and transactions are limited
to single rows. Instead, BigTable provides a simple data model with dynamic control
over data layout and format. An important aspect is that clients can reason over the
locality of data. BigTable is designed to cope with both throughput oriented workloads
and latency-sensitive workloads and is reported to store several hundreds of terabytes
of data. The implementation makes use of the Google File System (GFS) for storing
persistent data; it also uses Chubby [33], a distributed locking service developed by
Google.

While BigTable provides an interesting and very scalable system for storing very large
datasets, it is still designed for a single data centre. There is ongoing work on building
cross-replicated BigTables with multiple master replicas but no details are available yet.

Another system that handles structured data storage, but across multiple data centres
is Amazon’s Dynamo [57]. This is a key/value storage system whose goal is to provide
a very high level of availability. Dynamo implements an eventually consistent [170]
data store: that is, all updates reach all replicas, eventually. Dynamo internally places
replicas using a variation of consistency hashing combined with a quorum-like technique.
Users can specify the minimum number of consistent reads (R) or writes (W ) in di↵erent
nodes, out of N nodes, before the operation is accepted. This allows users to configure
the availability, durability and consistency properties of their stored data. It also uses
a gossip-based mechanism for failure detection and a membership protocol, somewhat
similar to P2P systems.

Because the goal is high availability, it may happen that multiple versions of an object
are created. Vector clocks [108] are used so that clients have information on eventual
concurrency and can act on it. Finally, it can temporarily place objects in another
node if the recipient is temporarily unavailable (called hinted hando↵), and makes use
of Merkle trees [127] for replica synchronization of multiple object versions.

Dynamo has been designed for a non-hostile environment and has no built-in security.
Although it replicates data across data centres, it assumes all connections are over a
fast and dedicated network. In addition, it targets mostly small objects. It is likely



Chapter 2 Literature Review 32

that this replication would be significantly more complicated if Dynamo had to manage
much larger data objects.

In the following section, I briefly describe how these systems are integrated with higher-
level abstractions, which are then used for data analysis. The creation of new data
analysis paradigms is of special interest because they provide novel mechanisms to per-
form ad-hoc analysis over extremely large datasets.

2.4.3 Cloud Programming

MapReduce [55] is a programming model and associated implementation for processing
and generating large datasets. Users specify computation in terms of map and reduce
tasks, inspired by the primitives present in Lisp. There is an underlying system that takes
care of computation aspects across large clusters of machines, including making tasks run
in parallel, handling failures and scheduling intra-machine communication. MapReduce
is reported to process up to 20 petabytes of data per day [56]. The implementation is
geared towards large scale clusters of commodity PCs connected by Gigabit Ethernet
and uses the Google File System for permanent storage.

There are various improvements proposed to the basic MapReduce model. [119] ex-
pands the MapReduce abstraction with a wide-scale distributed stream processor called
Mortar. The stream processor manages the placement and physical data flow of the
operators across the wide area. [45] implemented a new Merge step so that the support
for multiple heterogeneous datasets would be easier. Pig Latin [132] goes even further
developing a new language somewhat in the style of SQL but implementing a low-level
procedural style. It is an interesting system, for read-only analysis, as it gives users
detailed control over the query optimization. This is done by having users define ex-
plicitly each step of the data transformation. According to the authors, this property
is critically for scalability. Pig Latin also builds on top of Hadoop7, an open-source
implementation of MapReduce.

2.4.4 Discussion

The recent emergence of successful cloud computing projects is likely due to the in-
novative view taken at solving the data management problem. First, clouds facilitate
the maintenance of large computing farms. Most important though are the interfaces
exposed to developers. Cloud computing has succeeded in creating a synthesis between
database and file systems. Many authors (e.g. [84]) have argued that this is an essential
condition for petabyte-scale archives. The new programming approaches (or rather, the

7Refer to http://hadoop.apache.org/core/.



Chapter 2 Literature Review 33

innovative reuse of old primitives) are also providing additional flexibility to the design
of scalable, parallel applications.

Nonetheless, no cloud system currently includes techniques for managing large amounts
of wide-area distributed data over heterogeneous infrastructures, although all identify
this as future work. Amazon recently launched a new service (Amazon CloudFront8)
aimed at reducing latency for accessing S3 from various locations. It is also interesting
to note the trend of allowing users to make trade-o↵s between availability, durability
and consistency in the data store. Amazon’s S3 is also interesting for some of its design
considerations, such as the simplistic approach of imposing user limits (e.g. every user
can have only 100 buckets). These simplifications are necessary for scalable systems.
Amazon’s Dynamo and Google’s BigTable have also achieved greater scalability than
parallel databases at the cost of avoiding complex transaction support but requiring
customisation of the analysis code.

The issues with Cloud Computing are somewhat symmetrical to those of Grid Com-
puting. While clouds have been designed from “top-to-bottom” to provide specific
capabilities, Grids have been designed to accommodate heterogeneous resources with
richer interfaces at the higher layers. As the usage of clouds increases, users will face
issues tackled within the Grid Computing domain, such as managing large and dynamic
collections of individuals, associated security issues and the ability to build applications
that span multiple clouds. None of these issues is currently addressed [68].

2.5 Scientific Applications

There are several examples of scientific applications with demanding data handling re-
quirements. This section describes the systems that have been built in the context of
these applications.

The Sloan Digital Sky Survey (SDSS) project provides Internet access to its data [164].
Originally the system stored the data using the Objectivity/DB9, but the data store
was later moved to a relational schema and uses the Microsoft SQL Server10. The
system holds several terabytes of data and is reported to maintain fast user response to
queries [164]. According to the authors this is achieved using a combination of physical
database design decisions and SQL Server functionality. This includes the spreading
of database files across several volumes and the ability to stripe tables across files and
disks along with pre-fetching functionality. This application is an important example
of relational database scalability achieving the terabyte scale, but is not a wide-area
distributed system.

8Refer to http://aws.amazon.com/cloudfront/.
9Refer to http://www.objectivity.com.

10Refer to http://www.microsoft.com/sql/default.mspx.



Chapter 2 Literature Review 34

The Laser Interferometer Gravitational Wave Observatory (LIGO) project has built the
Lightweight Data Replicator (LDR) system [135]. The capabilities provided by LDR
have since been added to a more sophisticated Data Replication Service [44] already
described in Section 2.3.1.

The PhEDEx project [145] has been developed in the context of the CMS experiment at
CERN. It provides a data distribution system based on a series of collaborating agents.
The agents are persistent, stateless processes that manage specific parts of file replication
at each storage in the network. It is the system that presents most similarities with
the work presented in this thesis, particular in regards to the data distribution “axis”
discussed in Chapter 1. (In fact, PhEDEX has been developed in parallel to the work
reported in this thesis, since both projects are part of the Large Hadron Collider at
CERN.) Important di↵erences concern the strict separation in PhEDEx between the
bookkeeping component and the data distribution functionality. PhEDEX is primarily
concerned with managing the distribution of data in the wide-area network, while the
system presented in this thesis is also concerned with handling end-user bookkeeping
requirements.

Following on the recognition that scientists are designing their own specialised user
interfaces and tools to marshal digital resources, several projects develop application-
oriented interfaces for the scientific community. Some examples are given in [176] as
part of the TeraGrid project, where researchers develop Web applications or portals
that attempt to hide many of the lower level complexity from the end-users.

2.6 Discussion

None of the systems described in this chapter matches the needs and environment con-
straints addressed in this thesis. This includes the ability to manage very large sets
of data, at the petabyte-scale, across multiple data centres on the wide-area network
while providing rich user functionality. Nonetheless, most active projects identify this
as an area of future work (e.g. GPFS, Lustre and more recently GFS and Amazon
CloudFront). The Data Grid architecture is the closest applicable distributed comput-
ing paradigm, but none of the reviewed Data Grid implementations provide su�ciently
rich functionality, but instead propose decoupled building blocks for developers to built
application-specific systems.

It is nonetheless instructive to highlight some architectural design decisions adopted in
these systems. For instance, metadata is most often handled by a separate service (e.g.
Lustre, GFS or the Data Grid architecture). Most distributed file systems use a single
central metadata service with some form of built-in redundancy (e.g. GFS, Lustre).
Other systems, such as P2P systems, apply partitioning and searching techniques di-
rectly in the overlay network for increased scalability, as a mechanism to cope with the



Chapter 2 Literature Review 35

wide-area environment.

Another observation is that the more recent systems do not store user files as individual
files on the storage. For instance, Lustre, GFS and HDFS split each file into shards.
Also, most systems maintain at most POSIX-like semantics and newer systems such as
GFS, HDFS and S3 are not POSIX compliant at all, allowing the support for newer and
more scalable access interfaces.

Several systems support background replication. For instance, Amazon’s Dynamo guar-
antees that updates are eventually propagated in the background without user inter-
vention. Grid services such as DRS or Stork ensure that user replication requests are
processed in the background as well. S3 also supports eventual propagation and does
not provide immediate data storage guarantees or transactional behaviour.

The concept of overlay “networks” is also presented in various forms throughout multiple
contributions. P2P define overlay networks as a mechanism to introduce some structure
into otherwise chaotic systems. Recent proposals to GridFTP also include overlay chan-
nels as a mechanism to improve transfer performance. This highlights the usefulness
in this concept to provide some form of structure, control and increase the quality of
service.

In addition, several contributions exploit internal data organisation properties. For in-
stance, “filecules” are discussed in the context of grid computing while S3 uses “buckets”
to organise its namespace and data placement.

Most contributions also acknowledge the need for a close link between the data and its
processing, while maintaining some separation of concerns between the two. MapReduce
is one such example, with a split between the map and the reduce tasks. Within the
grid computing domain, the same principles have been recognised as well (e.g. intelligent
“staging” or correlations between file usage and replication strategies).

Finally, many contributions discuss heterogeneity. Data Grids aimed from the start to
support heterogeneous environments. This trend is now being adopted by distributed
file systems. For instance, HDFS already supports more than one backend. Lustre is
working on a Control Panel to support bandwidth management on the WAN, enabling
complex setups that span multiple data centres (“heterogeneous” network environment).
Ongoing work on cloud computing also focuses on transfers across clouds.

Nonetheless, unlike distributed file systems that require a fairly uniform setup across
data centres and complex network configurations, the goal is to develop a data manage-
ment layer that can scale to hundreds of data centres. But unlike commonly used P2P
systems, there are reasonably stable associations between centres and well established
security policies. Unlike all systems presented, there is the need to impose global quality
of service guarantees based on data properties. As such, the design in Chapter 4 seeks



Chapter 2 Literature Review 36

to combine the interesting properties of distributed file systems, P2P, grid and cloud
computing.



Chapter 3

System Motivation

There is an emerging class of applications that are characterised by very large data stores
and complex methods for analysing and organising their data. In this chapter, I define
these new data-intensive applications, highlighting the computational, operational and
human factors that make such applications hard to develop and operate in a conventional
computational fabric. Finally, I describe in detail one such application, the ATLAS
Experiment, which has served as the main motivation and source of requirements for
this work.

3.1 Data-Intensive Applications

In the past years, several authors have forecast a flood of scientific data (e.g. [88], [84]).
This is the result of new instruments with extraordinary precision and improved data
quality. The analysis of these data becomes a more di�cult endeavour, since there is
the need for better computational infrastructures and data processing algorithms, which
are able to detect subtle e↵ects in large, complex data samples.

In [88] the authors argue for the creation of types of digital libraries for scientific data
with similar management services to conventional digital libraries, in addition to other
data-specific services. In [84] similar principles are discussed, with emphasis on the
creation of smart notebooks for improved data and data analysis layer. Additionally,
the authors argue that peta-scale science will require new ways of organising data, and
that the simple file storage and transfer “modus operandi just will not work for peta-scale
datasets.”

Scientific experiments, such as the astrophysics experiment LIGO1 (Laser Interferometer
Gravitional Observatory), the bioinformatics Gene Expression Database2 (GXD), or the

1Refer to http://www.ligo.caltech.edu/.
2Refer to http://www.informatics.jax.org/mgihome/GXD/aboutGXD.shtml.

37



Chapter 3 System Motivation 38

particle physics LHC3 (Large Hadron Collider) experiments are typical examples of data-
intensive applications. Nonetheless, there are many other examples outside the domain
of natural sciences; for instance, Google [90] and Yahoo [15] have also developed vast
data repositories for hosting their services.

All these data-intensive applications have several features in common, which I now
identify. The most defining feature is the need to handle very large volumes of data,
which is typically achieved by using distributed data repositories that may ultimately
spawn multiple computing centres. Reasons for using more than a single computing
centre for storing data include geo-locality and failure avoidance. Geo-locality is the
placement of data closer to its users to reduce the network round-trip times in data
access. Failure avoidance is related to the existence of multiple copies of the data to
avoid permanent or temporary loss of data or access in the event of a catastrophic failure
(e.g. fire) or during routine maintenance (e.g. change in the power supply of a data
centre).

Data-intensive applications are also defined by their very large processing tasks, where
a single processing task may need to read tens of gigabytes of data to produce a single
result. This is typically achieved by implementing a significant degree of parallelism in
the computational processing.

Finally, data-intensive applications are the result of large multinational companies or
consortiums, typically implemented as distributed collaborations that may include vari-
ous funding sources. Multiple funding sources may bring about the need to comply with
local needs and regulations, which results in a new set of non-functional requirements
that must be enforced.

3.2 The ATLAS Experiment

In this section, the ATLAS Experiment is described, as it is a prominent example of a
data-intensive application. After introducing the ATLAS Experiment and its experimen-
tal process, the focus is on describing the mechanisms by which ATLAS organises and
uses its underlying computational fabric. The discussion does not address the higher-
level services created specifically for analysis because, as shown in later chapters of this
thesis, higher-level services are critically dependent on the structure and performance of
the middleware layers.

ATLAS is an High Energy Physics (HEP) experiment intended to search for new physics
discoveries in the head-on collision of two highly energised proton beams. The experi-
ment is physically situated at CERN, the European Organization for Nuclear Research,
on the border of Switzerland and France.

3Refer to http://public.web.cern.ch/public/en/LHC/LHCExperiments-en.html.



Chapter 3 System Motivation 39

Figure 3.1: A schematic representation of the ATLAS Experiment site. The LHC
particle accelerator tunnel is also shown, crossing the ATLAS underground cave.

Figure 3.2: Representation of a Higgs Boson event.

The ATLAS Experiment relies on two large devices. One is the LHC particle accelerator,
a 27-kilometre ring buried 100 meters underground, where particles are accelerated near
the speed of light. The other is the ATLAS detector, a 44 meters long machine with
a diameter of 25 meters, weighting over 7000 tonnes, with over 100 million electronic
channels and more than 3000 kilometres of cable.

Figure 3.1 illustrates how these two machines operate together. The LHC particle accel-
erator produces two beams of particles (protons) that circulate in opposite directions.
These beams are made to cross each other and collide within the centre of the ATLAS
detector. The outcomes of these collisions are detected by the electronics of the ATLAS
detector, as shown in Figure 3.2.

Although the ATLAS machinery is physically situated at CERN, the experiment is



Chapter 3 System Motivation 40

Figure 3.3: The scale of the LHC. The area under which the LHC tunnel can be
found is near Geneva and Lac Leman. The French Alps and Mont Blanc can also be

seen in the background.

the responsibility of a distributed collaboration called the ATLAS Collaboration, which
comprises two hundred research institutes and universities worldwide. These centres
contribute to the funding of both the ATLAS detector and the LHC accelerator. The
total cost of the project is estimated to be as high as e 6.4 billion.

The LHC particle accelerator complex is also used by other HEP experiments such as
Alice, CMS and LHCb. These are shown in Figure 3.3. Nonetheless, in this section I de-
scribe only the computational aspects of the ATLAS Experiment. All these experiments
have significant similarities in their computing needs, even though their physics goals
vary. Nonetheless, ATLAS presents the highest volume of data, the largest collaboration
and hence, the most di�cult (and interesting!) computing challenge.

3.2.1 Experimental Process

Particle collisions such as the one previously shown in Figure 3.2, are called events.
These are detected by multiple layers of detectors (called sub-detectors), which are part
of the ATLAS detector. New physics discoveries are obtained by analysing the outcome
of these collisions. Physicists hope to understand the fundamental physical processes of
nature by detailed analysis of observed events. These events can be, for instance, the
resulting trajectories of the debris of a collision.

Observed events are read out from the detector electronics during the collisions. These
are written into data files and are generically called real data. ATLAS also relies on
simulated data, which is obtained using Monte Carlo techniques. Monte Carlo simulation
is used to compensate for the bias in the machine and understand the observed events:
to understand the behaviour of sub-atomic particles it is necessary to understand how
these interact and are influenced by the detector itself, i.e. how they interact with the
particles that constitute the detector. As such, there are complex software algorithms



Chapter 3 System Motivation 41

Data Type Size Unit
RAW Size 1.6 MB
ESD Size 0.5 MB
AOD Size 100 KB

Simulated RAW Size 2.0 MB
Simulated ESD Size 0.5 MB

Table 3.1: ATLAS event data sizes per data type.

that simulate the entire data taking process: the LHC accelerator, all of the ATLAS
detector and the resulting collisions. The simulated data is then compared with the real
data, helping to fine tune the analysis process by removing any bias in the observed
events caused by complex interactions of the particles with the ATLAS detector.

The ATLAS Experiment has defined multiple data types for both real and simulated
data, of which there are three main types. One is the RAW data, which corresponds
to the (raw) electronic signals from the detector, or from the simulated version of the
detector in the case of simulated data. ESD, or Event Summary Data, is a summarised
object-oriented representation of the RAW data, intended to make access to RAW data
unnecessary for most analysis. AOD, or Analysis Object Data, is a reduced event rep-
resentation more suitable for user analysis. The size required to represent an event is
reduced considerably from RAW to ESD to AOD data types, as shown in Table 3.1.

The data processing activities can be classified into production, group and user analysis
activities. Production activities require the processing of large amounts of data, which in
turn requires large amounts of computing resources. As such, production activities, also
called large scale activities, are defined and agreed at the collaboration level. Examples
of production activities include the processing of new real RAW data (from the collisions
produced in the LHC accelerator by the particle beams) or re-processing of older sets
of RAW data with newer algorithms that are of wide interest to the ATLAS physics
community.

Physicists that share specific research interests (e.g. Higgs analysis, Muon physics, etc)
are organised into groups. These groups engage in medium to large scale activities that
are subjected to some central coordination among the various groups. This coordination
ensures that, at a high-level, each group is allocated the resources it needs without
conflicting with other activities. For instance, the Muon group may temporarily need to
obtain very large statistical samples to confirm a result4, and so requests and negotiates
the usage of a larger set of the available computing resources for a period of time.

User analysis are small-scale, decentralised activities that involve running over diverse
sets of data: e.g. to test a new Monte Carlo algorithm in a small subset of AOD (real
and/or simulated) data to check whether it performs better than previous algorithms.

4Note that the Monte Carlo nature of the analysis process may require very large samples to obtain
meaningful results.



Chapter 3 System Motivation 42

Tape (Petabytes) Disk (Petabytes)
Tier-0 5.7 0.39

Sum of Tier-1s 9.0 14.4
Sum of Tier-2s 0.0 8.7

Table 3.2: ATLAS resource pledges in 2008.

Improvements obtained from user analysis are usually confirmed at the group level and
can later be merged into future production activities.

One important observation is that, in practice, most of these activities cannot be pre-
dicted in detail. It is not always possible to know in advance how much Monte Carlo
data needs to be generated for fine-tuning a specific process; or how long a (real) data
taking run will take, before some intervention is required in either the accelerator or
the detector machines. Real data taking runs can last from several minutes to many
hours or days and each run can have significantly di↵erent run conditions, which may
or may not be satisfactory for the desired analysis. Similarly, Monte Carlo analysis may
produce surprising results and expose new software bugs when samples are generated
at a very large scale. This implies that activities may need to be rescheduled so that
any necessary fixes are applied. Other changes can be due to unexpected changes in the
run conditions, or due to the identification of promising results, or simply the need to
respect physics publication deadlines.

As a result, the ATLAS data processing tends to be a very dynamic and fast chang-
ing process, with the relative importance of specific activities changing quickly as the
experiment proceeds. Not all activities are centrally coordinated but there is always a
degree of negotiation when allocating resources for the di↵erent groups and users. These
negotiations occur at regular collaboration meetings, but as discussed these allocations
can also change over time.

3.2.2 Computing Resources

Because the ATLAS Experiment has no single owner or funding agency, it uses the avail-
able computing resources from each participating centre. These distributed computing
resources have been brought together under a Grid infrastructure project called the
Worldwide LHC (WLCG) Computing Grid5. As a result, the WLCG Computing Grid
resources are not owned by a single institution or allocated through any single budget.
One practical result is that, despite a close collaboration between all participating insti-
tutions, there is a degree of heterogeneity in the resource characteristics. This follows
from hardware tenders that are separate over time and come from independent budget
allocations. In addition, the scale of the resources at each centre can be significantly

5Refer to http://www.cern.ch/lcg.



Chapter 3 System Motivation 43

Figure 3.4: Simplified overview of the ATLAS data flow.

Activity Source Destination Data Types Continuous Rate
Real data ATLAS Detector Tier-0 RAW 320 MB/s
Real data Tier-0 Tier-1s RAW, ESD, AOD 1020 MB/s

Table 3.3: ATLAS data export rates.

di↵erent, ranging from large, professionally managed computing centres to small-scale
university clusters.

ATLAS is not the only experiment that uses the WLCG despite being one of its major
users. As such, some coordination is required at a high-level among all major users
of the WLCG, to guarantee proper resource allocation for each experiment. This pro-
cess somewhat mimics the type of negotiation that occurs between di↵erent groups in
ATLAS, but now among several experiments.

One important consequence of using a shared Grid infrastructure is that the computing
resources tend to be used near their maximal capacity, as each experiment attempts to
make the maximum use of their allocation.

In addition, because resources are pledged to ATLAS, these pledges come with con-
straints on how the resources are to be used. For instance, computing centres expect to
receive certain percentages of real data as a trade-o↵ for volunteering a subset of their
resources for activities that are not of interest to their local users. Since ultimately the
success of ATLAS depends significantly in the availability of computing resources, it is
of interest to respect the desired constraints and obtain as many resources as possible.

To understand the scale of the ATLAS computing infrastructure, the storage resources
pledged to ATLAS in 2008 are shown in Table 3.2. These are being significantly increased
as the experiment begins full data taking operations in late 2009.



Chapter 3 System Motivation 44

3.2.3 Data Flow

Having described the goal of the ATLAS Experiment and its computing resources, I
now describe how these computing resources are structured to achieve the experimental
goals.

ATLAS has divided its participating computing centres, or sites, into multiple layers,
based mostly on the quality of service these provide. The Tier-0 layer comprises a
single site, which is CERN, where the LHC particle accelerator ring and the ATLAS
detector are located. Tier-1 sites (of which there are ten in total for ATLAS) are
typically large national laboratories. These correspond to the professionally managed
computing centres described in the previous section. Tier-2 sites are mostly smaller
centres, typically universities. Each Tier-2 site is associated to a single Tier-1 site. This
creates a hierarchical structure of sites for ATLAS.

Each layer has been assigned a di↵erent responsibility in ATLAS: the Tier-0 site is mostly
concerned with collecting and doing a first processing of new data from the detector;
the Tier-1 sites are mostly concerned with reprocessing older sets of data with newer
algorithms; the Tier-2 sites are mostly concerned with generating simulated data and
are also where most of the users perform their physics analysis.

One of the common misconceptions about the LHC Grid prevalent in the Grid literature,
is that the data flow for the LHC is only hierarchical: data is injected at Tier-0 and
propagates down to the Tier-1 sites and then to the Tier-2 sites. While this flow is indeed
part of the ATLAS data flow, it is only one of the many possible flows. There are other
equally important, and significantly harder to manage, data flows. The simulated data
(Monte Carlo output produced at the Tier-2 sites) actually goes up and is stored at the
Tier-1 sites. This is because the Tier-2 sites do not have tape storage and as such are not
considered suitable for long-term data archival, which is a requirement for an experiment
such as ATLAS which will run for over 20 years. The output of new reprocessed data is
shared among Tier-1 sites and then sent down to Tier-2 sites. Finally, physicists request
and share data using any potential site where there is free quota.

All these flows and some of their respective data rates can be seen in Figure 3.4 and
Table 3.3. Note that the previous description of the data flow has been significantly
simplified, ignoring the various data types and the di↵erent data flows for each data
type: for a detailed explanation, refer to the ATLAS Computing Model document [2].

The organisation into tiers defines strict roles for each computing site. This implies that
some data flows, as shown on Figure 3.4, are statically defined: every data type will be
produced and stored in a well-defined subsets of sites. In later chapters, this mode of
operation is subjected to further analysis. Nonetheless, I now describe some important
non-functional requirements (and one operational reason) that have led ATLAS to adopt
this model.



Chapter 3 System Motivation 45

The non-functional requirements are related to resource allocation issues, budgetary
constraints as well as the underlying physics interest: resources are pledged to ATLAS
but the experiment must try and balance the mismatch between the computing and
storage capabilities of di↵erent sites with its global needs. Di↵erent sites serve multiple
experiments, each with its own requirements, so ATLAS has only limited decision power
on how resources are allocated overall6. Even within ATLAS, di↵erent physics groups
have diverse needs and interests; nonetheless, many activities are important for the
entire collaboration and must be completed, even if those activities are not of immediate
interest to any group or centre.

This does not imply that the decision to use static data flows is ideal for maximal
resource utilisation. In fact, given the dynamic environment, it is likely not to be the
optimal resource allocation. Nonetheless, past experience in ATLAS has demonstrated
that dynamic data and job scheduling was severely restricted in practice. One such
example was given above, where data produced at a Tier-2 is never kept at that site
permanently, but shipped to a Tier-1 site where permanent archival is available. It is
instructive to look at this example in more detail.

The production of a Monte Carlo simulation runs at a set of Tier-2 sites where CPU
resources are available. The Tier-1 sites cannot do this processing because they are
already busy reprocessing older sets of real data; Tier-1 sites have to do this reprocessing
of older real data, because no other sites have the required balance between CPU and
storage, that is, a significant number of both CPU and storage space (there is more
real data than simulated data). In addition, Tier-2 sites tend to have more CPU than
storage, making them suitable for CPU intense activities like Monte Carlo simulation;
also, as mentioned, Tier-2 sites do not have long-term archival storage (i.e. tape storage)
so these cannot hold the final output. In addition, Tier-2 sites usually have limited
network connectivity and only a single preferred connection to a specific Tier-1 site; e.g.
the UK Tier-2 sites have direct network links to the Rutherford Appleton Laboratory
(RAL), which is the UK Tier-1 site for ATLAS.

Therefore, it seems a natural choice to have Monte Carlo tasks run exclusively at the
UK Tier-2s (because the Tier-1 is busy) and have their output stored at the UK Tier-1
(where it has permanent storage): there are better network links, and non-negligible
human contacts for operational issues, between a Tier-2 site and its close Tier-1. In
addition, these tasks may match the research interests of the regional groups. Having
tasks run in e.g. a faraway Tier-2 site and then send the output to RAL would certainly
complicate operational procedures when problems occur (at the very least due to the
di↵erent time zones!).

6This is perhaps the most striking distinction to a company such as Google, which has also massive
computing power available but is able to globally decide how these resources are allocated and guarantee
their uniformity, greatly simplifying its own distributed data management needs. Nonetheless, it will be
interesting to see, as its own needs grow, if its computing centers will gradually become more and more
diverse, leading to the same sort of heterogeneity issues observed for ATLAS.



Chapter 3 System Motivation 46

3.2.4 Usage Scenarios

The previous sections described the experimental process for the ATLAS Experiment,
the available computing resources and the associated data flow. To complete this descrip-
tion, this section describes informally a fictitious but realistic scenario that illustrates
how physicists interact with the data management system in their every day activities.

The ATLAS team based at CERN is working long shifts, attempting to guarantee the
conditions required to operate the ATLAS detector. A sub-detector is malfunctioning
and this a↵ects the data taking process. The unavailability of a sub-detector causes the
stream of data to be di↵erent, and some physics groups around the world are particu-
larly interested in confirming recent observations precisely from this sub-detector. The
question circulating in the ATLAS control room at CERN and in university meeting
rooms worldwide, is whether a new physics e↵ect has been discovered, or whether the
results are invalid because of bad sub-detector readings.

The communication between the ATLAS team at CERN and universities worldwide is
not always smooth. After all, there are over 200 participating institutes in virtually
every time zone. The CERN team decides to run without the sub-detector. The LHC
beam will restart soon and the behaviour of the sub-detector is still not understood.
Better run with the sub-detector o↵, to avoid physicists running over potentially invalid
data!

Research groups worldwide interested in the physics enabled by this sub-detector are not
informed o�cially of this last moment decision: they will be informed later in weekly
operation meetings where the mishaps and successes of the last week are discussed.
Instead, they realise the sub-detector must be o↵: the corresponding datasets are not
arriving at their data centre, and the LHC beam should be active at this time of the
day.

In parallel, other physics groups continue their activities undisturbed. The sub-detectors
they rely on are working properly. Datasets are produced at CERN and sent to interested
groups around the world. As data arrives in universities, PhD students start plotting
histograms and trying new data cuts to classify the underlying events.

Interestingly, a student working in Orsay for Muon physics finds a suspicious peak in
today’s data according to his new classification algorithm. He runs the same algorithm
over older datasets available in his university’s storage system but does not see this e↵ect.
He then tries to run the algorithm over an older data sample available in the University
of Texas. He is only allowed a very small quota elsewhere, but the University of Texas
seems to be rather inactive today and he his given a large resource quota! “I guess they
must be depending on some sub-detector that’s probably o↵ today...”. Interestingly, he
sees again the same e↵ect! He then starts browsing the data management system, and
checking metadata attributes that describe today’s data taking. Today’s conditions are



Chapter 3 System Motivation 47

di↵erent from the conditions of his locally available data, but somewhat similar to what
is available in Texas... Nonetheless, there are many other factors to test.

He discusses the issue with his group coordinator. Days later, universities worldwide
interested in Muon physics join together for their weekly phone conference. The student
describes his findings. The impact is potentially high if confirmed, but more tests are
required. The Muon physics group coordinator asks all groups if they are interested in a
large-scale Monte Carlo simulation test: generating “fake” (but realistic data), sending
it through a software simulation of the detector and running the student’s classification
algorithm. They agree such test is appropriate: because the student developed a filtering
algorithm, large statistics are required to confirm any results.

In the meeting, there is agreement that the Muon physics group coordinator should re-
quest a large-scale test. The schedule of this test must be discussed with the remaining
ATLAS coordinators, because other physics groups may have similar needs. In partic-
ular, this test will require many computing resources: certainly more than what the
Muon community itself owns.

Weeks later, the Monte Carlo simulation finally starts. Data centres in universities
worldwide are automatically allocated subsets of their computing resources to run this
Muon physics Monte Carlo simulation, whose filtering uses the student’s new algorithm.
Results are sent to the student’s own data centre, where additional plots are generated.
Clearly, his algorithm is better because the e↵ect also shows in this simulation. More
tests are required but if all goes smoothly, his code will eventually be part of an o�cial
ATLAS software release. This means that his code will start running directly at CERN
in all new data produced at the LHC. In this case, his code enables better classifica-
tion of events using novel filtering techniques that remove noise from the data more
e�ciently. Clearly, better filters are very important because they allow new behaviours
to be found in the data. On the other hand, some ATLAS coordinators nod their head:
if his algorithm really works, then physicists will start asking all last year’s data to be
reprocessed... and that requires some coordination because the computing resources are
not enough for all tasks!

3.3 Summary

This chapter discussed an emerging class of data-intensive applications that are charac-
terised by vast data stores and complex analysis methods. Several important features of
these applications were presented. These are the need to handle vast volumes of data,
the reliance on distributed data repositories, the need for very large processing tasks
that are executed in parallel, and the negotiations that result from having to operate
large distributed collaborations with distributed resources.



Chapter 3 System Motivation 48

In addition, the ATLAS Experiment was presented as a prominent example of a data-
intensive application. The ATLAS experimental process relies on a mix of real and
simulated data. It includes processing activities of varying scales, from large scale pro-
duction activities, to group and individual user analysis. The experimental process is
characterised by a degree of uncertainty, which is a direct result of the complex, under-
lying physics research.

The ATLAS computing resources are provided by all ATLAS participating centres and
used in an opportunistic manner. This results in complex constraints that are negotiated
between ATLAS and its resource providers. Respecting these constraints is desirable to
ATLAS, to obtain as many computing resources as possible.

The ATLAS data flow was also presented. The ATLAS data flow is a composition of
multiple data flows for each of its activities. These data flows are, for the most part,
subject to important restrictions. These restrictions are the result of resource allocation
and other issues, which condition where data can be produced and where data can
stored.

Finally, a fictions but realistic usage scenario was described. This usage scenario il-
lustrates how physicists interact with the data management system in their every day
activities.



Chapter 4

System Requirements and

Architecture

This chapter introduces design principles for building distributed data management sys-
tems for data-intensive applications. These principles follow from a set of requirements
and result on the definition of a system architecture.

In the first section I start by introducing the relevant methodology. This is followed by
the requirements of each actor in the system along with relevant background informa-
tion. After introducing the requirements, I introduce and motivate each of the design
principles. This is followed by the presentation of the system architecture, which in-
cludes the principal entities, system functionality, relevant architectural decisions and
the components that form the distributed data management system. The final section
includes a discussion on the general applicability of this proposal.

4.1 Methodology

The methodology used in this work is described in Figure 4.1. In the previous chapter,
I described the motivation for building a distributed data management system. A set
of actors and requirements were identified from this high-level description. These are
schematically (and informally) represented in the figure, with each actor connected to a
Venn diagram that contains the corresponding set of requirements (represented as dots
in the figure). From the requirements, I define a set of general design principles, which
are also illustrated in the figure. The design principles are detailed later in this chapter.
Finally, I define an architecture that implements the design principles, followed by the
system implementation.

The requirements are the result of extensive meetings with the physics community within
the ATLAS Experiment. I identified these requirements during formal and informal

49



Chapter 4 System Requirements and Architecture 50

Figure 4.1: Representation of the methodology.

discussions. These discussions were organised early in this work and involved repre-
sentatives of various physics communities as well as medium and high-level ATLAS
management. The final requirement list was circulated and approved at a later phase by
the ATLAS management. In these discussions, I identified three distinct types of actors
in the system. These are the users, managers and administrators. (In the following
description, a parallel is made where appropriate to the informal description of usage
scenarios in Section 3.2.4.)

• Users. In the case of ATLAS, the users are the physicists that analyse data and
develop new physics algorithms. (In the usage scenario of Section 3.2.4, an user
is the PhD student developing new algorithms, or the users expecting to receive
data from the sub-detector that had been switch o↵.)

• Managers. The managers are the set of people that are responsible for decision-



Chapter 4 System Requirements and Architecture 51

making at the collaboration level, e.g. in the case of ATLAS, the managers are
responsible for allocating quotas for physics groups. (In the usage scenario of
Section 3.2.4, the managers are the ATLAS physics group coordinators and the
members of the ATLAS team that decided to switch o↵ a sub-detector.)

• Administrators. The administrators are the owners of the computing resources,
which may or may not be dedicated to ATLAS (typically the resources are not
dedicated). For instance, administrators can be the data centre administrators at
each university, which may or may not be part of the physics group.

Care was taken to generalise the process by which requirements were gathered, par-
ticularly in what concerns the data centre administrator requirements. Data centres
serve multiple communities and their input has been particularly relevant for the non-
functional requirements that condition architectural decisions. This is the reason for
including a substantial background discussion in Section 4.2.3, on storage technologies
and processing facilities, before discussing data centre requirements.

Although this chapter includes a high-level description of the system architecture, the
main contribution is the set of design principles. The objective has been to identify,
based on the requirements, a set of universal principles that build upon database and
distributed computing theory. Database theory has had substantial contributions to
data management, and distributed computing is the applicable computing paradigm for
this working environment. While the design principles underlie my architectural version
of the system, the goal has been to define design principles in a su�ciently universal
manner, to accommodate several alternative architectures. In fact, as discussed in the
methodology section of Chapter 5, the design has been revised several times, but the
essential principles remain unchanged.

4.2 Requirements

I now introduce the main set of requirements for each of the actors.

4.2.1 Users

The main user requirements are:

• “transparent” access to the data, regardless of where it is physically stored;

• ability to store very large sets of data (e.g. terabytes or petabytes of data);



Chapter 4 System Requirements and Architecture 52

• support for concurrent activities, where concurrent data generation and data pro-
cessing workflows can simultaneously read and write disjoint segments of a single
(large) set of data;

• ability to integrate the distributed data management system with existing data
generation and data processing workflows;

• ability to integrate with external metadata1 tools, so that these tools can reference
and annotate the provenance of (stable snapshots of) a set of data;

• ability to maintain private sets of data, which are only visible and accessible to a
restricted number of users.

4.2.2 Managers

The manager requirements are concerned with resource allocation issues as well as bud-
getary constraints and data safety:

• in practice, no single computing centre can a↵ord to host all the data due to the
high cost involved and data safety concerns. As such, the system must provide
mechanisms for managers to define flows for data access. These flows must en-
able the continuous and automatic distribution of data among multiple computing
centres with minimal human intervention;

• the system must support dynamic priorities for data distribution and gracefully
handle a large number of distribution requests;

• the system should adequately support various scales of computational resources,
ranging from small clusters in a university department to large scale professionally
managed computing centres. It is expected that these resources provide very
di↵erent qualities of service;

• the system should be minimally intrusive, allowing for opportunistic use of re-
sources. If additional resources can join the system with little or no local customi-
sation, it is likely that there will be more volunteer contributions2;

• centralised administration requirements should be reduced to a minimum, but
mechanisms must be available to impose global policies or perform immediate
actions, such as deletion of erroneous data;

• the system must provide an adequate level of monitoring information, both real-
time and historical, so that decision makers can analyse past as well as current
resource usage and negotiate future allocations;

1The word metadata is used in this context to refer to simple annotation mechanisms, such as user-
defined data attributes based on (key, value) pairs.

2A clear parallel can be established with P2P systems.



Chapter 4 System Requirements and Architecture 53

• the system must support the definition of global quotas for users and groups.

4.2.3 Administrators

The data centre administrators have also a set of requirements that must be supported.
These requirements are particularly important given that the computational resources
are not directly owned by either users or managers. To better understand these re-
quirements, I first present some background information on storage technologies and
processing facilities.

4.2.3.1 Storage Technologies

Data storage technologies are concerned with retaining digital data for computing pur-
poses for some interval of time. Traditional categorisation divides these into primary,
secondary, tertiary and o↵-line data storages. The first of these, primary data storage,
also known as memory, is directly accessible from the CPU. It is not of concern for
this discussion. The remaining storage technologies are relevant, since these form the
building blocks for a data centre storage facility.

Secondary storage refers to a type of storage that is not directly connected to the CPU.
Instead, it relies on input/output channels and transfers data for CPU processing using
an intermediary area of the primary storage. Contrary to primary storage, the secondary
storage is not volatile: the data is not lost when the device is powered down. The
most widely used example of secondary storage are hard disks; other examples include
flash devices (e.g. USB keys), floppy disks, magnetic tapes and rotating optical storage
(e.g. CDs and DVDs). Secondary storage is approximately one order of magnitude
cheaper than primary storage but has significantly lower access time for reading the
data (milliseconds as opposed to nanoseconds).

Tertiary storage is another type of storage that requires an intermediary mounting op-
eration. Before data can be accessed, a robotic mechanism needs to locate the storage
device using a catalogue database and physically mount it. The data can only be ac-
cessed after this mounting operation is completed. This model allows for extremely large
data stores to be accessed without human operation. Nonetheless, the access time is
significantly higher than for secondary storage: it is in the order of seconds or minutes
as opposed to milliseconds.

O↵-line storage, or disconnected storage, is another type of storage that requires a
human operator for the mount operation. It is primarily used for long term archiving
and information security, since it allows the storage devices to be physically transferred
to remote locations.



Chapter 4 System Requirements and Architecture 54

Figure 4.2: Representation of a tiered storage.

When large data stores are required, the data is typically stored and shared over a
network. That is, direct attached storage is no longer su�cient since it is not feasible
to connect all storage devices to a single server. Instead, either storage-area networks
or network-attached storage are required.

Storage-area networks (SAN) are an architecture that allows remote storage devices to
be connected to a server in such a way that the devices appear as if they are locally
attached to the server. That is, the separation of servers from the storage device is
done at the lowest possible level in the communication stack: at the block I/O level,
which is the building block for a storage I/O. A common reason to use a SAN is when
an application requires low-level and direct control over a file system, for reasons of
manageability and performance.

Network-attached storage (NAS) di↵ers significantly from a SAN in that the unit being
managed are files and not storage blocks. A NAS device is a self-contained computer
connected to a network that shares the data files in its operating system using spe-
cific client/server protocols. An example of NAS is the sharing of data stored in some
computers (the servers) to other computers (the clients) using NFS.

Even though SAN and NAS are distinguished by their working units (block-level versus
file-level), the boundaries are being reduced in recent storage o↵erings that combine both
possibilities. This flexibility allows di↵erent application requirements to be fulfilled with
increased performance.

In addition to SAN and NAS, there are other techniques for designing data centre
storage. A commonly used technique consists on breaking down the storage architecture
into smaller problems, and then combining di↵erent components. These components are
divided into tiers, where each tier di↵ers in the type of hardware used, its performance
and scale. Each tier is also associated with a specific policy. This approach, which is
widely used in data centres, is called a tiered storage model.



Chapter 4 System Requirements and Architecture 55

An example of tiered storage is given in Figure 4.2. Here, the storage system is com-
posed of expensive fibre channel drivers, less expensive serial ATA drives and even less
expensive (according to their capacity) tape drives. Data is moved between tiers as
necessary, with less used data moved to lower tiers; in the figure, the lower tiers are
composed of serial ATA drivers or tapes.

An extension to the tiered storage model is Hierarchical Storage Management, or HSM.
In this data storage technique, data automatically moves between high-cost to low-cost
devices, i.e. from devices with less capacity but higher performance to devices with
more capacity but lower performance. In a typical HSM scenario, data files which are
frequently used are stored on hard disk and migrated to tape if they are not used for
a certain period of time. If a user requests a file currently on tape, the file is staged
(automatically moved back to a hard disk). If the HSM model is correctly coupled with
the application, it is possible that users never notice any actual slowdown because data
is preemptively staged. For instance, in a movie streaming service, the first few seconds
of a movie are stored on disk and when the movie starts being streamed to a user, the
remaining contents are staged from tape.

The HSM model is very popular as it combines high capacity with high performance.
The di�culty is in adapting the HSM configuration to di↵erent applications so that
users are not a↵ected by the slowdown in staging data. In the following section I discuss
this subject in the context of processing facilities.

4.2.3.2 Processing Facilities

In this section I describe issues related to the processing of data at a data centre.
Although data centres have been discussed informally, a more precise definition follows:
a data centre is a collection of computational resources maintained by an enterprise to
accomplish needs that go beyond the capacity of a single machine. Among the various
types of computational resources that constitute a data centre, the two main resources
are the storage and the computing clusters.

Computing clusters are groups of linked computers. They are usually employed for
improved performance and availability and are a cost-e↵ective approach compared to
purpose-made single computers of comparable performance and availability. Computing
clusters are primarily used for intensive computations rather than I/O oriented opera-
tions, like those required by a database or a web service. Examples of cluster applications
are weather simulation or particle physics event reconstruction.

A factor that distinguishes computing clusters is the degree of coupling between individ-
ual nodes. There are two main scenarios. In the first scenario, nodes are tightly-coupled
with dedicated network links and extensive communication between nodes. In this sce-
nario, nodes are also often homogeneous. In the second scenario, there is little or no



Chapter 4 System Requirements and Architecture 56

need for intra-node communication. Therefore, it is relatively easier for developers to
partition a single large task into sub-tasks (individual jobs). In this scenario, a higher
heterogeneity of resources is also common. The applications that can be deployed in
this second type of clusters are called embarrassingly parallel. In this thesis I focus on
data-intensive applications of which the ATLAS Experiment is an example. As discussed
in the user requirements, I focus on the sub-set of data-intensive applications that are
characterised by a large degree of parallelism in their processing. That is, jobs do not
require any intra-job communication during the computation process. Therefore, these
are embarrassingly parallel data-intensive applications, each generating and executing
many jobs in parallel.

Because a data centre does not serve a single application or a single uniform group of
users, a degree of adaptation is required to support di↵erent workloads. Even though
jobs are relatively small and independent units, they can significantly stress both the
computing and storage fabrics. After all, these are data-intensive applications that need
to process very large volumes of data.

To cope with diverse sets of applications and users, data centres must partition the
available resources to facilitate the management of many di↵erent types of jobs. This
follows similar principles to those of the HSM architecture, but instead applied to the
computing resources. For example, jobs with short expected duration are allocated to a
dedicated subset of the computing cluster, typically implemented through separate job
queues. Jobs with more demanding primary storage (memory) requirements are also
allocated to separate (more expensive) resources.

There is an additional aspect, which only applies to applications that operate in more
than one data centre simultaneously. This is the need to distribute data between data
centres. Data needs to flow into and out of the data centre. For this, it is typical for
data centre administrators to employ data import and export bu↵ers, which are tran-
sient storage used to (respectively) write and read data from a data centre storage to
an external data centre storage. These additional storage bu↵ers further complicate the
definition of an adequate data centre architecture (certainly more di�cult than for a
single application or for applications homed within a single data centre). It also makes
the definition of the distributed data management layer more complex, but it is a nec-
essary condition to ensure that requests from external data centres do not significantly
impact local tasks.

Figure 4.3 shows a possible schema where both the storage and the individual computing
nodes (called the CPUs in the figure) are represented. The storage may be based on SAN
and/or NAS and will typically follow, in the most complex cases, a hierarchical storage
management architecture. In addition, the computing cluster is partitioned into separate
queues: a long jobs queue (e.g. jobs that should take over one hour to finish) and a
short jobs queue (e.g. jobs that should finish in a few minutes). There are also import



Chapter 4 System Requirements and Architecture 57

Figure 4.3: Representation of a data centre storage and processing facility.

and export storage bu↵ers, which serve to throttle the rate of data flowing into and out
of the data centre.

From this discussion, it should be clear that data centre administrators are presented
with a serious design challenge; hence, their requirements are of utmost importance
particularly if there is the managerial goal of using many resources in an opportunistic
manner. The next section elaborates on this discussion by describing the data centre
administrator requirements. These include additional issues such as security, software
deployment constraints and data protection.

4.2.3.3 Requirements

The data centre administrator requirements for a distributed data management system
are:

• adaptability to the data centre architecture, specifically to the NAS and/or SAN
storage, as well as the HSM (e.g. including the magnetic tape storage);

• support fluctuations in the performance of the data centre resources (e.g. storage
access may slow down significantly if there is some temporary overload or ongoing
maintenance operation);

• ability to operate with minimal information regarding computational and storage
architectures, allowing changes to the data centre without extensive system re-
configurations;

• ability to throttle inbound and outbound data transfers (outside the data centre),
to protect the storage from overload conditions;

• support for both scheduled and unscheduled downtime, with graceful recovery after
a downtime (i.e. without overloading newly up servers with requests);



Chapter 4 System Requirements and Architecture 58

• automated recovery against unexpected data losses, either permanent or temporary
(e.g. while a damaged tape is sent for repair and recovery);

• reduced network connectivity requirements from the software stack, regarding both
inbound and outbound connectivity, to reduce security risks through outside-world
exposure;

• non-intrusive software stack with minimal set of local software and hardware de-
pendencies;

• ease of deployment, including the possibility to perform quick re-installations and
re-allocation of any locally installed software.

4.3 Design Principles

In this section, I introduce and motivate the design principles for the distributed data
management architecture. These concern the data model and data unit in the system,
the consistency model for replicating data, the separation between logical and physical
data units, the principle of fabric independence and the definition of an architecture
based on a layered system.

4.3.1 Data Model and Unit

The first design principle concerns the data model and data units in the system. A
data model is a collection of high-level data description constructs that hide many low-
level storage details. Examples of data models from data management theory are the
relational data model used in most database systems, the hierarchical model, the network
model and the increasingly popular object-oriented and object-relational models.

While many applications have adopted the relational model, this can pose di�culties
for some applications. These di�culties are caused by the impedance mismatch, as
discussed by Gray et al in [84]. The impedance mismatch is the mismatch between the
programming model and the underlying capabilities provided by a specific data model.

Many existing applications employ proprietary data models. For instance, the represen-
tation of physics events in ATLAS is done using a custom object-oriented model. This
presents multiple advantages: for instance, it allows ATLAS to use complex (hierarchi-
cal) object references in its event modelling.

Changing an application from an existing, custom-made data model to a generic data
model is usually a very di�cult task. Even when this adaptation can be done, it rarely
utilises the full data model capabilities, because that would require significant changes
to large parts of the application code.



Chapter 4 System Requirements and Architecture 59

As such, the first design principle was not to impose any specific data model to an
application that uses the distributed data management system. Applications that are
the target of this work have most often developed proprietary data models where data
is stored in custom-built file formats. I now highlight this principle.

Design Principle: The distributed data management system is oblivious to

the data model used by the underlying application.

If there are proprietary data models (or relational databases, which in turn store their
data internally in files), the distributed data management system must manage these
files without any knowledge of the data stored within. While the lack of a specific data
model enables the support of legacy applications, it significantly reduces the flexibility
in dealing with the data, since there are only files in the system. Files alone do not have
significant structure. In fact, as discussed in [84]:

“But, file systems have no metadata beyond a hierarchical directory struc-
ture and file names. They encourage a do-it-yourself-data-model that will
not benefit from the growing suite of data analysis tools. They encourage
do-it-yourself-access-methods that will not do parallel, associative, temporal,
or spatial search. They also lack a high-level query language. Lastly, most
file systems can manage millions of files, but by the time a file system can
deal with billions of files, it has become a database system.”

In the same paper, the authors discuss the convergence between distributed file systems
and other systems:

“There is a convergence of file systems, database systems, and program-
ming languages. Extensible database systems use object-oriented techniques
from programming languages to allow you to define complex objects as native
database types. Files (or extended files like HDF) then become part of the
database and benefit from the parallel search and metadata management.”

The next design principle follows directly from this discussion. Because files do not
provide significant structure, the distributed data management system includes one other
data unit, which is the dataset. A dataset, which is formally defined in Section 4.4.1.1,
is loosely defined as a collection of files that are usually used together. This matches the
observation that users rarely use a single file in isolation but almost always make use of
groups of files, grouped statically by some shared semantic concepts. I now define the
second design principle.

Design Principle: The distributed data management system uses datasets,

which are (loosely) defined as collections of files, as the unit for all user

operations.



Chapter 4 System Requirements and Architecture 60

Throughout this work the advantages of having native support for datasets will be dis-
cussed with emphasis on the useful side-e↵ect of datasets being collections of semantically
related files. Datasets present similarities to the hierarchical organisation of directories
and files on a file system but there are di↵erences that allow for a more flexible behaviour
than what is available in file systems. This is discussed in Section 4.3.3.

4.3.2 Replication and Consistency Model

The requirements from users (Section 4.2.1) and managers (Section 4.2.2) include the
transfer of sets of data between data centres. For instance, users typically wish to have
a copy of some remotely available data at their home data centre where they can analyse
it repeatedly. Managers want to establish automated data flows for some of the requests
that have a more permanent nature, so that e.g. all data of a certain type is promptly
transferred to a specific data centre as soon as it is produced at some other data centre.

In fact, such replication is a commonly employed technique for increased reliability and
performance, as discussed in [165]. Using replication, reliability is improved because if
one copy of the data is not working, it is possible to use others. Performance can also
be improved because it is possible to distribute large numbers of users among several
replicas, increasing the total number of (parallel) accesses to the data. In addition, it is
possible to use geographically closer replicas (geo-locality), so that each data processing
step will use data in its proximity. These are, implicitly, the requirements of the users
and managers. In the context of a large, worldwide distributed application, geo-locality
is important because the network latency can be very significant.

Nonetheless, replication is di�cult to implement. According to [165], there are two
main issues with replication: managing replicas and keeping them consistent. The first
issue is deciding where, when and by whom replicas should be placed. This problem is
traditionally divided into two sub-problems: where to place the servers that will host the
replicated content, and how to decide which of those servers to use during a replication
process.

In the context of this work, the first sub-problem clearly has an easy solution: the
replicated content will be stored in each storage at a data centre. Deciding which storage
and data centres to use for placing a replica is a more di�cult problem. This will be
studied throughout this work, but the majority of times it will be users and managers
that manually make these replica placement decisions. Hence, the task of the system
will be to fulfil these requests as quickly as possible.

The other issue with replication is keeping replicas consistent. If two copies of a file are
not the same due to failed replication, a data processing step may output di↵erent results,
which can be problematic particularly if users are not made aware of the di↵erence.
The solutions to this problem are based on consistency models. There are multiple



Chapter 4 System Requirements and Architecture 61

consistency models: data-centric or client-centric. For an overview of these, refer to e.g.
[165].

In this work, the consistency model has two separate dimensions for each of the two
data units in the system, which are the files and the datasets. I assume that files cannot
be updated. Therefore, replicated files do not have any consistency issue: each replica
of a file is consistent as long as the replication was successful. Nonetheless, the datasets,
which are dynamic collections of files, can be updated. Files may be added or removed
from a dataset. For datasets, I adopted for a consistency model based on eventual
consistency [170].

Enforcing that files cannot be updated is not a major restriction for the type of processing
envisioned in a data-intensive application. In fact, it facilitates the implementation of
the user data provenance requirement. That is, whenever a file needs to be updated,
a new file can be created. Users that depend on the old file will still be able to use it
without changes. If a file (and therefore all its replicas) contains erroneous contents that
must be replaced, a new file can be created and the old replicas deleted. If users depend
on the old ‘bad’ file, they will not be able to find it. This results in an error condition
that is actually preferable by the managers, instead of having a user algorithm silently
using outdated files.

Alternative models that allow files to be updated would be di�cult to implement and
would su↵er from significant latency. For instance, using either two-phase commit [83]
or even a more advanced alternative such as the Paxos consensus protocol [109], requires
the exchange of multiple messages to commit every update operation. Considering that
replicas are in separate data centres, the network latency is substantial. In addition, if
failures occur, there would be the need to synchronise replicas in the background. This
process would be di�cult to implement, particularly in an environment characterised
by the need to handle large amounts of data during normal operation, where there
might not be network resources left to synchronise data in the background. A simpler
alternative, employed for instance by GFS [80], is to allow append-only operations to
files. Nonetheless, the latency issues remain present. Also, given the introduction of
the dataset as the data unit, there is no particular advantage in appending files when
datasets can be “appended” by adding additional files.

While I assume that files can be easily (or rather, inexpensively) recreated, the same
does not apply for datasets. The process of producing a dataset can be time consuming
and involve multiple users. Therefore, it is desirable to allow updates to the contents
of a dataset so that a single bad file does not render the entire dataset unusable. The
eventual consistency model defines that if a dataset changes (e.g. by replacing a ‘bad’
file with a corrected version), all replicas of the dataset should eventually reflect this
update.

Data stores that are eventually consistent have the property that, in the absence of



Chapter 4 System Requirements and Architecture 62

updates, all replicas converge towards identical copies of each other. Updates eventually
propagate and conflicts (if multiple writes are allowed) are typically easy to solve. In
addition, applications can tolerate a degree of inconsistency between replicas, but should
be aware of such inconsistencies. A widely used example of an eventually consistent
protocol is SMTP [98] for email submission: the delivery of sent email is ‘guaranteed’
to occur but not within any well-defined time window.

Clearly, an eventually consistent model is not applicable to all applications. Nonetheless,
with the combination of immutable data files and the dataset as a data structure, this
model is relatively easy to implement and provides su�cient functionality for most large
scale, embarrassingly parallel applications.

Therefore, datasets are created by independent and geographically distributed processes.
Because each dataset is an evolving collection of files, its constituent files will be gradu-
ally (eventually) replicated to all requested destinations, in a continuous manner. When
the dataset becomes immutable (when it can no longer change), all replicas of the dataset
will eventually converge to have the same set of constituent files. Section 4.4.1.1 elabo-
rates on this issue. I finally introduce the relevant design principle.

Design Principle: The distributed data management system employs even-

tual consistency principles for replication and consistency.

4.3.3 Logical and Physical Data Units

The following design principle establishes a separation between logical representation of
data and physical instantiation. That is, to further increase the flexibility for the users
of the system and still optimise storage and network usage, there is a separation between
the logical and the physical units of data handling. As a result, a dataset is a logical
unit that is created independently of its constituent physical files.

This flexibility enables an easier integration with existing data flows, since datasets
can be managed at a higher-level by separate processes, without altering the legacy
applications that produce and consume the individual data files. At the same time, users
can use datasets for querying and locating data or moving data across data centres.

This separation also allows the implementation of dataset replication based on eventual
consistency. As the logical constituents of a dataset change, its (physical) replicas will
eventually reflect this change. Future sections give examples of this behaviour, but I
first introduce the corresponding design principle.

Design Principle: The distributed data management system establishes a

separation between logical dataset definitions and physical replicas by using

eventual consistency principles.



Chapter 4 System Requirements and Architecture 63

4.3.4 Data and Fabric Independence

An important principle from the data management theory is data independence. Data
management systems, such as relational databases, provide two forms of data indepen-
dence, termed physical data independence and logical data independence. Physical data
independence is the ability to change the underlying physical data organisation with-
out breaking any application programs that depend on it. In the case of a relational
database, this could be re-partitioning rows in a table across multiple disks or nodes,
transparently to the users. Logical data independence is the ability to insulate programs
from changes to the logical design; if an underlying data schema is changed, views, which
define virtual background compatible schema representations, can be created and used
by existing programs.

Clearly, data independence is a desirable feature. In fact, it is reasonable to augment
the definition of physical data independence to the entire distributed computing fabric
(architecture of data centre, location of the data, etc), which results in the following
design principle:

Design Principle: The distributed data management system employs fab-

ric independence, which is the ability to change any part of the underlying

distributed fabric transparently to the users.

From this definition, it is clear that managers and data centre administrators may be
involved in these changes (e.g. managers must authorise new data centres to join the
system, and data centre administrators are actually involved in changing the underlying
fabric). Hence, the principle is only applicable to the users.

4.3.5 Layered System

The final design principle concerns the layering of the distributed data management
system on top of existing storage middleware. This principle, which follows from the data
centre administrator requirements, is not applicable in the realm of data management
theory and is specific to a complex distributed environment.

Given the requirement by data centre administrators for minimum intrusiveness, it is
desirable that the distributed data management system does not require any changes to
the storage already deployed at a data centre. Instead, the distributed data manage-
ment system must be layered on top of the existing storage, i.e. on top of an existing
NAS/SAN or HSM, by defining an abstract layer for all storage interactions. In addi-
tion, this principle considerably extends the ability to make opportunistic use of storage
resources. The disadvantage is that a layered integration can lead to many more poten-
tial inconsistencies and a more complex design. These issues are discussed throughout
Chapter 5.



Chapter 4 System Requirements and Architecture 64

Design Principle: The distributed data management system is layered on top

of existing storage middleware and provides a single and unified interface to

their aggregate capabilities.

Following from this principle and similarly to a trend observed in recent distributed
file systems (discussed in Chapter 2) there is no enforcement of POSIX semantics on
dataset operations. Users of the system require specific tools to access and manipulate
datasets. This allows for greater flexibility in the design of the system, particularly given
the introduction of new data units and a layered approach.

4.4 Architecture

This section describes the architecture of the distributed data management system. I
begin by describing formally the system entities, which are the datasets, logical and
physical file names. This is followed by an overview of the system functionality, which
includes a discussion on two major architectural decisions regarding dataset cataloguing
and naming and subscriptions. The last section contains a description of the components
in the system and an overview of their interactions.

4.4.1 System Entities

4.4.1.1 Datasets

A dataset has been loosely defined as a dynamic collection of files. A more precise
definition is:

Dataset. A dataset is a collection of files (typically containing more than one phys-
ical file) that are processed together and usually comprise the input or output of a
computation or data acquisition process.

A dataset is, at the lowest level, file metadata: a file is assigned as being part of one or
more datasets. This attribution provides very useful properties: knowing that a dataset
represents files that are used together, the system can optimise its units of data transfer
and discovery. Locating datasets as opposed to files implies storing far fewer entries on
a database, hence improving overall scalability.

Similarly, when transferring data, the dataset provides very good ordering of requests:
if there is a long queue of data to transfer, it makes the most sense for users to have
the system transfer those files that allow users to advance with their analysis as soon
as possible. As such, the system must try to transfer the missing files from a dataset as
soon as possible, to complete the replica of the dataset.



Chapter 4 System Requirements and Architecture 65

Figure 4.4: Evolution of a dataset.

Additionally, there is often the need to assign metadata attributes (e.g. software version
used to produce the output) to a set of files. For scalability reasons, it makes the
most sense to assign a single metadata attribute to a dataset as opposed to assigning
it individually to a set of files. External metadata systems can then use datasets to
reference data.

Creating a dataset is typically a highly parallel task, where jobs running in a computing
cluster produce the constituent files. To facilitate the iterative process of constructing
a dataset, which may last a long time3, the architecture defines the possibility to create
versions of a dataset along with dataset states.

A dataset can have multiple versions. Newer versions of a dataset can either add or
remove files from the dataset. Dataset versions allow users to reference a static set of
files at any point in time. For instance, earlier versions of a dataset can contain only a
smaller subset of the complete data sample. Nonetheless, to have reproducible analysis,
it is important to re-use the same exact sample. Versions can also be used to replace
existing files by corrected or improved versions, if the original files contained errors.

Datasets have three states: open, closed or frozen. Whenever a dataset is created,
the dataset state is open. At this point, files may be freely added or removed from the
dataset. The dataset can then be closed. When it is closed, the dataset definition cannot
change: files cannot be added or removed from the dataset but the dataset may be re-
opened again by adding a new dataset version. Dataset versions can only be defined
when the dataset state is closed. Finally, when the dataset production is completed,
the dataset state is set to frozen. At this point, the dataset cannot be re-opened again,
since no new versions can be defined: it is immutable4.

Figure 4.4 illustrates the mechanisms of versions and states. A dataset is represented at
four points in time, with the earliest representation on the left side and the latest on the
right side. Initially, the dataset is shown on state OPEN. It has three files in its Version

3For instance, within ATLAS, it is common to have the production of a dataset last several weeks.
4The dataset definition cannot be changed if the dataset is frozen, but it is possible that some files

are lost. As discussed in Chapter 5, temporary losses may be automatically recovered in some situations.
Permanent losses may require the re-definition of a smaller dataset.



Chapter 4 System Requirements and Architecture 66

1, but one of the files (badly produced) is removed whilst the dataset is open. Because
the version is open, files can be added and removed. At a later point, the dataset is
CLOSED by the user. This is the second representation in the figure. At this point, users
can reference Version 1 of the dataset my.Data to reference those two files. But at a
later point (third representation), a new dataset version is added. From now on, the
latest version is Version 2. Users can continue to reference Version 1 of the dataset
to reference the two initial files, but only the latest Version 2 can be changed. Finally,
in the fourth representation, the dataset is FROZEN by the user. Now, Version 2 cannot
be changed any more and in addition, no new versions can be created. The user can
reference either Version 1 (two files) or the dataset itself (Version 2 with three files).

To maintain the integrity of the dataset in a distributed system, there are no guarantees
about the set of contents available at a specific storage whilst the dataset is not frozen.
Only some time after the dataset is frozen (i.e. when no further changes are allowed),
will the system be able to guarantee that copies of the dataset are the same. This
follows the eventual consistency model described in Section 4.3.2. A correlation can be
established with this model and the last-close-wins semantics of distributed file systems,
applied to a higher-level concept.

4.4.1.2 Logical and Physical File Names

I now define logical and physical file names.

Logical File Name (LFN). A logical file name is a location independent human-
readable name that uniquely and uniformly identifies a set of file replicas. File replicas
are exact copies of a file. The initial copy is usually called the master copy but, with a
slight abuse of terminology, all copies will be called replicas regardless of which one is
the master.

Physical File Name (PFN). A physical file name is a location dependent access
protocol and path information that can be used to physically access a data file. Unlike
the LFN, the PFN may or may not be human-readable.

4.4.1.3 Example

This section illustrates the concept of dataset, logical and physical file names with an
example from the ATLAS Experiment. During a run of the ATLAS Experiment, files are
continuously written to the storage at CERN. Some of these files share many common
properties, because they are part of the same physics stream. The name of the physics
stream name, which is also the dataset name, is chosen to be atlas.mc12.00001.AOD.

During the run, two files for the physics stream are written to the storage at CERN.
These are:



Chapter 4 System Requirements and Architecture 67

/atlas/data/atlas.mc12.00001.AOD.1

/atlas/data/atlas.mc12.00001.AOD.2

These are physical file names, because they are specific to the CERN files. These physical
files do not include any information on the access protocol. In this case, POSIX access is
assumed. Because these files are going to be transferred to other sites, their new access
protocol5 becomes:

gsiftp://srv01.cern.ch/atlas/data/atlas.mc12.00001.AOD.1

gsiftp://srv01.cern.ch/atlas/data/atlas.mc12.00001.AOD.2

Because it is desirable to refer to these files without referring to any particular replica,
two LFNs are created. The LFNs for these two files are chosen to be:

atlas.mc12.00001.AOD.1

atlas.mc12.00001.AOD.2

At this point, these two logical file names are added to the (logical) dataset
atlas.mc12.00001.AOD. Later, the dataset is transferred to a remote storage, for in-
stance, to the Rutherford Appleton Laboratory (RAL). To refer to the copies at the
RAL storage, two physical file names are used. For instance, these could be:

gsiftp://storage.ral.ac.uk/atlas/1234-4567-AAAA-1234

gsiftp://storage.ral.ac.uk/atlas/1234-4567-BBBB-5678

(Note that physical file names are not necessarily human-readable, unlike logical file
names or dataset names, and the internal paths and names are usually di↵erent across
storages.) Therefore, the dataset is a logical entity that contains logical file names. These
are location-independent. If a file is available locally, then there is a unique physical file
name for each available logical file (i.e. for each replica). Finally, if a user wishes to
refer to any copy of the first file in the dataset, the user must use the logical file name
atlas.mc12.00001.AOD.1. Otherwise, the user must choose one specific storage and
use the corresponding physical file name.

4.4.2 System Functionality

This section contains a non-exhaustive list of user functionality. This functionality is
based upon the design principles and system entities introduced in previous sections.
(This functionality is described in more detail in later sections as well as in Chapter 5.)
All functions take a dataset name as input parameter, following the design principles
introduced in the previous sections.

5Details on access protocols such as gsiftp (GridFTP) are presented in Chapter 5.



Chapter 4 System Requirements and Architecture 68

• Dataset creation. Users can create datasets in the system. The dataset can be
modified by adding or removing files, using specific tools to upload user files to the
storage and to add the logical file names to the dataset. Users do not control or
manage the physical location of the files within the storage. This is done internally
by the system since the fabric independence principle states that the computing
fabric should be used as a “black-box”.

• Dataset transfer. Users can request the transfer of datasets between storages.
This is one of the main functions of the system.

• Dataset deletion. Users can request the deletion of datasets from storages.

• Dataset queries. Users can query the datasets available in the system, its con-
stituent files and other system attributes.

• Dataset retrieval. Users can retrieve an entire dataset or parts of a dataset to
a local storage outside of the system’s control (e.g. to the user laptop).

• Dataset notifications. Because datasets are typically very large (GBs or TBs),
operations such as transfer or deletion can take a long time. The system can
generate notifications when these operations begin and/or are completed. For
instance, when the transfer of a dataset is complete, a notification can be sent
to an external job submission system that automatically dispatches jobs to the
computing cluster, so that the newly available files are processed.

This functionality encompasses both bookkeeping and data distribution, first illustrated
in Figure 1.2 of Chapter 1. For the bookkeeping dimension, the functionality requires
a catalogue that uses the dataset as its underlying data unit. This is the subject of
the following section. For the data distribution functionality, the system requires a
service that is tightly coupled with the cataloguing, implements the replication and
consistency model previously described, enforces the separation between logical and
physical data units, implements the fabric independence principle and is based on a
layered architecture. This is the subject of the second section.

4.4.2.1 Cataloguing and Naming

The distributed data management system requires a catalogue that knows all the datasets
in the system. This catalogue is contacted to create datasets, dataset versions and change
dataset states. Whenever the system performs any operation on the dataset, it also reads
the latest dataset definition from the catalogue.

A concern with the dataset catalogue is the large number of entries it is expected to hold
- all datasets and all constituent files - and the large number of accesses. Services and
users also require a highly available catalogue. Therefore, a solution based on a single



Chapter 4 System Requirements and Architecture 69

central catalogue is not adequate, because this can result in a single point of failure.
The alternative is to employ multiple instances. In this scenario, there are two main
alternatives. One is to have replicated catalogue instances across multiple nodes, either
using a primary-backup6 scheme [7], where a node is declared to be the master and all
other nodes act as backups, or a state machine approach [154], where a protocol ensures
that all nodes eventually reach the same state and hold the same information. The
second alternative is to use some form of partitioning, so that di↵erent nodes contain
di↵erent subsets of the catalogue.

I have chosen to employ partitioning given its simplicity as compared to the implemen-
tation of primary-backup schemes or state machine consensus on the wide-area network.
Both alternatives are more suitable within a data centre environment with low network
latency. This is similar to the discussion on Section 4.3.2, regarding the replication and
consistency model, and where systems such as Paxos are said to su↵er from significant
latency on the wide-area network given the required message exchanges. Having de-
cided to use partitioning, I describe next what is the partitioning criteria, by discussing
dataset naming.

In a distributed system, it is the responsibility of a naming service to resolve a name
to its location. It is of interest to design a naming service that explores the distributed
environment and allows for partitioning the catalogue, avoiding single points of failure
and increasing scalability. Following the terminology introduced in [165], there are three
alternative designs for a naming service: flat naming, structured naming and attribute-
based naming. I briefly discuss each of these alternatives before motivating the choice
of structured naming.

Flat naming consists of having unstructured names. It can be implemented using simple
solutions such as broadcasting, where a query is forwarded to every (catalogue) instance
in the system, and the instance holding the entry replies back. This results in additional
communication overhead for queries.

Another alternative for flat naming is the home-based approach. This consist of defining
a static home location for every entry (in this case, for every dataset name), which is
typically where it was first created. If an entry is moved to a di↵erent (catalogue)
instance, the original instance will keep track of the current location. This solution
can result in imbalances in the number of stored entries per instance and additional
communication overhead.

A more robust alternative for a flat naming service is based on distributed hash tables
or DHTs. DHTs were introduced in Chapter 2 and can be used to resolve a name to an
associated entity. These have been successfully applied to large peer-to-peer networks
as discussed in Section 2.2.1.

6Also known as master-slave scheme.



Chapter 4 System Requirements and Architecture 70

Structured naming services are based on the definition of a well-defined structure for
each name in the system. Unlike flat naming schemes, which may not be human-readable
names, structured naming is specifically targeted to be readable by humans. Structured
naming requires the definition of a name space. A name space can be represented as
a labeled, directed graph with two types of nodes: the leaf nodes, which correspond to
the named entities, and the directory nodes. The name resolution consists of navigating
through the graph, from its root to a named entity, following the directory nodes.

Structured naming is used in almost all distributed file systems, and results in a sim-
ple hierarchical scheme, although extensions such as symbolic links are often used. An
advantage of structured naming, besides being human-readable, is the possibility to
distribute the name space, similarly to DHTs but with a considerably simpler imple-
mentation.

Attributed-based naming is a di↵erent technique from the previous two, in that each
entity is associated with a set of attributes. Each of the attributes partially describes the
entity. It is mostly useful for containing metadata information about the named entities,
but queries are considerably more complex than those described in the previous solutions.
Attribute-based naming is most appropriate for a higher-level metadata service, that
builds on top of the dataset catalogue, where users can locate datasets based on its
attributes.

Based on the previous discussion, the most appropriate choices for the naming service
are either DHTs or structured naming. I have opted for structured (dataset) naming
for two reasons. The first reason is that structured naming enables catalogues to be
partitioned into independent instances. Each instance stores a portion of the name
space. Structured names make such partitioning easy to implement. The second reason
is that the added complexity of DHTs is not required. DHTs are useful for dynamic
environments, while it is assumed that catalogue instances in this system are stable.
If some new instance needs to be deployed, this can be coordinated by the application
managers. With this choice I assume that it is simple to define a partitioning of the
name space. In practice, managers are able to define stable structures for the dataset
name, and assign parts of the hierarchy to di↵erent catalogue instances.

As an example, in the ATLAS Experiment, the name mc.12.AOD.00001.root is assigned
to the catalogue instance for the Monte Carlo data, or mc. Because these data correspond
to ATLAS-wide Monte Carlo, only authorised users are able to write under the mc area,
so that no users can mistakenly use (or abuse) this name. Note that unlike in traditional
file systems, the separator employed in this example is ‘.’ and not ‘/’.



Chapter 4 System Requirements and Architecture 71

4.4.2.2 Subscriptions

As discussed in Section 4.4.2, transferring datasets is one of the main functions of the
system. Nonetheless, deletion and other dataset operations are equally important in
a large distributed environment. This section describes the motivation for using the
concept of subscriptions for managing physical instances of datasets, similarly to the
principles introduced in [150] and discussed in Section 2.3.1.

A subscription is a persistent request, issued by a user, to a storage and for a dataset.
If a storage is subscribed to a dataset, the system will ensure that all files in the dataset
will get transferred to the storage. If the dataset changes (i.e. while the dataset is
not frozen), with the addition and removal of files, the subscription will ensure that the
corresponding changes are eventually applied to the local copy at the subscribed storage.
That is, if a file is added to a dataset, all subscribed storages will eventually copy the
file over. If a file is removed from the dataset, all subscribed storages will remove the
file, if it is not part of any other subscribed dataset.

As such, subscriptions are an adequate mechanism to implement an eventual consistency
model. Subscriptions also follow the split between logical and physical data units: the
contents of the dataset can change, at the logical-level, without any synchronous inter-
actions with physical replicas. Synchronous interactions would likely be a↵ected by high
latency on the wide area network.

Also, subscriptions are used to implement complex data flows. Because the process
of creating a dataset can take a long time, managers can subscribe datasets immedi-
ately after their creation. As files are produced, uploaded to a storage and added to a
dataset, these will automatically get copied to all subscribed storages. This mechanism
simplifies the process of managing many transfers with pre-defined data flows, which is
a managerial requirement.

In addition, subscriptions improve the reliability of the system, as they allow the transfer
of data to be an asynchronous process. Subscriptions are executed by processes that
are running in the background, as presented in later sections. Asynchronous transfers
augment the perceived reliability of the system, because a temporary failure can be
retried without user intervention.

Subscriptions also allow for a better scheduling of transfers, which is desirable for a
data-intensive environment. The transfers for a storage can be re-scheduled and delayed
internally, avoiding overload conditions. These features would be di�cult to implement
if users were synchronously transferring data.

Finally, the persistent nature of the subscription concept provides useful properties. For
instance, if there is an occurrence of lost data at a storage (e.g. due to a hardware failure),
the system will eventually detect the missing files and copy them over automatically,



Chapter 4 System Requirements and Architecture 72

Figure 4.5: Overview of the system architecture.

as long as the storage is still subscribed to the dataset. That is, while a subscription
exists for a dataset and storage, the storage is supposed to hold a complete replica of
the dataset or be in the process of transferring missing files.

The next section describes the components in the architecture, and presents a high-level
overview of the implementation of dataset catalogues and subscriptions.

4.4.3 System Architecture

Figure 4.5 illustrates the architecture of the distributed data management system. As
shown in the figure, the architecture uses a combination of global and local services.
Global services are responsible for higher-level functionality, such as the creation of
datasets. Global services store and operate mostly7 with location-independent infor-
mation (i.e. dataset names, logical file names), while local services store and operate
with location-dependent information (i.e. physical file names). Local services are also
responsible for executing lower-level actions on files, such as the deletion of files from a
storage.

As shown in the figure, users interact with a component called the dataset master, which
is internally partitioned into multiple instances. The dataset master is the global service
that implements the user interface described in Section 4.4.2. The dataset master is also
used by local services and other global services.

Another global service is the dataset catalogue, which is responsible for storing the
definition of all datasets in the system. This is introduced in Section 4.4.3.1 and is
internally partitioned as discussed in previous sections. The figure shows additional
global services: the fabric information service, the monitoring service and the accounting
service. These are introduced in Section 4.4.3.4, and are primarily administrative services

7Global services do hold some local information, but only as a caching mechanism. This is discussed
in later sections and in Chapter 5.



Chapter 4 System Requirements and Architecture 73

used by managers or by other components in the architecture.

Local services are responsible for interacting with the storage at each data centre to
perform the transfer, deletion and lookup of files. Therefore, local services are also
called storage services. There is an instance of a storage service per storage system; if
a data centre contains two separate storage systems, it runs two independent storage
services.

All operations performed by the storage services require local information. For instance,
to physically delete a file from a storage, the storage service needs to have native support
for the storage deletion commands, determine the disk servers hosting the file and its
absolute path. In the next sections and in Chapter 5, the internal architecture of the
storage services is described in detail.

The split between global and local services allows for a more robust design, employing
the classical principle of separation of concerns, as it enforces local information to be
kept only locally. This facilitates changes to the system - e.g. if a host name changes,
only a local service is a↵ected; and minimises security exposure - e.g. host names are
not known outside the local data centre environment. These principles follow the data
centre administrator requirements and the principle of fabric independence.

Similarly, the split between global and local service enables a separation between the
logical and physical units of data. Logical dataset definitions are kept globally, while
the exact location of its constituent files are only known locally. As such, the files part
of a dataset can change at the logical level without any (synchronous) interaction with
local services.

The next sections describe each of these components in more detail. (Additional design
and implementation details are also given in Chapter 5.)

4.4.3.1 Dataset Catalogue

Each instance of the dataset catalogue stores the definition of some of the datasets in the
system, according to the partitioning and structured naming described in Section 4.4.2.1.
The dataset definition includes the dataset name, which is a human-readable string,
the dataset state (OPEN, CLOSED or FROZEN), an integer with the latest dataset version
number, and the set of logical file names in each version. An example of a dataset
definition is given in Listing 4.1.

The signs + and - represent the files added and removed in each version, as compared to
the previous version. Because it is expected that dataset versions represent an evolution
of the dataset, only the di↵erence in files between consecutive versions are stored, as
opposed to the full list of files per version.



Chapter 4 System Requirements and Architecture 74

Dataset name: mc.12. AOD .00001

State: OPEN

Latest Version: 3

Changes in Version 1

+ mc.12. AOD .00001. _01.pool.root

+ mc.12. AOD .00001. _02.pool.root

+ mc.12. AOD .00001. _03.pool.root

Changes in Version 2:

- mc.12. AOD .00001. _03.pool.root

+ mc.12. AOD .00001. _03.v2.pool.root

+ mc.12. AOD .00001. _04.pool.root

+ mc.12. AOD .00001. _05.pool.root

Changes in Version 3:

- mc.12. AOD .00001. _04.pool.root

+ mc.12. AOD .00001. _04.v2.pool.root

+ mc.12. AOD .00001. _06.pool.root

Listing 4.1: Example of a dataset definition.

To know the contents of version 3 of the dataset, the system needs to read all dataset
versions in order, and apply the additions and removals of files (given by the + and -

signs). This scheme results in reduced storage space and is adequate for an environment
where file additions are more common than replacements. For instance, for Listing 4.1,
version 3 of the dataset contains the files:

mc.12.AOD.00001._01.pool.root

mc.12.AOD.00001._02.pool.root

mc.12.AOD.00001._03.v2.pool.root

mc.12.AOD.00001._04.v2.pool.root

mc.12.AOD.00001._05.pool.root

mc.12.AOD.00001._06.pool.root

There are additional system attributes stored for each dataset definition and logical
file name, such as the dataset owner or the file size. These are detailed in Chapter 5.
Nonetheless, note that the dataset catalogue has no information on physical file names;
instead, it stores only logical, location-independent information.

4.4.3.2 Storage Services

Storage services are the background processes, deployed per storage, which are respon-
sible for the management of the (physical) files in a storage. Managing files, or replicas,
includes the following tasks:

• Lookup. The storage services include a component responsible for looking up
files in the local storage. This requires translating a logical file name to a physical
file name, and checking in the storage whether the files are readily available.



Chapter 4 System Requirements and Architecture 75

• Transfer. The storage services include a component responsible for transferring
files from a remote storage to the local storage. Note that each storage service
is assigned to a single storage, and the destination storage is the one triggering
the transfer request. A transfer can only occur between di↵erent storage services,
which may be located in di↵erent data centres on the wide-area network or even
within two separate storages within a data centre.

• Deletion. The storage services also include a component that deletes files from
the local storage.

Each of these tasks is performed by separate services within a storage service. All tasks
require a tight coupling with the storage, which includes interfaces to lookup, write
and delete files. The coordination of which files to lookup, transfer or delete is han-
dled by the dataset master described in the next section. Storage services continuously
poll the dataset master for additional work. The reply from the dataset master is a
work assignment, which includes a list of logical file names on which to perform the
lookup/delete/transfer task.

For example, the delete component of the storage service asks the dataset master for
files to delete locally. The dataset master returns a list of logical file names (LFNs).
The delete service resolves each LFN to a physical file name (as shown in Chapter 5)
and then physically deletes the file from the storage. When the deletion is completed,
either successfully or failed, the result is sent back to the dataset master.

This work assignment model respects the separation between logical and physical data
units, since the physical file names and internal storage configuration settings are only
used locally. It also ensures that storage services are not aware of datasets definitions,
which can change globally.

In addition, the work assignment model allows administrators to locally override any de-
cisions. For instance, the administrators can disable the deletion component or prevent
it from deleting specific files, in e↵ect applying local policies. It also allows adminis-
trators to locally throttle the number of accesses to the storage. For instance, when
transferring files from a remote storage, the transfer component may have received a list
of 20 files to transfer, but decide to transfer the files in 4 blocks of 5 parallel transfers,
hence limiting the number of local parallel storage accesses to 5.

Chapter 5 discusses the request handling mechanism in greater detail, along with the
built-in authentication, authorisation and fault tolerance mechanisms.

4.4.3.3 Dataset Master

This section describes the dataset master, which is the architectural component that
implements the user interface described in Section 4.4.2. As shown earlier in Figure 4.5,



Chapter 4 System Requirements and Architecture 76

the dataset master interacts both with the dataset catalogue and the storage services.
The figure also illustrates a deployment scenario where there is more than a single dataset
master. The architecture foresees the deployment of multiple independent instances of
the dataset master, where each instance acts as the exclusive ‘master’ for a subset of the
datasets in the system.

When a user requests a dataset operation (e.g. the subscription of a dataset to a stor-
age), the request is sent to a unique dataset master instance. This redirection uses a
service that guarantees unique mapping between a dataset and a master service, which
is described in Chapter 5. The dataset master will then handle the request.

As discussed in the previous section, the dataset master does not execute any of the
user requests directly. Instead, it assigns work to the local storage services. The local
storage services are not dataset-aware, but only work with bulk requests of files to lookup,
transfer or delete. It is up to the dataset master to define these work assignments.

For example, suppose a user requests the subscription of a dataset to a storage. The
request is sent by the user and queued in the dataset master. In the background, the
transfer storage services are polling the dataset master for work. The dataset master
will check the queued requests, resolve the files in the dataset by contacting the dataset
catalogue, and reply with the list of files to transfer. In practice, the exact mechanism
is slightly more complex, as it involves asking other storages (the sources) whether they
have replicas of the missing files. These workflows are described in Chapter 5.

Although the dataset master is a global component, the architecture achieves a good
scalability as shown in later chapters. In particular, the dataset master is partitioned
into several independent instances, and each instance stores entries related to the actions
currently active. If instead a global component were to receive individual file requests,
the request rate would be considerably higher and could cause scalability problems.

Nonetheless, the dataset-based interface does not prevent the dataset master knowing
about logical files and even physical file names. In fact, the dataset master stores
such information but only in a transient manner. For instance, when the dataset master
assigns lookup tasks to storage services, it gradually builds a cache of replica information
from all the responses it receives. All this information is transient: if the dataset master
restarts, it can simply reassign new lookup tasks to find the files.

This mechanism has the advantage of avoiding the need of a separate catalogue to keep
the location of the files in the system. Such a catalogue could lead to scalability and
consistency problems because any stored information could be incorrect. In a distributed
system, a location catalogue is never absolutely correct as data can be lost unexpectedly.
The described mechanism minimises these occurrences with minimal extra e↵ort, by
using responses from the storage services to build up a cache.

Chapter 5 elaborates on the interactions between dataset master, storage services and



Chapter 4 System Requirements and Architecture 77

dataset catalogue.

4.4.3.4 Administrative Services

This section describes the remaining global services in the architecture. These are the
following administrative services:

• Fabric Information Service. This service aggregates high-level information
about the distributed computing fabric, such as the human-friendly designation
of a data centre (e.g. ‘CERN’). Since this is a global service, administrators can
globally add or remove (permanently or temporarily) data centres from the dis-
tributed computing fabric. This is also where the users and groups of the system
are registered, along with additional information such as user quotas.

• Monitoring Service. The monitoring service is responsible for providing real-
time and dynamic information on the system usage, based on information from
the dataset master and storage services.

• Accounting Service. The accounting service provides historical information on
the system usage. It uses the monitoring service and the dataset master as its
information sources.

Further details on these services are presented in Chapter 5.

4.5 Discussion

This chapter proposes a novel distributed data management system, starting from design
principles and defining the system architecture. Before describing the system in detail
in the next chapter, it is appropriate to discuss the general applicability of this proposal.

The proposed system is designed primarily for data-intensive applications. Nonetheless,
nothing precludes its usage in an environment with much less data (e.g. terabytes or
gigabytes of storage in total, as opposed to petabytes). In fact, within the ATLAS
environment, the same data management system that is used to manage the petabytes
of ATLAS data is also used to manage log files, distribute binaries of the ATLAS software
and even to make automatic o↵-site backups of relational databases. All these di↵erent
data are added into datasets and managed as any other data.

Nonetheless, there are some important constraints to consider in its applicability. One
is the number of data centres being served and the size of each data centre. If the
system were to be deployed in individual user desktops (where each desktop would host
a “storage service”), the system would likely su↵er from performance issues unless a



Chapter 4 System Requirements and Architecture 78

large number of dataset masters would be deployed. Nonetheless, the presence of a very
large number of dataset masters would mimic some existing P2P architectures, hence
indicating that such scenarios could in principle be successfully deployed but not without
considerable implementation changes.

Another important constraint is the consistency requirements for updating and reading
the data. In data-intensive applications, I have not encountered the need for transac-
tional support when handling very large sets of data. Complex applications such as
ATLAS have this need, but only for very small subsets of data (megabytes) in very
specific scenarios, such as the systems that control and monitor the environmental con-
ditions of the ATLAS detector during real-time operations. There is no considerable
di�culty in these scenarios because they are not data-intensive nor require worldwide
distribution of data.

Nonetheless, it is theoretically possible to envision a large scale data-intensive application
that requires transactional support for all its petabytes of data stored around the world.
In this case, the proposed system cannot readily be used. In practice, I believe those
applications can be adapted to remove or relax the transactional support. I believe any
alternatives with true transactional support would likely su↵er from latency limitations,
at the very least from the limits of the speed of light. In this proposal, the availability
of datasets and the support for immutable files should, in principle, su�ce for most
scenarios. These concepts should allow even the applications with the most stringent
requirements to be supported.

4.6 Summary

In this chapter, I described the design and architecture of a distributed data management
system for data-intensive applications. This started by listing the requirements from
users, managers and data centre administrators. These requirements include the need
to move large sets of data between data centres, ensure that the operational overload of
the system is small and that the system is minimally intrusive.

The design principles were also introduced. These include the introduction of datasets as
a native data unit, a separation between logical dataset definitions and physical replicas,
which implement an eventual consistency model, the independence from fabric changes
and the layering of the system over existing storage middleware. Alternative techniques
for dataset cataloguing were discussed and the choice of partitioning and structured
naming was motivated, given its scalability and simplicity of implementation. Simi-
larly, subscriptions were introduced as the mechanism to request movement of datasets
between storages.

In addition, I presented the system components, which include a mix of global and local



Chapter 4 System Requirements and Architecture 79

components. Global components are the dataset catalogue, the dataset master and a
set of administrative services for fabric information, monitoring and accounting. Local
services are also called storage services, and are deployed per storage system. Global
services operate primarily with logical dataset definitions and local services with physical
file replicas. All these components are described in detail in Chapter 5.

Finally, I discussed the general applicability of this proposal. I argued that this proposal
can in principle support a wide-range of scenarios even if primarily oriented for large
scale data-intensive applications.



Chapter 5

System Design

“Thou hast seen nothing yet.”
(Miguel de Cervantes in El ingenioso hidalgo don Quijote de la Mancha)

This chapter describes the design and implementation details of the distributed data
management system presented in Chapter 4. After introducing the methodology in the
next section, I describe the dataset catalogue in the second section, followed by the
storage services in the third section. The fourth section describes the dataset master,
and focuses on the interactions with both dataset catalogue and storage services. The
last sections briefly describe the various administrative services and the client tools. The
fault tolerance and scalability properties as well as security considerations are discussed
and reviewed in dedicated sections, given their importance to the design of the system.

5.1 Methodology

The system described in this chapter is the result of several design iterations. The
first prototype was produced in 2005. Since then, and following the results of several
large scale tests, parts of the system were redesigned. (One of these large scale tests is
discussed in the next chapter.) Design changes were applied when limitations were iden-
tified during the large scale tests. For instance, early versions of the dataset catalogue
consisted of a single centralised database. When this was perceived as a performance
bottleneck by the database administrators, the naming service and vertical partitioning
were introduced. Due to the large uncertainty in predicting future system load, design
revisions were always preferred to hardware improvements, given performance results
obtained during real operational conditions. While a new database server can signifi-
cantly improve a catalogue’s performance, application-level partitioning clearly provides
another level of flexibility and ability to accommodate additional load. Nonetheless,

80



Chapter 5 System Design 81

Figure 5.1: Overview of the dataset catalogue.

throughout the past years, the design principles introduced in Chapter 4 have remained
unchanged and underlie all implementation decisions.

The design described in this chapter has been implemented by a group of developers
who are part of the ATLAS Distributed Data Management project, which I led from
June 2005 to March 2009. These include Pedro Salgado (Dataset Catalogue), Vincent
Garonne (Dataset Master), Mario Lassnig (Client Tools), Ricardo Rocha (Monitoring
Service), Fernando Barreiro (Accounting Service) and myself (Storage Services, Fabric
Information Service, plus contributions to the Dataset Catalogue and Dataset Master).

The software development started in June 2005 and the first prototype versions were
available by October 2005. It has since been used by the ATLAS Experiment to manage
all its experimental data. The code is developed in the Python1 programming language.

5.2 Dataset Catalogue

The dataset catalogue is responsible for storing the definition of all datasets in the sys-
tem. Figure 5.1 illustrates the design of the dataset catalogue. Following the discussion
in Section 4.4.2.1, it is divided into two components: a centralised naming service and a
set of independent catalogue instances. The centralised naming service maps the dataset
name to a unique catalogue instance that holds the corresponding dataset definition.
Both the centralised naming service and each catalogue instance implement the same
interface. Therefore, a request sent to the centralised naming service is transparently
redirected to the appropriate catalogue instance.

The next section describes the relational database schema for the catalogue instance,
and discusses the functionality available. The following section describes the primary
and secondary dataset catalogue interfaces. The third section introduces the centralised
naming service, which redirects user requests to the appropriate catalogue instance. The
final sections discuss security mechanisms and review important properties of the design.

1Refer to http://www.python.org.



Chapter 5 System Design 82

Figure 5.2: Schema of the dataset catalogue (primary keys are underlined).

5.2.1 Schema

The dataset catalogue relational database schema is shown in Figure 5.2. The Dataset

table contains the dataset definition, the Dataset Version table contains the versions
for each dataset and the Version File table contains the files in each version. Because
a file may be part of multiple datasets or versions, the File table contains file attributes,
such as file size and checksum. Both these attributes are per file regardless of the datasets
or versions that contain the file.

The following example illustrates the schema usage. When a user creates a new dataset,
an entry is created in Dataset and the state is set to OPEN. The first dataset version is
also created in Dataset Version. At this point, the dataset does not contain any files.
Whenever a user adds files to a dataset, the interface (described in the next section)
requires the user to specify the dataset name and the list of files, including the LFN,
GUID, file size and checksum. The corresponding entries are added to Version File

and (if they do not yet exist) to File. If the File entry already exists, the file size
and checksum attributes are compared to the stored attributes and the request is only
accepted if the attributes match. The interface also allows users not to pass the file size
and checksum in the request, since this is not required for files already known to the
catalogue. In this case, the File entry must already exist or the request is denied, since
the dataset catalogue requires that every (new) file definition includes the file size and
checksum.

Given this schema, the user may either use the GUID or the combination dataset name
and LFN to uniquely reference a file in the system. This follows from LFNs being unique
only within the context of a dataset (i.e. two di↵erent files may have the same LFN in
di↵erent datasets). On the contrary, GUIDs are globally unique identifiers and can be
always used to uniquely reference a file, regardless of the datasets the file is in. Finally,



Chapter 5 System Design 83

a file may be part of multiple datasets: the GUID is the same for every dataset that
contains the file, while the LFNs may be di↵erent.

For instance, when a new file is produced, it is assigned a GUID, such as:
2fede3d3-d16c-4481-ba86-b8f1f46adb8d. At some later point, this file is added to a
dataset owned by Alice, called alice.dataset. Alice chooses a LFN for the file, such as
my.file. Bob also wants the file in his dataset, called bob.dataset, but uses a di↵erent
LFN such as alice.file. In this case, either the GUID can uniquely reference the file,
or the combination bob.dataset and alice.file or alice.dataset and my.file. (In
this example, it is assumed that the file is part of the latest dataset version, otherwise
the dataset version number is also required.)

Each entry of Version File includes the State field with states ADDED or REMOVED.
The states represent whether the file is added and removed in this dataset version, as
compared to the previous version. Because it is expected that dataset versions represent
an evolution of the dataset, only the di↵erence in files between consecutive versions
is stored, as opposed to the full list of files for every version. For instance, to know
the contents of version 3 of a dataset, the system needs to read all dataset versions
in order (versions 1, 2 and 3), and apply the additions and removals of files given by
their states. While this schema requires additional processing at the application layer, it
results in reduced storage space requirements and is adequate for an environment where
file additions are more common than replacements, and where dataset contents evolve
gradually between versions.

Also, whenever files are added to a dataset, it is necessary to check whether the GUID
is already part of the dataset, so that the same file is not added (or removed) twice
from the same dataset. This constraint is not shown in the schema but is verified by
the application-layer.

In addition to the dataset states OPEN, CLOSED and FROZEN discussed in Section 4.4.1.1,
the Dataset table also includes an additional state DELETED. This state is set when
the dataset is deleted by a user. The objective is to prevent dataset names from being
re-used, even after the dataset has been deleted. This follows from a data provenance
requirement, to guarantee that results are reproducible. Otherwise, users could delete
and recreate datasets with di↵erent contents but using an existing name. Because main-
taining old deleted dataset entries can become a scalability problem, this state is only
used depending on a configuration attribute set per dataset catalogue instance. As such,
managers can decide which catalogue instances (i.e. which portions of the namespace)
must implement this functionality.

The relational database schema is deployed in an ORACLE database2. The File and
Version File tables are expected to contain the largest number of rows. These are

2Refer to http://www.oracle.com.



Chapter 5 System Design 84

ORACLE Index-Organised Tables3 (IOT). An IOT is a table whose data is stored in
B-Trees (see e.g. [99] or [50]) index leaves, in sorted order, based on the primary-key
of the table. As a result, changes to that data such as adding, updating, or deleting
rows require an update to the index only, making them very fast for primary-key based
queries.

5.2.2 Interfaces

The dataset catalogue implements two separate interfaces, a primary interface and a sec-
ondary interface. The primary interface is implemented using Remote Procedure Calls
(for RPC, see e.g. [165]). It uses a custom protocol built atop of the HTTP protocol and
is used for creating, updating and reading dataset definitions. The secondary interface
is used exclusively for reading dataset definitions and is more suitable for integration
with external systems. I start by describing the primary RPC-based interface. Only a
subset of the methods are discussed; the complete listing is available in Appendix A.

The primary interface includes the methods required to create and manipulate dataset
definitions. For instance, the methods to add and delete files from a dataset have the
signatures add files(dsn, list of files) and delete files(dsn, list of files),
where dsn is the dataset name and list of files are the list of LFNs or GUIDs, as
discussed in the previous section.

The interface is implemented using the Apache4 HTTP server, mod python5 and Grid-
Site6. This software stack, with the exception of GridSite, is commonly used for large
scale systems, as it allows for easy development of client/server applications, with the
robustness of a widely used server such as Apache and the flexibility provided by the
HTTP protocol. The addition of GridSite (using the mod gridsite Apache module)
enables the usage of the Grid Security Infrastructure (GSI). The GSI usage is presented
and discussed in Section 5.2.4.

The implementation uses a custom RPC protocol. The protocol is based on XML-RPC
[111] but its syntax is simplified by removing the XML-based encoding. This decision
allows the client/server communication to carry reduced payload by removing spurious
information. This is particularly important for methods that carry large listings of files,
such as list datasets and add files methods (refer to Appendix A for additional
details). For instance, it is possible for a dataset to contain O(100, 000) files. This
decision also allows using HTTP streaming in the server replies, as discussed next.

The usage of HTTP is also justified by several features it provides. Two important
examples are the ability to use Web Proxy servers and the ability to stream replies. A

3Refer to http://www.dba-oracle.com/t index organized tables.htm.
4Refer to http://www.apache.org.
5Refer to http://www.modpython.org.
6Refer to http://www.gridsite.org.



Chapter 5 System Design 85

web proxy server, such as Squid7, is a server that is located between the client and the
application server. It implements filtering rules and the ability to cache replies from the
application server. When a client contacts the web proxy server, using the same interface
as for the application server, the web proxy server will either reply immediately with
a (valid) cached reply obtained from a previous request or, if no reply is cached, will
contact the application server, cache back the reply and send it also to the client. This
cached reply is then available for future requests. The application server, using specific
HTTP headers, notifies the web proxy server of the time validity of its replies.

In the implementation, web proxy servers are used to cache dataset search requests
(such as list datasets) and dataset contents (such as list files), also described in
Appendix A. In particular, whenever datasets become frozen, the contents no longer
change. Listing files in a dataset will always return the same content. In this case, the
web proxy server can indefinitely (or, for long periods of time) cache the reply, saving
the application server from answering some requests. This provides added scalability,
by exploiting functionality widely available in HTTP.

Similarly, the HTTP protocol provides the ability to stream replies. If a user asks for
a long list of datasets or files in a dataset, the server can send portions of the reply
directly to the client. This saves the server from having to load the entire reply from the
backend relational database into the server memory before dispatching it to the client.
This is a desirable feature because it reduces the memory consumption of the server,
hence increasing its overall stability and ability to serve a higher number of simultaneous
requests.

An alternative protocol that was considered was SOAP (Simple Object Access Protocol)
[26]. SOAP is a mechanism to exchange structured information, which evolved from
XML-RPC. Nonetheless the added functionality provided by SOAP was not considered
relevant for this scenario.

Instead, building upon the underlying usage of HTTP, the dataset catalogue includes a
secondary interface. This secondary interface uses the REST architectural style [69]. It
is used for reading information (e.g. for listing datasets and constituent files) and not
for writing (e.g. for dataset creation).

The REST architectural principle is based on the “separation of concerns” principle,
with the goal of simplifying the implementation of clients and servers. REST provides a
minimal connector semantic: the messages in REST must be self-descriptive, leading to
stateless requests. One of the scalability gains achieved by this principle is the ability
to cache information.

A central concept in REST is that of a resource, which is the source of information.
Resources are identified by global identifiers or URIs (Uniform Resource Identifier) [22].

7Refer to http://www.squid-cache.org.



Chapter 5 System Design 86

Figure 5.3: Example of RDF usage.

The World Wide Web uses a type of URI, which is the URL (Uniform Resource Locator)
that specify where a resource is available and the mechanism to retrieve its representa-
tion.

The secondary dataset catalogue interface is based on assigning a URI to every dataset in
the system. This allows dataset representations to be retrieved by URLs using HTTP.
A dataset representation includes all the information on a dataset, such as its state,
attributes, versions, constituent files and file attributes.

The availability of dataset identifiers allows external systems, particularly metadata sys-
tems, to be linked to the distributed data management system. Metadata cataloguing
is not an integral part of the distributed data management system but users can ex-
ploit the available dataset URLs using additional mechanisms such as RDF (Resource
Description Framework [126]) to build metadata data models.

An example of using RDF is shown on Figure 5.3, with a simple data model. Here, a
resource that represents a dataset is assigned several properties. In RDF terminology
these are resources, predicates and objects. By exposing the information about resources
in the system using URIs, the implementation encourages external applications to link
to the system, expanding its scope as a distributed data management system, layered
on top of the Web architecture. In particular, as discussed in [28], this design enables an
external metadata repository to store the provenance of the data known to the system.

5.2.3 Naming Service

The previous sections described the schema and interface implemented by each dataset
catalogue instance. In this section, I describe the naming service, which allows for the
existence of multiple dataset catalogue instances.



Chapter 5 System Design 87

mc http ://mc-cat.cern.ch/

user http ://user -cat.cern.ch/

Listing 5.1: Example of redirection rules.

The naming service is responsible for redirecting a request to the appropriate dataset
catalogue instance. For scalability purposes, it is important to have more than a single
dataset catalogue instance, because the schema shown in Section 5.2.1 requires unique-
ness constraints and is expected to hold a large number of entries.

Every dataset catalogue instance implements the interface defined in the previous sec-
tion. All methods include the dataset name in their signature. Dataset names, which
follow a well-defined structure as discussed in Section 4.4.2.1, are used to redirect the
request to a specific instance. The redirection of requests uses features from the HTTP
protocol [70], more specifically the HTTP status codes 3xx that directs clients to go
to another location.

An example of the set of static rules is given in Listing 5.1, where all dataset names
starting with mc are redirected to a separate catalogue instance from those starting
with user. The dataset naming structure, the number of catalogue instances and the
redirection rules are statically defined by the application managers.

Besides its simplicity, an advantage of this schema concerns security issues and visibility
of datasets. When the naming service receives a write request (e.g. create dataset

method defined in Appendix A), it can check whether the requester is authorised to
write in the specific catalogue instance, which represents a subset of the namespace. If
not, the request is not redirected.

Similarly, when read requests are also secure (configurable per catalogue instance, as
described in the next section), the naming service can also not redirect a request to a
catalogue instance, e↵ectively hiding those datasets from some users or groups. This
implements the requirement of having private data(sets) in the system.

A disadvantage of the HTTP-based redirection schema is that a single request cannot
span multiple catalogues. For instance, it is not possible to list both mc and user

datasets in the same request, because these are contained in di↵erent dataset catalogue
instances. In practice, these queries are usually not necessary and can be implemented
by two separate client requests. Partitioning very large queries is also desirable, as to
avoid overloading server resources.

5.2.4 Security

The primary dataset catalogue interface implements a security layer based on the Grid
Security Infrastructure (GSI) [76]. GSI is a public key cryptography system (also known



Chapter 5 System Design 88

as asymmetric cryptography). GSI includes a specification for secure communication
between software components that provides authentication and delegation. It relies
on certificates that contain information used to identify and authenticate the users or
services in the system. A third-party Certificate Authority is used to certify the link
between the public key and the subject in the certificate.

The application code running on the server uses GSI to obtain the user identification
from the secure HTTP request. For instance, when the user creates a dataset using
the method create dataset, the user identification is obtained from the certificate and
stored as the dataset Owner attribute.

For performance reasons, managers may disable the use of GSI for read requests. This
configuration can be set per catalogue instance. Public key cryptography systems involve
computationally expensive operations. Because it is expected that read operations are
more common than writes, disabling GSI for read requests results in increased server
stability and allows a server to handle a higher number of simultaneous requests. Write
requests always require the use of GSI because of the need to obtain user identification.

5.2.5 Fault Tolerance and Scalability Properties

This section reviews fault tolerance and scalability properties in the dataset catalogue
design.

Fault tolerance. The naming service is a centralised service, which can be duplicated
into multiple instances provided that all naming service instances share the same set of
rules. This replication avoids a single point of failure, at the cost of having to stop all
instances when rules need to be altered. (It is assumed that such configuration changes
are very rare.) In addition, in the event of failure of a dataset catalogue instance, the
partitioning of the dataset catalogue into multiple independent instances ensures that
only a part of the dataset definitions becomes unavailable, which is an improvement to
a single point of failure. The final comment is the protection against data loss within
the relational database, which is ensured by the ORACLE relational database system
that contains several built-in data protection mechanisms.

Scalability. The partitioning of the dataset catalogue into separate instances ensures
that the dataset catalogue can cope with a higher number of entries, provided that the
namespace can be adequately partitioned. In addition, the usage of HTTP functionality
allows for caching and streaming of (large) replies. In particular, it is expected that
most datasets are eventually frozen, which allows for more aggressive caching. Also,
storing the di↵erences in files between consecutive dataset versions results in reduced
bookkeeping needs, hence improving the overall scalability. Finally, the ability to enable
or disable GSI also improves the overall server performance and the ability to serve a
higher number of simultaneous requests.



Chapter 5 System Design 89

5.3 Storage Services

Storage Services are the local components in the architecture responsible for interacting
with the storage at each data centre, to transfer, delete and lookup files. There is usually
a single storage service instance deployed per storage, where it runs as a background
process serving requests from the dataset masters. The administrators can configure the
storage services to serve all or a subset of the dataset masters. (The default is to serve
all dataset masters.) Having a storage service instance serve only a subset of the dataset
masters can be used to partition the system vertically into separate instances (e.g. to
deploy two independent storage service instances, each serving requests from a di↵erent
master), or to prevent requests from a specific master from being served.

The storage services interact primarily with the dataset masters and local storages, but
also make use of the fabric information service. In particular, storage services are able to
detect dynamically that a new dataset master instance has been deployed in replacement
of a previous instance. This ability is deemed important in a distributed environment
where coordinated downtimes are undesirable. Section 5.3.2 (“Lookup Service”) details
this mechanism, although it applies also to the transfer and deletion services. Nonethe-
less, this mechanism is limited to the discovery of a new dataset master instance that
replaces an existing instance. It does not detect new instances automatically, except if
these replace an older instance. Because such deployment changes are expected to be
rare and must be coordinated (e.g. the storage administrator must decide if the stor-
age should serve requests for the new dataset master), these changes require a manual
reconfiguration of the storage services.

Before describing the design of the storage services, I first describe the interface used to
interact with the storage systems. This is followed by the description of the lookup and
delete services. The transfer service, which is the most complex storage service, is then
presented. This is followed by a discussion on security considerations. While some topics
on fault tolerance and scalability are presented throughout the next sections, the main
discussion is postponed to the Dataset Master section where the interactions between
storage services and dataset masters are analysed in Section 5.4.5.

5.3.1 Storage Interface

An underlying design principle in the distributed data management system is the ability
to support heterogeneous storage systems using a layered approach. Following this prin-
ciple, the system uses a common mass storage interface that is implemented by several
storage vendors, called SRM [157]. SRM, which has been the result of an international
collaboration and is published as an Open Grid Forum8 (OGF) specification, allows the
storage services to interact with the associated storage system, as shown in Figure 5.4.

8Refer to http://www.ogf.org.



Chapter 5 System Design 90

Figure 5.4: Overview of storage system, SRM and storage services.

The goal of SRM is to provide a common storage service with an interface to storage
resources, as well as advanced functionality such as dynamic space allocation and file
management on shared storage systems. Although storage vendors provide systems
with significantly di↵erent functionality, SRM attempts to bridge these di↵erences by
providing a minimal, inter-operable interface.

In SRM, files may be ONLINE, NEARLINE, ONLINE AND NEARLINE or OFFLINE. A file
ONLINE has the lowest latency possible. No further latency improvements are applied to
online files. A NEARLINE file can have its latency improved to online latency automati-
cally by staging the file to online cache. OFFLINE files need human intervention to achieve
online latency. These concepts can be mapped to the discussion in Section 4.2.3.1, in
particular to Figure 4.2.

Two important concepts in SRM are the SURL and the TURL. The SURL, or site URL,
is an abstraction of the file namespace, in the form srm://ibm.cnaf.infn.it:8443/test,
where ibm.cnaf.infn.it:8443 is the SRM server host and port, and /test is the file
path. When requesting a file from an SRM, an SURL is provided. The storage can have
the file in several locations (e.g. several disk servers or tapes) and may need to bring
it from tape to be accessed. When this is done, a TURL, or Transfer URL, is returned
to the user. The TURL includes file access protocol information. For the previous ex-
ample, the TURL could be http://srv01.ibm.cnaf.infn.it/test.copy1. Note that
the TURL now includes an HTTP access protocol9 and a di↵erent file path.

TURLs have a lifetime, which is independent of the file’s lifetime in the storage (i.e. of
the SURL lifetime). For instance, if a file is brought from tape to disk, the lifetime of
the disk copy is usually short. After the file has been accessed, that disk copy is removed
to give space for other tape recalls. The lifetime of the disk copy is the TURL lifetime,
while the lifetime of the file on the storage is the SURL lifetime.

Therefore, the SURL lifetime is chosen by the user (i.e. until the user decides to delete
the file), while TURL lifetimes are primarily chosen by the storage. TURL lifetimes

9Additional protocols are supported besides HTTP. These are described in a later section.



Chapter 5 System Design 91

Figure 5.5: Interactions when writing a file to SRM.

and additional copies do not apply only if there is a tape backend. Even when there is
no tape backend, the storage may temporarily copy the file to another disk server from
where it will be read, improving the read performance. This additional copy is identified
by a TURL, and has its own lifetime.

The SRM implementation relies on asynchronous operations. The full listing of SRM
methods used by the storage services is included in Appendix B. Figure 5.5 shows an
example of the SRM methods required to write a file to the storage. The first interaction
is srmPing, to check if the service is operational. Then, the user requests a TURL onto
which to write the new file, using srmPrepareToPut. The user occasionally polls the
SRM to see if the TURL is available, using srmStatusOfPutRequest. When the TURL
is available (i.e. when the storage space is allocated, and path and namespace entries
created), the user starts writing the data onto the provided TURL using a transfer pro-
tocol supported by the storage. When the write operation is finished, the user executes
srmPutDone.

Having described the storage interface, I now describe each of the storage services com-
ponents, and their usage of this interface.

5.3.2 Lookup Service

The lookup service is the component of the storage services used by the dataset master
to find files in a storage. Using the lookup service, the dataset master can provide
advanced functionality. For instance, after a user has created a dataset, the dataset
master requests the lookup service to check if the constituent files are actually present
on the storage. This serves as a consistency check for data recently uploaded to a storage.
Similarly, when there is a suspicion of lost or corrupted data, the dataset master can
request the lookup service to determine whether the system attributes for the files are
consistent, by comparing file sizes and checksums. In addition, when the dataset master



Chapter 5 System Design 92

while True:

try:

request = master.get_lookup_job(storage)

except MasterCommunicationError:

master = information_service.refresh(master)

continue

surls = resolve_surls(request)

try:

reply = srm.srmLs(surls)

except SRMError:

reply = get_srm_error ()

reply_sent = False

while not reply_sent:

try:

master.set_files_result(reply)

reply_sent = True

except MasterCommunicationError:

master = information_service.refresh(master)

Listing 5.2: Pseudo-code for the lookup service.

bcbf5ecf -ee2b -4ac1 -8710 -1 c6df66572f3

6bcb3554 -5976 -40bc -beba -74 b977aac342

Listing 5.3: Example of a dataset master lookup request.

needs to find appropriate sources to replicate a file, it requests the lookup service to
verify whether the files are available at some desired source storage.

At start-up, the storage services spawn one or more lookup service instances for each
dataset master being served. The number of lookup service instances per dataset mas-
ter is configured by the storage administrators to ensure prompt lookup performance
without overloading local storage resources, and in particular the SRM interface. Each
lookup service instance executes the pseudo-code shown in Listing 5.2. It consists of a
loop that requests and processes requests (lookup jobs) from a single dataset master.
There is no local checkpoint: if the lookup service crashes, a new instance is restarted.
The dataset master is responsible for handling the crashed request using mechanisms
described in Section 5.4.5.

The dataset master request includes the list of GUIDs to lookup as shown in Listing 5.3.
There are two steps in the lookup procedure. The first is to determine the SRM SURL
from the GUIDs in the request (the resolve surls method in the pseudo-code). The
second step is to actually perform the lookup in the storage (the srmLs method).

The first step requires a translation from a GUID to a SURL. There are two alterna-
tive mechanisms to do this translation: using a translation function or a translation
catalogue. In the first case, a function uniquely and statically determines SURLs from
GUIDs. This relies on an artifact from the GUID generation process. Even though
GUIDs are pseudo-random strings, it is possible to determine their creation date from
the GUID string. This is shown in the example reply given in Listing 5.4, where for
the first GUID the path /2008/10/02/ is formed from the GUID creation date (i.e.



Chapter 5 System Design 93

bcbf5ecf -ee2b -4ac1 -8710 -1 c6df66572f3

srm :// host.name/data /2008/10/02/ bcbf5ecf -ee2b -4ac1 -8710 -1 c6df66572f3

10485760

AD:0015 ff0c

6bcb3554 -5976 -40bc -beba -74 b977aac342

srm :// host.name/atlas/production/run2/my.large.file

1258291200

AD:0002 b1fe

Listing 5.4: Example of a lookup service reply.

/year/month/day/). The remaining parts of the path are assumed to be static. This
simple mechanism can provide adequate distribution of the files in sub-directories10.
Nonetheless, storage administrators can implement alternative translation rules because
the storage services are deployed close to the storage and managed by the storage ad-
ministrators.

The second alternative is based on a translation catalogue, also known as a local file cat-
alogue11 or LFC. This results in a directory hierarchy that is more human-friendly and
consequently easier to manage. An example of the resulting translation using this tech-
nique is shown for the second file in the example of Listing 5.4. The LFC is a specification
for a service that stores a mapping between GUIDs and SURLs in a relational database.
There are multiple implementations of local file catalogues that are supported by the
storage services, such as the LCG LFC [19] and the Globus RLS service [42]. These
implementations provide advanced functionality and additional flexibility as compared
to the translation function. For instance, storage administrators can re-structure the
namespace easily, by updating the storage and catalogue a file or directory at a time.

As a result, the LFC provides a highly e�cient storage namespace on top of the actual
storage namespace. While this enables advanced functionality like quota overviews,
which traditional storage namespaces usually do not e�ciently support, it introduces
additional consistency issues, as the storage and the LFC can become de-synchronised.
For instance, a file on the LFC may not exist on the storage, or vice-verse. Some
of these consistencies can be detected by the lookup service and corrected as part of
the resolve surls method, while others can simply be logged and fixed by human
intervention.

The final step of the lookup service is to check whether the SURL really exists on the
storage and whether it is accessible. This uses an SRM interface method, which is the
srmLs method. The method returns the file size and checksum attributes, which are
automatically computed by most storage vendors when the file is first written into the
storage.

After both lookup steps are completed, the reply is composed and sent to the dataset
10The number of files in a storage directory is an important constraint imposed by storage vendors.

Storage administrators must ensure that no directories are overloaded by a large number of files.
11Another designation in the literature is “Local Replica Catalogue”.



Chapter 5 System Design 94

master (the set files result method in the pseudo-code). The reply includes the
requested GUID and for each GUID, the SRM SURL, file size and checksum. The AD

in the checksum indicates that the checksum type is ADLER-32 (for information on the
usage of ADLER-32 refer to Section 5.3.4.3). In case of lookup errors, the reply includes
the error description.

Finally, as shown in the pseudo-code, the requests and replies are sent repeatedly until
the dataset master is available and accepts it. As discussed in Section 5.4.5, the dataset
master is designed to accept replies for requests it did not perform. After a failure
contacting the dataset master, the information service is refreshed (the refresh method
in the pseudo-code), and a new dataset master instance (at a di↵erent address) may be
chosen to serve the same request (i.e. a new master takes over the previous master).
This mechanism allows dynamic deployment of new dataset master instances without
manual intervention at the storage services. (This mechanism is also discussed as part
of information service in Section 5.5.2.)

5.3.3 Deletion Service

The deletion service is used by the dataset master to delete files from a storage. It works
similarly to the lookup service and shares the same lookup mechanism, using either a
translation function or a catalogue to determine the SURLs from the list GUIDs in the
dataset master request. The di↵erence is that instead of looking up files in the local
storage with srmLs, it executes the srmRm method to delete the files. In some cases,
storages implement asynchronous deletion. The srmRm request is internally queued by
the storage and executed at a later point. For this reason, the deletion service also
checks with the srmLs method if the request has been processed and only returns to the
dataset master when the request has been completed.

5.3.4 Transfer Service

The transfer service is used by the dataset master to replicate files to a storage. The
transfers are executed by the storage services at the destination storage, which pull data
from a source chosen by the dataset master. (The mechanism for choosing sources is
discussed as part of the dataset master in Section 5.4.2.) The transfer service is also
responsible for ensuring the proper use of the underlying fabric, in particular to prevent
storages from being overloaded with transfer requests. Unlike the lookup and deletion
services, which serve a single request at a time per instance and use a reduced number of
instances, the transfer services need to serve a large number of parallel transfer requests
to compensate for network latency.

Before introducing and motivating the transfer service design, the first two sections
discuss the underlying fabric middleware. The first section discusses the protocols and



Chapter 5 System Design 95

tools for file transfer. This is followed by the mechanism used to guarantee that storages
are never overloaded with an excessive number of parallel requests. This mechanism is
based on the concept of transfer channels. The last section introduces the design of the
transfer service and its usage of transfer protocols, tools and channels.

5.3.4.1 Transfer Tools

There are a wide variety of protocols available to transfer files between storages. These
protocols are implemented by several transfer tools, and several of these tools are sup-
ported in the implementation as discussed in Section 5.3.4.3. In this section, I describe
some of the available transfer protocols and tools.

To transfer data between two storages located in the same data centre, storage systems
often provide various proprietary protocols. For instance, the dCache and CASTOR
storage systems provide specific clients and custom protocols for data transfer. These
are, respectively, dCap or dCache Access Protocol, and RFIO or Remote File Input/Out-
put. In addition, POSIX I/O is usually supported. These protocols are primarily de-
signed for a local area (trusted) network environment, and do not typically implement
security mechanisms that are necessary for data transfers across (untrusted) wide-area
environments.

Given two storages in di↵erent data centres, which is the main use case in this work,
GridFTP is the most logical choice for the transfer protocol. GridFTP is widely sup-
ported by the storage vendors. It allows for third-party transfers, which is the ability to
initiate, control and transfer files between two storages directly, without any data flowing
through the client that requested the transfer. This is a mandatory requirement given
the large amounts of data being transferred. There are additional features supported
by GridFTP and of interest, such as the ability to resume failed transfers or calculate
checksums for newly written files.

There are multiple GridFTP clients available, so there is no particular need to imple-
ment one directly in the transfer services. In this implementation, I opted for a GridFTP
client that provides more advanced functionality. This is the gLite File Transfer Service,
or FTS [103]. FTS provides support for GridFTP clients but also supports SRM. As
such, instead of specifying TURLs12, FTS accepts SURLs directly as input and does the
necessary SRM calls to determine the TURLs (i.e. referring to the methods described
in Appendix B, these are srmPrepareToGet, srmPrepareToPut, etc). In addition, FTS
includes internal retry mechanisms for failed GridFTP or SRM calls, making the sys-
tem more robust against failures. FTS also implements an additional functionality for
preventing storages from being overloaded. This is the subject of the next section.

12That is, Transfer URLs in the form gsiftp://srm://source.host/data/file1.



Chapter 5 System Design 96

5.3.4.2 Transfer Channels

Storage systems (mostly) implement mechanisms to avoid failures due to high load of
requests. For instance, if a large number of accesses occur in a short period of time, a
storage may refuse some of these requests. Nonetheless, this protection against denial-
of-service attacks is usually not su�cient to guarantee adequate transfer performance.
In Chapter 6, a detailed analysis of transfer performance is presented and one of the
main conclusions is that the number of parallel reads and writes to a storage is a major
factor in the overall file transfer performance. While a high number of parallel requests
may not resemble a denial-of-service attack, it may be su�cient to significantly a↵ect
the storage performance as shown in Chapter 6.

In addition, storage systems may be used simultaneously by di↵erent organisations: us-
ing Grid terminology, by di↵erent Virtual Organisations (VOs). Therefore, it is desirable
to have a common system that throttles the transfers between storages on the wide-area
network, ensuring that adequate performance is maintained overall. This functionality is
provided by FTS, and its throttling mechanism is based on the idea of transfer channels.
A transfer channel is a virtual unidirectional link between a source and a destination
storage. For instance, the channel CERN-BNL serves the transfer of files from CERN to
the Brookhaven National Laboratory (BNL) for all virtual organisations. Transfer chan-
nels were first introduced as part of FTS, but their usage and scope has been augmented
in this implementation. In this section, I describe the basic FTS model. (The extensions
are described in the next section.)

A channel in FTS has a number of transfer slots per virtual organisation and a set of
channel configuration settings. The transfer slots are the maximum number of files in
transfer at any point in time for a virtual organisation. If the channel CERN-BNL has
10 transfer slots, then at most 10 files can be in transfer from CERN to BNL by the
virtual organisation. This implies at most 10 read and write requests in BNL and CERN
respectively imposed by the channel.

The channel configuration settings allow the adjustment of several settings in the un-
derlying transfer protocol. For instance, since CERN is located in Switzerland and BNL
in the United States, the GridFTP transfer bu↵er size is set to a slightly higher value
than for other channels whose source is in Europe, as to compensate for the higher net-
work round trip time. The storage administrators at CERN and BNL can negotiate the
best channel settings based on network considerations. In addition, some channel con-
figurations can be set dynamically by specifying a range that is used for automatically
adjusting bu↵er sizes depending on file sizes.

The gLite FTS service implements this transfer model. The FTS service receives and
executes transfer jobs. A transfer job consists of a list of transfer requests. Each transfer
request specifies the source file and the destination file path. The FTS server parses



Chapter 5 System Design 97

Figure 5.6: Overview of the transfer service.

the job and inserts each transfer request into a first-in-first-out (FIFO) queue for the
corresponding channel. For instance, requests in the form srm://cern.ch/data/file1

srm://bnl.gov/data/file1 are allocated to the CERN-BNL channel by parsing the host
names from the SURLs.

Asynchronously, FTS transfer agents pick up transfer requests from each channel’s FIFO
queue and execute the transfer. The number of active transfer agents for a channel corre-
sponds to the number of transfer slots for the channel (i.e. the number of simultaneous
transfers). As such, the gLite FTS server is essentially a wrapper around the trans-
fer protocol that implements the transfer channel model, hereby increasing the overall
stability of transfers by preventing storages from being overloaded.

Nonetheless, the FTS model has an important short-coming. It has limited support
for dynamic scheduling of transfers, because requests are allocated onto a first-in-first-
out queue and can at most be raised in priority after being queued. The next section
describes how the basic FTS model has been expanded in the transfer services with
support for fair sharing and just-in-time scheduling.

5.3.4.3 Design

Figure 5.6 describes the design of the transfer service. At start-up, the storage services
spawn a single instance of a transfer service for each dataset master being served. The
instance contains two components: a queueing component that requests transfers from
the dataset master and queues them into a local database, and an execution component
that reads queued requests from the local database and executes the transfers.

The partitioning of transfer services into separate queueing and execution components
is justified by the need to handle a large number of requests, while ensuring that service
failures do not always force requests to be retried. With a local database, it is possible



Chapter 5 System Design 98

Figure 5.7: Example of fair shares.

c0cfe446 -f8e9 -4423-bfed -997446852816 srm :// source.host/file1 10485760 AD :0000 ff01

16c0bbfa -e0f1 -42e5 -840f -654654138 e1a srm :// source.host/file2 10485760 AD:0000 af12

05bfec9a -a0e8 -49fb-b22e -10 c81a2d3826 srm :// source.host/file3 10485760 AD:0000 cff3

50fab37a -b956 -4ccf -ba5c -58 dd65af5a5e srm :// source.host/file4 10485760 AD:0000 df24

1321c16b -f064 -4515-a804 -bcb4793fc9db srm :// source.host/file5 10485760 AD :0000 efb5

8d93e6cb -82b1 -495e-b55f -8557261 c0a00 srm :// source.host/file6 10485760 AD :0000 ffc6

Listing 5.5: Example of a dataset master transfer request.

in some situations for the system to recover its state from the local database without
retries by the dataset master. (The occasions where state can be recovered are discussed
later.) Unlike the lookup and deletion services, the transfers can take a long time (e.g.
20 minutes is not uncommon) hence increasing the cost of a failure and its retrial.
Additionally, the lookup and deletion requests can be safely retried without significantly
overloading the system or disrupting other components. On the other hand, transfer
requests always involve two parties (source and destination storage) so these must be
handled with greater care and (unnecessary) retrials should be avoided.

The previous section describes the model developed in the context of FTS to structure
the system into virtual transfer channels each with a specific number of transfer slots.
This model has been adopted and expanded in the transfer services. The modification
consists in the introduction of fair shares for each transfer request. An example of fair
shares is shown in Figure 5.7. The figure illustrates a single channel (from CERN to RAL)
as in FTS, but now with two shares dividing the available transfer slots in half.

Fair shares serve to allocate quotas (of transfer slots) within each channel. When a user
requests a dataset subscription in the dataset master, the request includes the assigned
share. The request is later fulfilled by the transfer service using a specific transfer
channel and its share allocation. Fair shares allow for dynamic scheduling of transfers
and good resource usage: if a share is not used by any request, then other shares are
allowed to use its transfer slots, leading to better transfer performance; if a request is
assigned to a share, it is guaranteed a subset of the available transfer slots (as soon as
any ongoing transfers are complete). An alternative system based on priorities could
cause starvation with lower priority requests never served if there is a long queue of high
priority requests. In addition, while the set of available shares is configured centrally
in the information service, the quota of each share is configured locally, allowing local
administrators to control the inbound tra�c imposed by di↵erent activities (which are
mapped to di↵erent shares).



Chapter 5 System Design 99

Figure 5.8: Schema of the transfer service.

sources = information_service.read_channels ()

shares = information_service.read_shares ()

quotas = configuration.read_quotas(shares)

threshold = configuration.read_thresholds(sources , shares)

while True:

for source in sources:

for share in shares:

if mysql.number_queued_requests(source , share) < threshold[source ][share ]:

request = master.get_transfer_job(source , storage , quotas[share ])

mysql.insert_request(request)

done = mysql.get_done_requests(source , quotas[share ])

if done:

master.set_files_result(done)

queued = mysql.get_queued_requests(source , quotas[share ])

if queued:

master.set_files_result(queued)

Listing 5.6: Pseudo-code for the queueing component of the transfer service (error-
handling not included).

The local database in the transfer service is based on MySQL13. MySQL was chosen
for its straightforward deployment, which is an important factor given that the storage
services are deployed at several data centres. Its schema is shown on Figure 5.8. The
schema stores the transfer requests and their State, which is QUEUED for newly inserted
transfers, ACTIVE for ongoing transfers, VALIDATE for completed transfers not yet val-
idated, REGISTER for completed transfers not yet registered (registration is discussed
later) or DONE for either registered transfers or failed transfers. An example of a transfer
request received from the dataset master in given in Listing 5.5, where each line contains
the file GUID, source SURL, file size and checksum.

Listing 5.6 describes the queueing component of the transfer service. At start-up, the
channels and shares are read from the information service. The local quota per share
is read from a local configuration file. From there on, the queueing component loops
through all channels and shares, maintaining a bu↵er of transfers based on a set of

13Refer to http://www.mysql.org.



Chapter 5 System Design 100

Figure 5.9: Fair shares and bu↵ers.

thresholds per channel and share. Whenever the threshold is passed, the queueing
components contact the dataset master and ask for additional transfers for this channel
and share. This model allows the transfer services to maintain a bu↵er of transfers,
which compensates for the slowness in contacting the dataset master. Provided that
this bu↵er is su�ciently small, the model allows the transfer service to send requests
promptly to the transfer tool, enabling close to just-in-time scheduling.

This model is illustrated in Figure 5.9. In the example, there are 10 transfer slots
with 2 shares, each with half the available slots: these are shown as the Active slots.
Each bu↵er per share has a threshold of 10 files to transfer (shown as Buffer slots).
Whenever the threshold is passed, the queueing component requests an additional 10
transfers: these slots are shown in the bottom part of the figure under the threshold
mark. In this scenario there are usually between 20 to a maximum of 40 transfers always
in the bu↵er. Any share has enough transfers in the bu↵er to fill the entire Active queue,
in case the other share does not have any requests queued. Nonetheless, too large bu↵ers
prevent the dataset master from having a more dynamic scheduling of transfers, because
the dataset master could have assigned the transfer to another suitable source with a
smaller bu↵er.

As shown in Listing 5.6, the queueing component is also responsible for replying to the
dataset master when requests are completed. (The queueing component reads these re-
quests, in state DONE, using the get done requests method.) In addition, the queueing
component must also notify the dataset master regularly on its queued requests. This
is a requirement of the lease mechanism implemented between the dataset master and
transfer services, and is described in Section 5.4.5. (The renewal is shown in the pseudo-
code as the get queued requests method and the corresponding set files result

method.)



Chapter 5 System Design 101

c0cfe446 -f8e9 -4423-bfed -997446852816 srm :// destination.host/data/file1

OK

16c0bbfa -e0f1 -42e5 -840f -654654138 e1a srm :// destination.host/data/file2

TEMPFAIL

‘GridFTP read error ’

05bfec9a -a0e8 -49fb-b22e -10 c81a2d3826 srm :// destination.host/data/file3

OK

50fab37a -b956 -4ccf -ba5c -58 dd65af5a5e srm :// destination.host/data/file4

PERMFAIL

‘Source file not found ’

Listing 5.7: Example of a dataset master transfer reply.

tool = configuration.get_transfer_tool(source)

while True:

request = mysql.get_next_queued_request ()

dest_surl = choose_destination_path(request)

attempts = 0

done = False

while attempts < max_attempts and not done:

result = tool.transfer(request , dest_surl)

if transfer_success(result ):

mysql.set_state_validate(request)

if tool.validate(dest_surl ):

mysql.set_state_register(request)

register_surl(request)

done = True

else:

tool.delete(dest_surl)

else:

tool.delete(dest_surl)

if is_error_permanent(result ):

done = True

mysql.set_state_done(request , result)

Listing 5.8: Pseudo-code for the execution component of the transfer service (error-
handling not included).

An example of a reply sent to the dataset master for DONE files is shown in Listing 5.7.
The reply illustrates the three types of states for a completed transfer. OK is a suc-
cessfully completed transfer. TEMPFAIL is a transfer that failed with what is considered
a temporary fault; as such, it may be retried later and will likely succeed. PERMFAIL

is a transfer that failed with what is considered a more serious, potentially permanent
fault, which will (likely) not succeed by retrying. In the example, the source file was
not found, so no attempt to transfer from the same source should succeed. The reason
that sometimes even permanent failures succeed on retry is due to bad error reporting
or more complex error conditions from the storages. For instance, a disk server may be
taken o✏ine for repair and some storages report the data as lost, while others report
the event as a temporary fault: if the disk server is restored later with all data, these
storages will report the data as available. These two error classes are used by the dataset
master in its retry mechanism.

Listing 5.8 describes the (simplified) pseudo-code for the execution component, which is
responsible for executing the transfers. At start-up, the component chooses the transfer



Chapter 5 System Design 102

tool to use for the channel, based on the source and destination storages. The available
tools are configured locally and may be e.g. a local cp command if both storages are
within the same network domain or the FTS GridFTP client for wide-area transfers.
The component then enters the loop that reads requests from the local MySQL database
(the get next queued request method). For each request, it composes the destination
path based on local storage conventions (implemented in the choose destination path

method). The transfers are then executed (using the transfer method) and validated if
successful (by the validate method). Failed transfers are deleted (shown as the delete
method) and successful transfers may require a registration. The registration is required
if the storage services rely on a local file catalogue, as described in the lookup service in
Section 5.3.2.

Completed transfers are validated by comparing the newly written file with the file
size and the checksum provided by the dataset master. After a transfer is completed,
the transfer tool reports back the file size and the checksum of the newly written file.
ADLER-32 [63] is the default checksum used in the system since it is widely supported
by storage vendors. This support is due in part to its rolling hash property, which allows
the checksum to be computed as the input moves through a window, i.e. as the file is
written to disk. This eases the checksum computation without introducing significant
overheads. (Tape drives also often compute ADLER-32 at the hardware level when
writing files to tape, which provides another verification step.)

Whenever a failed transfer is reported by the transfer tool, the execution component
does not immediately report back the error. Instead, as shown in the pseudo-code, it
will internally retry the transfer a configurable number of times and only report back the
last error if the transfer fails for all attempts. This only applies if the tool does not con-
sider the error to be of a permanent nature (this is verified in the is error permanent

method). The goal is to avoid a large number of exchanged messages between the trans-
fer services and the dataset master. This could cause the dataset master to be overloaded
with messages particularly during failures of short duration.

Listing 5.8 also describes the state changes recorded in the MySQL database. This
allows recovery of some requests in the case of an unexpected crash. For instance, if a
file has been transferred and a crash occurs after the MySQL database state changes to
REGISTER but before being set to DONE, the request can recovered without re-copying
the file but only with a re-registration attempt. A similar situation occurs between the
VALIDATE and REGISTER states. Nonetheless, it is always possible that transfer services
crash half-way during a transfer, causing partially written files to be left in the storage
system. The SRM layer is capable of detecting and correcting these events, because
the last SRM call (srmPutDone) is never executed and times out, leading the SRM to
remove the leftover data.



Chapter 5 System Design 103

5.3.5 Security

In the previous sections, the assumption has been that the communication between
dataset masters and storage services is secure. There are two alternative mechanisms to
establish this secure environment. The first is to use GSI and assign a service certificate
to both services. This establishes a secure communication channel between both trusted
parties. Another possibility, which does not implement true secure communication but
is su�cient for some situations, is to use firewall configurations and IP-based white
lists. This has the advantage of avoiding the overhead imposed by the GSI connections
at the cost of having administrators setup the required network firewall configurations
manually14. This latter option does not require any changes to the storage services or
to the dataset master.

5.4 Dataset Master

The dataset master is the global service in the system that implements the data distri-
bution functionality. As described in Chapter 4, there may be more than one dataset
master. This form of vertical partitioning is enabled by a redirection service described
in this section.

The dataset master receives dataset subscription requests from users and interacts with
both the dataset catalogue and the storage services to fulfil the user requests. While the
dataset catalogue interface contains methods to manipulate logical definitions, such as
datasets or logical file names, the dataset master contains methods to manipulate the
physical instantiation of these definitions, which are the replicas of the datasets. This
implements the split between logical and physical units discussed in Section 4.4.2.2.

The first section describes the schema of the dataset master. This provides the back-
ground for the second section, which describes each of the dataset master methods and
corresponding implementations. This section includes both the methods used between
the dataset master and the users, and methods used between the dataset master and
the storage services. The third section describes the redirection service, and the last
two sections discuss security and review fault tolerance and scalability properties. In
particular, the fault tolerance discussion addresses important issues in the interaction
between dataset masters and storage services.



Chapter 5 System Design 104

Figure 5.10: Schema of the dataset master (primary keys are underlined).

Figure 5.11: States of a subscription.

5.4.1 Schema

Figure 5.10 shows the schema of the dataset master15. Subscription contains the
subscriptions for a storage. Each storage is identified by a human-readable Storage

Name. State stores the current state of the subscription, which is one of the states
shown in Figure 5.11. Unknown is the initial state that is set before the system checks
whether the constituent files are present or missing at the storage. Incomplete is the
state set when only some subset of the files in the dataset are available, and Complete

when all files are available. The schema includes a many-to-many relationship between
Subscription and Replica. Replica stores the files available at a storage. The many-
to-many relationship relies on the intermediary Subscription File. This follows from
the fact that files may be part of multiple datasets. Therefore, a (subscribed) file may
be part of many (subscribed) datasets.

The Replica includes a Request Type, Request State and a Replica State. I de-
scribe each of these in turn. (The next section also describes these state transitions in

14In fact, GSI also has specific firewall requirements since it needs a TCP port range to be configured,
but this is a simpler configuration that IP-based while listing or other lower level routing protections.

15The schema presented in this section is a simplified view of the actual schema for readability purposes.
It includes the primary entities but leaves out the quotas, users, groups and notifications, which are
secondary issues to the discussion.



Chapter 5 System Design 105

Figure 5.12: Types of a file request.

Figure 5.13: States of a file request.

detail.)

The request types are shown in Figure 5.12 and correspond to the tasks performed by
storage services: Lookup, Transfer and Delete. Whenever the storage service asks for
a specific task (e.g. Lookup), only entries in Replica with the corresponding request
type are returned.

In addition, each request has a state. These are shown in Figure 5.13. For instance, a
file with request type Lookup, is either in state To Lookup (i.e. ready to be picked up by
the storage services), Looking (i.e. picked up by the storage services and in processing),
or Lookup Failed (i.e. the storage services processed the request but failed with an
error). After the request is processed successfully by the storage services, the request
state is set to Found or Missing. This applies for lookup, transfer or deletion requests
(e.g. Missing may be due to a lookup request not finding the file or to the successful
deletion of an existing replica).

Figure 5.14: States of a file replica.



Chapter 5 System Design 106

Also, each replica has a state. This is recorded in the Replica State field, which is a
redundant field. Its states are shown in Figure 5.14. The Replica State corresponds
to the last known final request state. For instance, if at some point the request state is
set to Found, the Replica State changes to Found. This way, even if the request state
changes later (e.g. to lookup the file again), the replica state still records the last known
stable state, which can be queried by users. The state Unknown is the first state, which
is used when a dataset is first registered at a location. At this point, the system does
not know whether the file is actually present or not.

One important schema optimisation concerns the choice of database indexes. These are
not shown in the schema except for the primary keys, which are always indexed. The
Request State entries with values Found and Missing are not indexed, except for the
combination Request Type = Transfer

V
Request State = Missing and Request

Type = Delete
V

Request State = Found. Because it is expected that most replicas
are either in state Found or Missing, this optimisation results in a substantial reduction
of the total index size.

5.4.2 Interface

In this section, the dataset master interface is described. Similarly to the dataset cat-
alogue, the interface is based on RPC with a custom protocol built atop of the HTTP
protocol. For details on the software stack, refer to Section 5.2.2.

This section presents the interface in two parts. The first part describes the methods
available to the users, and the second part describes the methods used for communication
between the dataset master and the storage services.

5.4.2.1 User Requests

This section describes the functionality available to users.

Register subscription.

The user specifies the dataset name, destination storage, and the fair share. From
this point on, and following the subscription principles discussed in Section 4.4.2.2, the
system will try to copy any missing files from the dataset to the destination storage.

When the request is received, the dataset master inserts a new entry in Subscription.
It then contacts the dataset catalogue to determine the list of constituent files in
the dataset. These files are inserted into Subscription File and also into Replica.
Nonetheless, some of these files may have been requested at the storage by some other
dataset. For the existing entries in Replica, the corresponding Counter field is incre-
mented. The Counter is an integer that counts the number of subscribed datasets that



Chapter 5 System Design 107

contain a given file. When Counter � 1, the file is either available or in copy, because
“Counter number of subscriptions” require it.

It is also possible that the entry existed but with Counter = 0. After this request,
Counter = 1. In this case, the Request Type is set to Transfer. This implies that the
dataset master can now assign this file for transfer by the storage services. In the next
method, I describe the inverse of this operation.

Unregister subscription.

The user specifies the dataset name and storage name. The method removes the sub-
scription. From this point on, any files available at the storage not part of any other
subscribed datasets can be removed.

When the request is received, the dataset master removes the corresponding entry
Subscription. This also triggers the removal of the entries for the same subscrip-
tion from Subscription File. In addition, and following the reverse of the operations
described in Register subscription, the Counter field is decremented. If Counter = 1
initially, after this operation Counter = 0. In this case, the Request Type is set to
Delete. As such, the dataset master can now assign this file for deletion by the storage
services.

Refresh subscription.

This method ensures that updates to the dataset definition are propagated to all dataset
locations (or replicas). For instance, after a user adds a file to the dataset, the dataset
master is only notified of the new contents when this method is called. At that point,
the dataset master will instruct all subscribed storages to try and obtain a replica of the
new file.

When the request is received, the dataset master queries the dataset catalogue for the
constituent files in the dataset. Any files in the dataset but not in Subscription File

are inserted, while entries no longer in the dataset are removed. This triggers the
underlying transfer or deletion of files, so that physical replicas of the dataset reflect its
logical definition. If the dataset no longer exists in the dataset catalogue, this method
implements the same behaviour as Unregister subscription.

List locations.

This method is used to list the storages that contain a given dataset. It is used to find
replicas of datasets in the system. The method reads and returns the Subscription

entries in State = Complete
W

Incomplete. The method also supports wildcards as
the dataset name.

List location attributes.



Chapter 5 System Design 108

The user specifies the dataset name and storage, and the method returns detailed infor-
mation on the status of this specific dataset replica. The dataset replica status includes
the list of available files at the storage, plus several system attributes for each file, such
as the date on which its state was last changed by the storage services (i.e. the last time
the replica was accessed by the storage services). The method reads and returns the en-
tries in Replica and in particular makes use of the Replica State and Modification

Date fields.

5.4.2.2 Storage Service Requests

This section describes the methods used by the storage services to request work from
the dataset master. (Examples of the messages exchanged between both services are
presented in the storage services discussion in Section 5.3.) The assignment of work
by the dataset master is based on a lease mechanism. Whenever a storage service
requests work (e.g. a lookup request), the request is assigned exclusively to this storage
service. During the lease, the storage service is expected to perform some operation on
the file (e.g. a lookup operation). When the storage service completes the operation
(successfully or failed), it releases the lease, notifying the dataset master of the result.
Leases have a duration. If a request is expected to take a long time (e.g. a transfer
request may be queued for some time in the internal bu↵er), then the lease needs to be
refreshed. This is the reason why the transfer services also notify the dataset master
of the state of queued requests. If the lease expires, the dataset master is allowed to
re-assign the request. As discussed later, the dataset master is able to guarantee, under
some restrictions, that the system achieves a consistent state even if a lease expires and
is re-assigned.

I now describe each of the dataset master methods in more detail.

get lookup job(storage[, n]).

This method returns a set of at most n number of files from Replica with Request

Type = Lookup and Request State = To Lookup
W

Lookup Failed. It also sets the
Request State to Looking. The requests are restricted to be for the storage and are
ordered by oldest Modification Date.

get delete job(storage[, n]).

This method returns a set of at most n number of files from Replica with Request Type

= Delete and Request State = Found
W

Delete Failed
W

Copy Failed. It also sets
the Request State to Deleting. The requests are restricted to be for the storage and
are ordered by oldest Modification Date.

get transfer job(source, destination, share, n).



Chapter 5 System Design 109

This method returns a set of at most n files to be transferred by the destination storage
services, for the given channel (from source to destination) and share. The method
implements the data flow in the system, because it assigns the transfers for each chan-
nel. It assumes that the network infrastructure uses the channel model described in
Section 5.3.4.2. In addition, it assumes that there are channels available between any
two storages. That is, using a graph theoretical terminology (refer to e.g. [93]), where
the transfer channels are the graph edges and the storages are the graph nodes, the
graph must be complete (i.e. for n nodes the graph must be Kn). Finally, the method
assumes that the internal bu↵ers in the transfer services are reasonably small and that
the bu↵ering time can be ignored, otherwise the transfers could have potentially been
assigned to another available channel. Note that no assumption is made on the channel
performance. This point is discussed later.

The files that qualify for transfer are those where the destination file has Request Type

= Transfer and Request State = Missing
W

Transfer Failed
W

Delete Failed

and the source file has Request State = Found (i.e. where the destination is missing
and is a transfer request, and the source is available). After choosing a set of files to
transfer, the Request State of the destination file is set to Copying. In addition, there
are four additional criteria. I describe each of these in turn.

A criteria to choose the set of files to transfer is the “distance” between the storage
systems. Close storages, which are described as part of the Fabric Information Service
in Section 5.5.2, are a list of storages that ought to be preferred because they are consid-
ered to be nearer in network terms. While all storages are connected, the close storages
represent preferred sources (e.g. connected through dedicated network links). If the
method is called from a source close to the given destination, the criteria is met. If
not, there is an extra validation. The objective of this extra validation is to delay serving
file transfers from non-close source storages for some (configurable) period of time with
the expectation that some future request for the same destination will be made from
a close source. Therefore, this validation consists on checking the Modification Date

and skipping “recent” requests according to a delay period. After the delay period has
elapsed, the criteria is also met and transfers can be served. This mechanism is only ap-
propriate for environments where there are always queues of requests waiting, otherwise
there could be periods of time where channels are not used even though requests are
available. In addition, this mechanism applies for systems where the datasets are dis-
tributed broadly, so that a close source will usually be available or will receive the data
shortly after. Both conditions occur in our usage scenarios as discussed in Chapter 6.

There are two additional criteria that apply in the general case, and one criteria that
applies for failed transfers. For the general case, the two additional criteria are the
age of the request and the dataset completion. The system ensures that older transfer
requests ordered by Modification Date are served first. This prevents starvation, which
could cause some requests never to be served. The other criteria is the contribution of



Chapter 5 System Design 110

this transfer to the completion of some dataset. Similarly to the principles applied
in BitTorrent [48], an important goal is to complete dataset transfers as quickly as
possible, particularly when only a few files are missing from the dataset. For instance,
if a dataset misses a single file, this transfer is sent first to the storage services. By
completing datasets early, the system allows users to continue with their analysis tasks
sooner. This may also prevent a data loss from a↵ecting an almost complete transfer.
This failure would be of high cost considering that many transfers have already been
performed for the dataset.

The final criteria applies for failed transfers (i.e. requests where Request State =
Transfer Failed). It is not desirable to retry transfers immediately. Instead, an ex-
ponential back-o↵ is implemented between subsequent attempts. The rationale is the
following: a transfer error can happen due to transient failures (e.g. network faults) or
more serious service failures. In the case of transient failures, an immediate (or shortly
after) retry will likely not su↵er from the same failure. Transfer errors that involve a
failed service somewhere in the infrastructure have a time-to-recovery. This time-to-
recovery is unknown but it is likely that two failed transfers with an interval of, for
instance, 1 second will su↵er from the same error. On the contrary, transfers with an
interval of 1 hour will likely not su↵er from the same error. In this case, failures are inde-
pendent16. Therefore, if another failure occurs after a longer retry period, this is either
due to a long service failure or to the occurrence of (probabilistic) independent failures.
Both these events should (intuitively) occur with much lower probability. The final
point is the choice of the retry interval. Because the time-to-recovery is not known, a
suitable approach is to exponentially increase the interval between retries. This interval
is capped to a maximum, to avoid very long intervals.

Having a variety of sources for a transfer is important. Therefore, whenever the method
is unable to serve some requests, it inserts a lookup request for those files in its close
source storages. For instance, an incoming request from a destination storage is not
served because the only available source is “distant”. Other (more recent) requests may
be returned for transfer. Nonetheless, the method inserts requests with Request Type

= Lookup at various close storages for the skipped files. Whenever future requests from
the same destination storage arrive, there are (potentially) newly found close sources,
which allow the previously skipped files to be assigned for transfer.

Finally, users can configure some filtering to be applied to this algorithm, forbidding
or using only a subset of the available sources. This is set by the users at subscription
time and stored as Options in the Subscription entry. The get transfer job method
takes these options into account when choosing sources.

For performance reasons, the get transfer job method does not make these scheduling
16The notion of independence used is from probability theory, where any collection of events A are

mutually independent if and only if for any subset of the collection A1, . . . , An, we have Pr(
Tn

i=1 Ai) =Qn
i=1 Pr(Ai).



Chapter 5 System Design 111

decisions online. The dataset master uses various intermediary bu↵ers implemented in
the form of (temporary) relational views, which are refreshed very frequently. Therefore,
queries only read and schedule based on a subset of the data in the system.

This transfer algorithm does not attempt to predict transfer performance from past
history and schedule accordingly. It only attempts to assign requests towards channels
that link close sites. In e↵ect, it implements a feedback-based model : channels that are
working properly and faster will tend to complete the assigned work sooner and request
additional work. Overload conditions are prevented by the introduction of transfer chan-
nels that limit the overall number of parallel requests. In Chapter 6 this implementation
choice is analysed in greater detail. The reason for not using past history and transfer
prediction is that in a worldwide, distributed and shared infrastructure, it is not possible
to predict reliably the transfer performance. As shown later, there are multiple factors
influencing the transfer performance that cannot be known a priori.

set files result(result).

This method is used by the storage services to report the result of the lookup, transfer
or delete operations on a set of files. It is also used to renew the lease of ongoing
transfers, which are bu↵ered in the transfer services. The result includes a list of
entries where each entry contains the file (identified by GUID), its new state and any
additional information required. (Various examples of these messages are shown in the
sections that describes the storage services.)

Whenever the result includes files that have a new Request State = Found
W

Missing,
the Replica State is set accordingly to either Found or Missing. In addition, a newly
found or missing file may trigger the change of the subscription state. Therefore, all
subscriptions that contain these file are scanned to check whether the field State in
Subscription changes to either Complete if all files are Found or to Missing otherwise.
With these updates, the dataset master implements a best e↵ort dataset location cache
that knows about the replicas in the system, as discussed in Section 4.4.3.3.

As discussed in Section 5.3.4.3, some transfer errors are classified by the storage services
as permanent failures. These errors are reported through this method to the dataset
master. In this case, the dataset master inserts a lookup request at the source storage
to verify that the source is available. (As a side-e↵ect, the dataset location cache in the
dataset master is refreshed.) It would be possible to implement more complex models,
such as deleting and re-copying the source file from elsewhere, but this mechanism is
not implemented. Instead, these errors are logged for administrative monitoring.



Chapter 5 System Design 112

5.4.3 Redirection Service

The redirection service is similar to the dataset catalogue naming service described in
Section 5.2.3. The objective is to have independent dataset master instances to distribute
the request load and achieve better scalability. If there are multiple instances but a single
global entity, there is the requirement for a service that uniquely determines a dataset
master instance given a dataset name. The redirection service routes user requests to
the appropriate dataset master instance using functionality available in HTTP. The
routing rules are configured statically by the application managers. These rules depend
on dataset names following a well-defined structure, using principles similar to those
described in Section 5.2.3.

5.4.4 Security

The security mechanism follows similar implementation principles to the dataset cat-
alogues and storage services. In particular, GSI is used for user write requests while
user read requests are not required to be secure. For communication with the storage
services, either GSI or network firewall configurations (IP-based) are used. (Refer to
Section 5.3.5 for additional details.)

5.4.5 Fault Tolerance and Scalability Properties

This section discusses fault tolerance and scalability properties in the design of the
dataset master and in the interactions with the storage services.

Fault tolerance.

In Section 5.3.2, the pseudo-code illustrated the mechanism used by the lookup service
to retry the communication with the dataset master in case of failure. Two scenarios
were discussed. In the first scenario, the communication fails. In this case, the retrial
mechanism within each storage service ensures that the dataset master eventually re-
ceives the reply. Below I discuss what happens if this reply is received after the lease
has expired. In the second scenario, the dataset master failed and is redeployed at a
di↵erent location. In this case, the dataset master may receive a reply for a request it
did not perform.

In both scenarios, the dataset master ensures that the system eventually reaches a con-
sistent state. The mechanism and a proof sketch follows. I assume a non-byzantine
environment [110], where components may fail but behave consistently otherwise; there-
fore, byzantine fault tolerance mechanisms (such as [40]) are not required17. To circum-

17Note that the communication between storage services and dataset masters can be made secure by
the use of GSI, so that all parties are authenticated.



Chapter 5 System Design 113

vent the result by Fischer-Lynch-Paterson [71], which proves the impossibility of solving
consensus with any failures in an asynchronous system, I use timeouts and the relative
order of messages. I also assume that the delivery of messages can be made reliable
(e.g. by recording every message locally before submission and re-submitting the same
message after a crash recovery). In addition, each storage service instance has a unique
identifier. This is generated when the instance starts and consists of a globally unique
identifier. The unique identifier is included as part of the HTTP header in all requests
to the dataset master. For instance, the HTTP header of the get transfer job con-
tains the transfer service instance identifier. Finally, it is assumed that, per storage, no
storage service instances share the same dataset master18.

Let rk be a job request (e.g. get delete job) and pk be the corresponding reply.
Whenever a file is sent as part of a request, the Instance Identifier field in Replica

entry is set to the instance identifier. Therefore, it is possible to know that r1 ) p1

correspond to a request and its reply, because both share the same instance identifier.
Now suppose a request rj is sent. The dataset master expects to receive pj . Suppose
instead it receives pk where k 6= j. rk must be an older request than rj for otherwise
the environment would be byzantine, which is contradictory to the initial assumption.
Therefore pk is the reply to an older request, which can be caused by a delayed processing
(due to a slow instance and a timeout, which led the dataset master to re-issue a new
request) or by a new dataset master being deployed in replacement of a previous one. In
this case, when the dataset master receives pk, it marks the corresponding file requests as
failed. For instance, if at time of rj the state was set to Looking, it is now set to Lookup

Failed. This implies the file will be part of a future request rl where l > j. Later, when
the response to the original pj arrives, the same process occurs (it is marked as failed
and re-sent). But because replies only occur for requests (non-byzantine environment),
then clearly at some point there are no more older replies and the last request is sent
and received in order, reaching a consistent state. Note that the method also ensures
progress because even if pj never arrives, there is a new request (rl) already sent.

As an example, suppose the user inserts a subscription. The corresponding files are
picked up for transfer but the transfer service is slow. The request times out (no reply is
received). In the meantime, the user asked for the deletion of the subscription. Because
the initial transfer request timed out, it is now picked up by the deletion service and
processed immediately. There are no files to delete (files were not copied) so the request
succeeds. Then, the transfer service finally handles the request, copying the files over.
At this state, the files were copied but should be missing, because this was the last user
request. There are two possibilities. In the first case, the deletion reply arrives before
the copy reply. (Previously I mentioned that the deletion was processed successfully
but did not mention that the corresponding reply was received by the dataset master.)
At first it is accepted but as soon as the copy reply arrives (for an older request), a

18As discussed in Section 5.4, separate storage service instances serving the same storage must contact
separate dataset masters. This mechanism is used for vertical partitioning.



Chapter 5 System Design 114

new deletion is re-sent, reaching a consistent state. In the second case, the copy reply
arrives before the delete reply (even though it was executed afterwords). It is marked
as failed and a new delete is re-sent. Then, the original delete reply arrives. It is again
marked as failed and a new delete is re-sent. Eventually the last delete arrives in order
(because the delete service processes a request at a time per storage), leaving the system
in consistent state.

Finally, it is possible that requests are never served by any storage service. This occurs
when the storage service is not deployed. Monitoring mechanisms (which are not shown
in the schema) can detect these conditions by recording the last time a request was
processed by a storage service.

Scalability. A potential bottleneck in the interaction between a dataset master and
associated storage services is the number of exchanged messages. For instance, if there is
a large number of subscriptions inserted in a short period of time, these subscriptions will
trigger multiple lookup and transfer requests at various storage services. These messages
correspond to the dataset master assigning work to the various storage services and
receiving the corresponding replies. In the implementation (and as shown in previous
sections containing examples of requests and replies), these messages contain bulk listings
of files. Therefore, multiple file requests are sent or received in a single message. Bulk
requests allow the system to guarantee a shorter number of message exchanges. In
addition, the usage of HTTP allows further improvements in the payload processing by
using HTTP streaming, similarly to the discussion on the dataset catalogue interface in
Section 5.2.2.

In addition, the dataset master potentially holds a very large number of entries. Nonethe-
less, its index size is reduced because it contains only the requests waiting or in pro-
cessing. Also, the dataset master implements a near online algorithm for the data flow
decision that relies on relational database views. This allows for faster response to the
data transfer requests. Finally, the system can be partitioned vertically, with the deploy-
ment of multiple dataset masters and a single redirection service. These implementation
decisions help reduce the load per instance19.

5.5 Administrative Services

This section briefly describes implementation details for the administrative services. The
accounting service is not discussed since the current implementation consists of regular
queries to the dataset master databases to generate usage reports regularly.

19In practice, the implementation described in Chapter 6 has shown to operate at rates higher than
50 Hz and the plots in Chapter 6 show a peak of 10 Hz of file transfers (with each individual file transfer
consisting of multiple lookup and transfer requests between the dataset master and storage services).



Chapter 5 System Design 115

Message Description
File Transferring Message Message notifying that a file transfer has

been sent to the transfer tool in the storage services.
File Transfer Error Message Message notifying that a file transfer has

returned from the transfer tool with an error.
File Bad Message Message notifying that a failed file transfer appears

to contain a permanent error.
File Done Message Message notifying that a file transfer

completed successfully.
Service Error Message Message notifying that a specific service

has reported a failure.

Table 5.1: Monitoring messages generated by the storage services.

Message Description
Subscription Complete Message Message notifying that a dataset

is now complete at a storage.
Subscription Queued Message Message notifying that the transfer

of a dataset has began.

Table 5.2: Monitoring messages generated by the dataset masters.

5.5.1 Monitoring Service

The monitoring service receives events from various components in the system. The
main producers of events are the storage services. These events are sent using either
HTTP or a messaging service. HTTP callbacks are based on GET and POST requests
whose payload describes the monitored event. The messaging service sends the same
event payload but uses the Java Message Service20. The centralised monitoring system
is the consumer of events. These events are aggregated and displayed using a Web
Interface. The resulting web interface is shown in the plots throughout Chapter 6. The
list of monitored events sent by the storage services is shown in Table 5.1 and the events
sent by the dataset masters are shown in Table 5.2.

5.5.2 Fabric Information Service

The fabric information service is responsible for storing information about the dis-
tributed computing fabric. Its schema is shown in Figure 5.15. As discussed in Sec-
tion 5.3, the schema includes the Old Address and new Address for a Dataset Master,
which is used whenever a redeployment occurs. The schema also contains information
about storages. Each Storage is identified by a Storage Name and has a set of at-
tributes (e.g. Administrator Email). A Storage may also have multiple Alias to aid
in human identification. In addition, storages can be grouped into a Cloud. A cloud
is a set of storages that can be referenced by a Cloud Name. These groupings assist in

20Refer to http://java.sun.com/products/jms/.



Chapter 5 System Design 116

Figure 5.15: Schema of the fabric information service.

Figure 5.16: Example of close storages.

multiple operations. For instance, if the set of sources to use for a subscription forms a
cloud, the user can use the Cloud Name directly in the subscription options, as opposed
to the list of storage names.

Another entity in the Fabric Information Service is the Close Storage. This is better
illustrated in Figure 5.16. Using graph theory terminology, close storages are the adja-
cent nodes in a graph, which are the nodes connected by an edge. In the figure, CERN
is adjacent (or close) to RAL but not to the University of Glasgow.

Although logically part of the Fabric Information Service but implemented separately,
there is a service that maintains the list of users and groups in the system. This uses the
VOMS service [4]. VOMS is a Grid Service for managing authorisation data within multi-
institutional collaborations. VOMS provides a database of user roles and capabilities
and a set of tools for accessing and manipulating the database and using the database
contents to generate Grid credentials for users when needed. Using VOMS, the proxy
certificates used to contact to the HTTP servers in the dataset catalogue and dataset
master are augmented with additional information, which includes the groups each user
is assigned to. Groups have not been discussed in this chapter but can be used as part
of the rules for the dataset master redirection services or the dataset catalogue naming
services.

Various components in the system need to contact the fabric information service to
obtain fabric information. (Several examples are shown in the pseudo-code for the stor-
age services.) In the current implementation, whenever a client requests any information
from the fabric information service, the entire information set is downloaded. This infor-
mation is cached on the client-side and refreshed every few hours or on explicit request,



Chapter 5 System Design 117

as shown earlier in the pseudo-code. The current implementation is su�cient given the
low volume of information contained in the information service. A disadvantage with
the current implementation is that if a new storage service instance is deployed, there
is a propagation delay until all services obtain this information. Nonetheless, this delay
is similar to the propagation delay in the DNS service [97]. Alternative implementa-
tions could be based on the Globus MDS service [51] or in the more recent NodeWiz
peer-to-peer resource discovery service [18].

5.6 Client Tools

The previous sections discussed the mechanisms to transfer and delete data in the system.
However, the mechanism by which data is uploaded to the system for the first time has
not been presented. The client tools are the entry point into the system. These are
designed to be lightweight and with reduced number of external dependencies. Client
tools provide a unified interface between the various components in the system using
the interfaces for the dataset catalogue described in Section 5.2.2 and for the dataset
master described in Section 5.4.2. Client tools allow users to upload data to the system
and to download data out of the system to a local disk.

The process of creating a new dataset consists of importing files into a storage and
creating the (logical) dataset definition. Besides choosing a dataset name, users must
also choose logical file names and generate GUIDs for each new file. The client tools
bring together these functions into a single unified interface: users are able to transfer
files from their local disk to a storage and add these files to a dataset in a single operation.
Internally, the client tools perform multiple operations: contact the dataset catalogue,
the dataset master and the storage.

Similarly, client tools provide the ability to read out files from a storage system. Given
a dataset name, users may download parts or the entire dataset to a local disk that is
outside the managed fabric. This functionality is also provided under a unified interface:
users provide a dataset name, and the client tools find a close storage with a dataset
replica and download the files to the local disk. Both the import and export of files
from a storage use the same transfer protocols and tools as the storage services (e.g.
GridFTP). The di↵erence is that transfers are no longer third-party because the data is
uploaded or downloaded locally.

Another responsibility of the client tools is to provide the link between the dataset
catalogue and the dataset master. Adding or removing files from a dataset involves only
the dataset catalogue. But for this update to be applied to the physical replicas of the
dataset, the dataset master must be contacted. This link is done by the client tools,
which perform an extra call to the dataset master after every dataset catalogue operation.
This ensures that updates to logical dataset definitions are reflected in the physical



Chapter 5 System Design 118

dataset replicas. Because the requests are idempotent21, a failure in contacting one of
the services can be retried safely. For instance, in the case of failure, it is possible that
physical dataset replicas do not reflect a recent update to the logical dataset definition.
Nonetheless, the event does not cause any data loss and can be safely retried later leading
to the same result.

5.7 Summary

This chapter describes the implementation of the various components in the system.
These are the dataset catalogue, the storage services, the dataset master, various ad-
ministrative services and the client tools. The next chapter describes how this system
is used in a production infrastructure for the ATLAS Experiment.

21That is, multiple applications of the same operation do not change the final result.



Chapter 6

System Evaluation and

Simulation

“By a small sample we may judge of the whole piece.”
(Miguel de Cervantes in El ingenioso hidalgo don Quijote de la Mancha)

In previous chapters I introduced an architecture and described the implementation
of a system to manage distributed data for data-intensive applications. This chapter
presents results of the real-world usage of this system, called DQ21. DQ2 has been used
to manage all the ATLAS Experiment data since 2005.

6.1 Methodology

A technique used to evaluate any system is to create conditions for reproducible ex-
periments so that improvements can be tested in isolation of other system changes.
In addition, the results obtained are usually compared to those of similar systems, to
demonstrate where design di↵erences have led to improvements or degradation.

The distributed, large scale nature of the work addressed in this thesis makes both con-
ditions very di�cult to implement in practice. It is not possible to have reproducible
experiments if one intends to use the entire large scale infrastructure, since production-
quality services must be maintained for the ATLAS physicists for their every day activ-
ities.

To circumvent this problem, computer scientists often deploy smaller scale infrastruc-
tures, which are separate from the real production infrastructure and contain only a

1DQ2 was originally designed with what was then “Windmill”, the internal name for the ATLAS
Monte-Carlo Simulation production manager application. The project name of “Don Quijote” (abbre-
viated to DQ, which is now at version 2) was adopted as an ironic reference to the conflicts that the
fictional Don Quijote experienced fighting windmills [54].

119



Chapter 6 System Evaluation and Simulation 120

subset of the resources. Unfortunately, this approach tends to miss many of the impor-
tant behaviours that occur in real-world usage, because the scale is smaller and more
importantly, because there are fewer external, chaotic factors influencing the system.
These test infrastructures have fewer users, are more isolated, have a smaller total load
and are maintained di↵erently from the real production services.

Throughout this analysis, a major argument is that the infrastructure behaviour is for
the most part unpredictable, because it is influenced by factors outside of system’s
control. A small scale experiment would likely miss these e↵ects because there are fewer
external users in a closed environment.

In addition, it is not easy to compare this system with other equivalent systems. DQ2
is managing over 14 petabytes of data distributed across data centres worldwide. As
far as the author knows, there are no other open access results on the behaviour of
similar systems; comparing two such systems in a fair and optimised manner would also
be very di�cult in practice, considering the scale of the resources required for such an
experiment.

Therefore, given these constraints, I have opted for the following evaluation method-
ology. In the next section, I introduce the usage of DQ2. This starts by describing
how DQ2 is deployed and how the distributed infrastructure is structured, followed by
results obtained during real-world operations. The goal in this section is to illustrate
the scalability properties of the system, by showing how the system has grown and how
its overall performance has been maintained. Clearly these are high-level results, which
are not entirely reproducible and may be subjected to questioning, but nonetheless I
believe they provide significant evidence of scalability and fault tolerance.

The next section focuses on a more detailed analysis of how the infrastructure behaves.
This is based on an analysis conducted for a shorter period of time under which a signifi-
cant amount of data was gathered and analysed, both from DQ2 and from logs provided
by several data centres. Some important results are described, which substantiate my
thesis that any attempts to predict transfer behaviour - and any systems that rely on
the prediction of transfer behaviour on a large, distributed, shared infrastructure - are
most likely to fail, because there are underlying factors critical to the peformance, which
are outside the knowledge of the system.

Despite the inability to predict transfers accurately, some form of simulation work is
clearly useful in limited circumstances, such as during the development phase of the
software: e.g. to test new functionality before it is put into production. The final
section of this chapter illustrates how a simulator can be built, which captures more
accurately the behaviour of the system.

Note: DQ2 is the system that implements the distributed data management system
described in previous chapters. Nonetheless, there are a few di↵erences between the



Chapter 6 System Evaluation and Simulation 121

Figure 6.1: Representation of the Tier-0 and Tier-1s in DQ2.

architecture described in previous chapters and the system that is evaluated here. The
system evaluated in this chapter corresponds to a slightly older version of the architec-
ture. The newer version has not yet been put into production. The di↵erences concern
the deployment of the components: there is a single dataset master and dataset cata-
logue, which are hosted in the same database, and the partitioning of the namespace in
the dataset catalogue is actually done at the database level and not by a separate service
as described before. None of these di↵erences significantly a↵ects the scale at which the
evaluated version has run, but the changes described in the architecture are expected to
result in scalability gains by implementing additional partitioning of the components.

6.2 Usage

This section describes the usage of DQ2. It starts by describing how the system is
deployed and how the underlying computing fabric is structured. This is followed by
results obtained by using DQ2 to manage ATLAS experimental data, followed by a
discussion on lessons learnt during this process.

6.2.1 Deployment

Figure 6.1 gives an overview of the data centre layers in the distributed computing in-
frastructure, which is called the Worldwide Large Hadron Collider (WLCG) Computing
Grid2. As discussed in Chapter 3, the data centres in the WLCG are divided into mul-
tiple layers: the Tier-0 centre, which is CERN, Tier-1 centres and Tier-2 centres (not
shown). As shown in the figure, there are 10 Tier-1 centres for the ATLAS Experiment.

2Refer to http://www.cern.ch/lcg.



Chapter 6 System Evaluation and Simulation 122

Figure 6.2: Representation of a subset of Tier-1s and Tier-2s in DQ2.

These centres are structured into clouds. Figure 6.2 shows only a small subset of the
centres and their respective clouds. Clouds serve to implement the Tier organisation
initially discussed in Chapter 3. For instance, the UK Cloud is constituted by the Tier-1
centre which is RAL (Rutherford Appleton Laboratory), plus several Tier-2 centres like
LANCS and UCL: only a subset of the Tier-2s are shown in the figure. Another example
of a cloud is the Tier-1s Cloud that groups all 10 Tier-1 centres.

The global services in DQ2, which are the dataset catalogue and master, are deployed at
the Tier-0 centre, using an ORACLE relational database and Apache HTTP servers as
described in Chapter 5. The storage services follow a slightly more complex deployment
model, which varies from cloud to cloud. For instance, the UK Tier-1 and Tier-2 storage
services are actually deployed at CERN, while the US Tier-1 and Tier-2 storage services
are deployed at the respective data centres. The reason for this deployment model is
strictly operational and follows from a negotiation involving operational team locations,
shifts and execution of operational procedures.

These di↵erent deployment models are made possible in DQ2 because the storage services
do not require privileged access to the storage. Instead, storage services make use of the
SRM interface, as described in Section 5.3.1. Therefore, storage services can contact the
storage from any location and establish secure (GSI) communication channels. All data
centres that are part of the US cloud have opted for a di↵erent deployment model, which
follows more naturally from the implementation described in Chapter 5. In this case,
each data centre runs the storage services for its storage. Because the round-trip time
between CERN and the US centres is higher, a local deployment seems more appropriate
than that of the UK cloud, given the regular interactions between a storage service and
its associated storage.

Figure 6.2 also shows additional names associated with each data centre. For instance,
LANCS contains MCDISK, PHYS-BEAUTY among others. Each of these names corresponds to
the actual storage services instance. That is, the storage at LANCS (Lancaster University)



Chapter 6 System Evaluation and Simulation 123

Number of Tier-1s 10
Number of Tier-2s 82

Number of Storage Services 555
Number of Information System re-configurations 752

Table 6.1: Resources used by DQ2 as of June 10, 2009.

is internally divided into separate storage areas. Each of these storage areas is managed
by separate storage service instances of DQ2. Each storage service instance has exclusive
access to a subset of the storage, disk servers and namespace. The storage namespace
is typically partitioned by having a unique base path such as /atlas/phys-beauty/

for the LANCS PHYS-BEAUTY storage instance. Therefore, LANCS is in fact a cloud that
aggregates multiple storage service instances.

The reason for splitting a storage into multiple areas is also strictly operational. Di↵er-
ent working groups at a data centre often work with independent budgets and require
exclusive access to their resources. But for data centre administrators, it is not desir-
able to run separate storage instances, so this partitioning is implemented instead at
the DQ2 level. The disadvantage is that separating resources may cause unnecessary
waste: a dataset may be present twice at Lancaster (e.g. requested by di↵erent groups
and stored in their exclusive areas). In practice, this rarely happens because some of
these storage areas host datasets that are likely to be requested by multiple groups and
managers establish data flows in DQ2 so that these data are pre-placed automatically.

The network resources are not described in the figure but range from dedicated fibres
to regular connections through the Internet. Between the Tier-0 and all Tier-1 centres
there are dedicated network connections using an infrastructure called the LHC OPN3,
or the Large Hadron Collider Optical Private Network. The OPN is formed of dedicated
10 Gbit/s fibres. Between Tier-1 and associated Tier-2s, there is a mix of dedicated as
well as regular Internet connections; between Tier-2s belonging to di↵erent Tier-1s, there
are mostly regular Internet connections.

Table 6.1 describes the number of DQ2 storage service instances that have been deployed.
Note that there are multiple storage service instances per storage (an average of about
6), as described in the Lancaster University example. These resources are known to the
Fabric Information Service, which is also known as Tiers of ATLAS or ToA4.

Since ToA was introduced in its present form in July 2006, its contents have been
modified 752 times for re-configurations of the underlying infrastructure. This is a
rather surprising number for a service containing information usually considered to be
static, and implies that there have been configuration changes done on average every 34
hours. This illustrates the dynamism and growth sustained by the distributed computing

3Refer to http://lhcopn.cern.ch.
4The service was initially called ToA because at first it contained only tier and cloud associations for

the ATLAS Experiment.



Chapter 6 System Evaluation and Simulation 124

Number of Datasets 2,296,154
Number of Files 109,138,163

Total Data Volume 14,935.80 TBs

Table 6.2: Data stored in DQ2 as of June 10, 2009.

fabric. These modifications include the addition or removal of storage instances as well
as modification of its properties, such as aliases, or cloud association.

6.2.2 Usage Results

This section describes results obtained by using DQ2 to manage the ATLAS experimen-
tal data. The first section starts with a presentation of overall usage results. This is
followed by several sections, each focusing on a specific data management activity. For
each of these sections the corresponding data flow is described along with performance
results.

6.2.2.1 Overall Usage

Table 6.2 shows the amount of data stored in DQ2. There are close to 15 petabytes
of data stored in over 100 million files. The average dataset size is about 47 files. In
practice, the distribution of datasets is more complex and some datasets are very large
(O(100, 000) files).

The plots in Figure 6.3 illustrate the evolution of the data stored in the system. The
stored data has grown steadily in the last year from 6 petabytes to about 15 petabytes.
The only exceptional months are December and January where the production activities
are halted or slowed down for the holiday period. The number of datasets has also grown
from about 500,000 to over 2,000,000.

The plot in Figure 6.3(c) shows the variation in the number of stored files. The drops
shown in the plot correspond to massive file merging activities that occur during repro-
cessing activities. In these activities, multiple data files are reprocessed but simultane-
ously merged together into a reduced number of output files, resulting in a drop in the
total number of files in the system as the original inputs are deleted.

Figure 6.4 shows the increase in the data stored in DQ2 during a one month period.
The sharp increase is due to large scale activities ongoing in June, as the final large scale
tests are conducted before real data taking activities in summer 2009.

More importantly, the figures show the ability of the system to sustain growth, or scale,
with the increase in the stored data. In particular, managing more data results in
additional bookkeeping needs (dataset cataloguing, location, etc). As shown in the next



Chapter 6 System Evaluation and Simulation 125

(a) Evolution of the number of petabytes in the last year.

(b) Evolution of the number of datasets in the last year.

(c) Evolution of the number of files in the last year.

Figure 6.3: Evolution plots of the data stored in DQ2 as of June 10, 2009 (plots
provided by the Accounting Service and used with permission of Fernando Barreiro).



Chapter 6 System Evaluation and Simulation 126

Figure 6.4: Evolution of the number of petabytes stored in DQ2 in the last 30 days,
as of June 10, 2009 (plots also by Fernando Barreiro).

sections, these additional bookkeeping needs have not a↵ected the performance of the
system.

6.2.2.2 Data Export Activities

The data export activity is one of the main activities of the distributed data management
system. It consists of distributing data from Tier-0 onto the Tier-1s and from there onto
the Tier-2s. This activity occurs when the ATLAS detector is running and collecting
new data (refer to Chapter 3 for additional information).

Before the LHC began to operate in the summer of 2009, there were a set of regular ex-
ercises conducted in the distributed computing fabric. These consisted of the generation
of ‘fake’ detector data that is distributed exactly as real data. From the perspective of
the distributed data management system, there is no distinction between distributing
real or fake data, because the process is exactly the same, with the only di↵erence being
the physics contents (events) of the files.

This section shows the results of one of these large scale testing activities, called STEP09.
STEP09 ran between June 2 and June 12, 2009. In STEP09, as with real data, new files
(corresponding to new detector data) are written into the storage at CERN. These files
are composed into datasets, where each dataset is formed by a set of files from the same
physics process (e.g. same physics run, stream and “luminosity”).

The data export activities follow a static dataset distribution pattern. Dataset transfer
requests are inserted for all destination centres as soon as the dataset is first created
at the Tier-0. Typically, each dataset is assigned to a subset of the Tier-1s and also to
a subset of their Tier-2s, depending on the dataset type (e.g. RAW, ESD, AOD, etc).
The data flows are pre-determined by the managers: the system cannot choose alternate
sources for a transfer but must follow the assigned data flow. This includes the Tier-2s



Chapter 6 System Evaluation and Simulation 127

as well, which are assigned to receive data from its associated Tier-1 only. This mode
of operation follows from a policy document called the ATLAS Computing Model and
is discussed in Chapter 3.

The distribution of data for the STEP09 exercise is primarily a throughput exercise
because the distributed data management system must only ensure that data gets sent
to the chosen destination as quickly as possible. It does not involve more complex
dataset composition issues that occur in other activities, and which are described in the
next sections.

Figure 6.5 shows some results of this data distribution. The plots describes a 4-hour
period between 17h and 21h on June 10, 2009. The various Tier-1s are included in the
plot. For each Tier-1, the values plotted correspond to the data each centre received
from CERN. CERN is also included despite not being a Tier-1: this follows from a
special role CERN has in these tests, functioning both as the centre of data generation
(Tier-0) and also as an auxiliary Tier-1.

The throughput obtained in this period is shown in Figure 6.5(a). It reaches an average
of approximately 1.25 GB/s. There is some fluctuation in the values, which can be
attributed to multiple conditions such as instantaneous network performance, temporary
degradation of disk servers or variation in the data acquisition process that produces
fewer input data(sets). Nonetheless, close to 1 terabyte is transferred every 10 minutes,
as shown in Figure 6.5(b). Also shown are the transfer failures in Figure 6.5(d). While
these failures can temporarily degrade the performance, they are compensated by the
transfer retry mechanism. The number of transferred files is shown in Figure 6.5(c);
relating these values to the throughput shows that files are very large, typically several
gigabytes each.

While the plots show good performance during a 4-hour period, it is important to
verify whether this performance can be sustained over longer periods of time, where it
is expected that storages will fail more regularly as the system is put into additional
stress. Daily plots, from the 3rd to the 9th of June are shown in Figure 6.6. These
include the throughput and the amount of data transferred. An immediate observation
is that on June 8 the exercise was stopped for adjusting parameters related to the job
processing mechanism, which are not related to the data management. Besides this
event, the throughput is maintained, with about 100 terabytes of data copied every day.

To further analyse the scalability and performance of DQ2, it is important to check
how additional flows impact the system. This demonstrates whether the system scales
with additional requests that involve centres other than the Tier-0 or Tier-1s shown
before. The plots shown so far correspond to transfer activities from the Tier-0 to Tier-
1s only, but there are additional transfers that are part of the data export activities.
One example that has been mentioned is the transfers from the Tier-1s down to the



Chapter 6 System Evaluation and Simulation 128

(a) Throughput in MB/s.

(b) Number of gigabytes transferred.

(c) Number of files transferred.

(d) Number of transfer errors.

Figure 6.5: DQ2 hourly performance during STEP09 (plots provided by the Moni-
toring Service and used with permission of Ricardo Rocha).



Chapter 6 System Evaluation and Simulation 129

(a) Throughput in MB/s.

(b) Number of gigabytes transferred.

Figure 6.6: DQ2 daily performance during STEP09 (plots provided by the Monitoring
Service and used with permission of Ricardo Rocha).

Tier-2 centres: when a Tier-1 receives datasets, some of these datasets5 have to be sent
also to the Tier-2s.

The set of plots in Figure 6.7 describes the same 4-hour period as in Figure 6.5 but
accumulates all the di↵erent activities. The names ASGC, BNL, . . . , TRIUMF no longer
correspond to the data centre name as before but to the entire cloud, which is formed
by the Tier-1 and its associated Tier-2s. These plots show that for all data export
activities, including Tier-0 to Tier-1s and Tier-1s to Tier-2s, the system achieves a
sustained throughput of almost 4 GB/s, transferring close to 2.5 terabytes every 10
minutes. During these 4-hours, the system successfully recovers from transient failures,
as shown in Figure 6.7(d). As before, except for small fluctuations, the rates achieved
in these transfers are not limited by DQ2 but by the amount of requests available.

The final set of plots shows the time to complete dataset transfers. A desirable property
is to complete the transfer of a single dataset as quickly as possible, so that processes
that depend on this dataset can begin their processing tasks sooner. The scheduling and
choice of data flows is discussed in Section 5.4.2. Results are shown in Figure 6.8. The
majority of the dataset transfers complete in the first hours, either for a specific centre

5For instance the AOD datasets (see Chapter 3).



Chapter 6 System Evaluation and Simulation 130

(a) Throughput in MB/s.

(b) Number of gigabytes transferred.

(c) Number of files transferred.

(d) Number of transfer errors.

Figure 6.7: DQ2 hourly performance during STEP09 for all data management activ-
ities (plots provided by the Monitoring Service and used with permission of Ricardo

Rocha).



Chapter 6 System Evaluation and Simulation 131

(a) Number of hours to complete dataset transfers to the LYON Tier-1.

(b) Number of hours to complete dataset transfers to the SARA Tier-1.

(c) Number of hours to complete dataset transfers to the Italian cloud.
(The red bar describes transfers incomplete after 70 hours.)

Figure 6.8: Time to complete dataset transfers during STEP09 (plots used with the
permission of Alexei Klimentov and Alexey Anisyonkov).



Chapter 6 System Evaluation and Simulation 132

(Figure 6.8(a) and Figure 6.8(b)) or for the centres in a cloud (Figure 6.8(c)).

The plots show that some transfers take several hours to conclude and some (in red) were
not concluded when the plot was recorded. These are datasets a↵ected by problematic
files (permanent failures) usually caused by unavailable source files (e.g. missing or
badly produced data). In these cases the dataset transfer will only conclude when these
errors are fixed by operational times and the contents of the dataset changed.

The plots show that the majority of dataset subscriptions are completed in the first
hour, but there is not a constant time to finish any dataset. Note that the production
of datasets varies in time due to detector conditions and for STEP09 the datasets are
produced in bulk. This causes a high load of requests and retries of failed transfers are
intertwined with new requests, causing some delays.

6.2.2.3 Production Activities

This section describes another set of activities, which are the production activities,
along with their usage of DQ2. The data export activities previously described are
mostly concerned with high throughput data transfers. Production activities are instead
characterised by lower data rates but more complex data management processes.

Production activities encompass all activities that involve the processing of data. For
instance, Monte Carlo simulation (performed at Tier-2 centres) or data reprocessing
(performed at Tier-1 centres) are examples of production activities. The data export
activity previously mentioned is not strictly considered a production activity, because
files are produced once (by the ATLAS detector machinery) but not using the distributed
computing nodes (i.e. data is not produced on the Grid).

Figure 6.9 illustrates the workflow for production activities. There are multiple centres
that generate or reprocess parts of the desired sample in parallel. In the figure, there
are 2 Tier-2 centres involved in the process. Each centre produces a distinct part of the
sample. This is illustrated by each centre producing 2 files. These files are composed
into a dataset at each centre; these are Dataset A and Dataset B in the figure.

The files are generated and added to datasets by the ATLAS production system, which
is PanDA [125]. PanDA constantly sends Grid jobs to all ATLAS computing resources.
As a job starts to execute in a worker node6 (labeled as CPU in the figure), it contacts
the PanDA server and requests work. This mode of operation is designated as pilot jobs.
It allows for just-in-time scheduling as the job ‘payload’ (its task) is assigned at the last
possible moment; in addition, by the time jobs start to execute and request payload,

6This description does not include the criteria used by PanDA to choose the data centres that
will process specific datasets, as this decision relies primarily on processing and not data management
requirements.



Chapter 6 System Evaluation and Simulation 133

Figure 6.9: Illustration of workflow for production activities.

many failure scenarios have been surpassed since the job successfully started executing
and is able to detect its exact operating environment.

Each job produces output files: in the figure, each job produces one output file per
worker node; hence there are two output files in total for the two worker nodes. When
jobs complete successfully, the results are reported to the PanDA server, which then
adds each output file to the dataset. When the dataset is complete, the PanDA server
requests the transfer of the dataset to its final destination. In this case, this will be the
Tier-1 centre. At the Tier-1, a new dataset is formed that aggregates all the smaller
datasets produced at the individual Tier-2s. This step is also coordinated by the PanDA
server.

One feature of the distributed data management system is the ability to dispatch call-
backs, or notifications, when certain events occur. In Section 5.5.1, these events were
described in the context of the Monitoring Service. Nonetheless, other services can also
request to receive these events, which are requested per dataset. The PanDA produc-
tion system uses this feature to coordinate its production operations. When the input
dataset required by several jobs arrives at a centre, PanDA is notified and releases the
associated jobs for processing. These jobs are assigned to each worker node by PanDA
after the pilot job contacts PanDA and requests the job payload. Later, when all jobs
have executed and the dataset has been fully created at the Tier-2 (i.e. when all jobs
for the sample are complete at a centre), the dataset is subscribed to the Tier-1. When
it is fully copied to the Tier-1, PanDA is notified again by DQ2 and adds these contents
to the new dataset. It may also request the deletion of the Tier-2 copy at this point.

The described workflow has shown to be robust with a separation of concerns between



Chapter 6 System Evaluation and Simulation 134

Figure 6.10: Queued jobs in last 24 hours as of June 11, 2009 (plots provided by the
Monitoring Service and used with permission of Ricardo Rocha).

the distributed data management and production system, implemented by an interface
based on notifications. Figure 6.10 shows some usage results. The plot contains a view
of the running and activated jobs for all computing centres. Running jobs are the jobs
in execution at a specific point in time. Activated jobs are jobs whose required datasets
have been fully transferred and are now waiting for available CPU slots. As shown in the
figure, there is a constant number of running jobs, which means the available computing
resources are fully saturated. As such, it is possible to conclude that DQ2 is able to
promptly transfer the required datasets: both entries in the plot correspond to datasets
already available at a data centre, and the presence of activated jobs means there is a
processing backlog.

Figure 6.11 presents a weekly view of the job execution. Each name in the plot (ASGC,
BNL, . . . , TRIUMF) represents the cloud name, not the Tier-1 centre. More interesting is
the plot in Figure 6.11(b) that shows failure conditions during one week. Many of these
failure conditions are attributed to data management errors, such as reading input files
between the local storage and the worker node, or writing output files to the local storage.
None of these errors, despite the DQ2 designation, are a distributed data management
issue but are due to problems contacting the storage locally at each data centre. An
interesting conclusion is that even with jobs restricted to reading and writing data only
from their local storage (and not from other remote storages on the Grid), there is a
substantial number of failures (when compared to the total number of successful jobs).

Finally, it is important to note that these processing and transfer activities have occurred
in parallel with the STEP09 exercise shown in the previous section. The competition
between these two activities is handled in DQ2 by using fair shares: each activity is
assigned to a share that has a specific percentage of the available transfer channel slots,
as described in Section 5.3.4.2.



Chapter 6 System Evaluation and Simulation 135

(a) Number of successful jobs.

(b) Failure distribution.

Figure 6.11: Weekly view of the job execution as of June 11, 2009 (plots provided by
the Monitoring Service and used with permission of Ricardo Rocha).

6.2.3 Discussion

The previous sections discussed the usage of DQ2 for the ATLAS Experiment. One
observation is that the infrastructure reveals very dynamic behaviour, with storages
being added, removed and fairly static attributes changing regularly. This is illustrated
by the number of changes to the information service.

Important observations from these results also concern the scalability of DQ2. The re-
sults demonstrate the ability of DQ2 to scale with the amount of stored data. This is
illustrated with the STEP09 data export results. In addition, the results also demon-
strate scalability with additional user requests. This is also observed from the STEP09
data export, which occurred in parallel to other background production activities. Fi-
nally, the ability of the system to support more complex flows is demonstrated by its
integration with the production activities. In all these scenarios the system was also
able to serve all the requested data promptly.

Despite these very positive results, it is not obvious to identify the parameters that
most critically define the behaviour of the system, and in particular the performance of
file transfers. The identification of these parameters is important to understand future
bottlenecks. A similar observation concerns the analysis of the throughput. While
the system demonstrates scalability and sustains current load needs, it is not clear if
the performance obtained is adequate when compared to the available resources. For



Chapter 6 System Evaluation and Simulation 136

Start Period April 28th 2008
End Period May 26th 2008

Number of Data centres 11
Successful Transfers 508,721 (96.7%)

Failed Transfers 17,424 (3.3%)
Number of Transfer Logs 526,145

Table 6.3: Overview of the analysis period.

instance, the Tier-0 to Tier-1 connections use dedicated 10 GBit/s network links from the
LHC OPN, but the observed throughput between data centres is below this threshold.
Therefore, it is reasonable to conclude that the throughput bottlenecks occur at the
storages rather than at the network link. In fact, storage disk servers have a write speed
in the order of tens of MB/s, e.g. 80-100 MB/s are common values. As such, the number
of disk servers available in the import and export bu↵ers impose an upper limit to the
overall throughput rate. Nonetheless, there may be other factors such as the number of
transfer slots that are allocated for each channel, or the distribution of these transfer
slots per disk server by the SRM.

Based on these open questions, it is important to conduct a detailed analysis of the
underlying fabric infrastructure. From this analysis I expect to identify the current
bottlenecks at the fabric level, and understand the observed behaviour in greater detail.
This is the subject of the next section.

6.3 Infrastructure Analysis

In this section, I present an analysis of the behaviour of file transfers in the system. The
objective is to understand some fluctuations in the transfer rates showed in previous sec-
tions. I start by describing the experimental setup, followed by an analysis of successful
and failed transfers.

6.3.1 Experimental Setup

The results presented in the next sections correspond to the analysis of approximately
one month of data, from April 29th 2008 to May 26th 2008. Only transfers between the
Tier-0 and Tier-1 centres are analysed. These include Tier-0 to Tier-1, Tier-1 to Tier-0
and Tier-1 to Tier-1 transfers.

During this period, transfer logs from both DQ2 and the data centres were collected. The
transfer logs of DQ2 include for each transfer, the request time, completion time, final
transfer status and file information such as source and destination paths and file size.
The data centre logs are the GridFTP and FTS server logs, which contain more detailed



Chapter 6 System Evaluation and Simulation 137

(a) Channel A-B

(b) Channel C-D

Figure 6.12: Scatter plot for duration of successful transfers for two di↵erent channels.

information such as the time taken to contact SRM servers or time spent in GridFTP
for the network transfers. These logs were imported into a relational database and its
entries correlated. Therefore, for each DQ2 transfer request the record also includes the
GridFTP and FTS transfer information. Table 6.3 summarises the information collected.

For the remaining discussion and by request of some data centres, all results have been
made anonymous. The channel A-B represents transfers from site A to site B.

6.3.2 Successful Transfers

Figure 6.12 shows the duration of successful transfers split by file size for two distinct
channels. Two distinct channels with di↵erent file sizes are shown. There are immediate
conclusions from these plots: transfer rates (here represented in seconds) vary greatly
and the variations are sometimes counter-intuitive: e.g. bigger files may sometimes be
almost as fast as smaller files; some of these variations may be due to statistical e↵ects



Chapter 6 System Evaluation and Simulation 138

(a) Channel E-F, transfers of 2 GB files (b) Channel G-H, transfers of 2 GB files

Figure 6.13: Histogram for duration of successful transfers for two di↵erent channels.

but the overall trend remains.

For each file size, there are 3 red vertical markers. These represent the time up until,
respectively 50%, 70% and 90%, of the transfers complete. A conclusion from the plots
is that even if the transfer timeouts were reduced, which have been set to an artificially
large value of 3600 seconds (1 hour), there would still be significant variations in rates.
That is, even tolerating an additional 10% failure rate by setting timeouts at the 90%
marker, some transfers would be 2 to 3 times faster than others. In summary, transfer
rates have a significant tail.

Figure 6.13 shows the same situation (duration of successful transfers) but now only
for a specific file size (2 GB files). Both histogram and cumulative histogram views are
presented. The bin size for the histogram is determined using the Freedman-Diaconis
rule [78] but the cumulative histogram is also shown since it is less sensitive to variations
of the bin size.

Note that not all files are exactly the same size. Some file sizes vary by less than a few
bytes. This is due to how the data is generated since each data file in ATLAS has a
specific number of physics events and each event has the same size. As such, only minor
variations occur in the sizes (e.g. due to di↵erent file headers). Again, the histogram
shows a significant variation: in the cumulative histogram for channel E-F, half the
transfers occur in under about 250 seconds and the remaining over 250 seconds.

A first assumption had been that transfer rates varied slightly but within a small interval.
The expectation is that the distribution would follow a normal distribution with a target
rate and rare occurrences in the tails. The plots for these 4 channels show that this is
not the case: e.g. Figure 6.13(b) shows a more complex underlying distribution. The
data gathered for several other channels shows the same pattern although the underlying
distributions do not share the same parameters.

Following discussions with data centre administrators, we formulated the hypothesis



Chapter 6 System Evaluation and Simulation 139

that each disk server involved in the transfer was being simultaneously used for multiple
activities: multiple parallel reads and/or writes by other users. These parameters are
configured by administrators, often ad-hoc, with the goal of optimising overall storage
usage and not specific patterns for specific users.

There are also multiple users (within ATLAS or even from other organisations) of the
storage system and their joint usage causes a non-trivial interference on the disk server
load patterns. To study whether this was the case, the following analysis was conducted.
The objective is to observe how the transfer rates varied, for a specific file size, if the
destination disk server was used in parallel for more than one transfer. From the DQ2
logs, it is possible to know a posterior, which disk servers were involved in transferring
each file for a channel.

The expectation is that the transfer rates would decrease with parallel usage. In addition,
it was expected that writes would cause more interference than read operations. As
mentioned before, DQ2 does multiple parallel file transfers between data centres to
compensate for underlying network limitations, such as the network round-trip time.
Therefore, it is reasonable to assume that disk servers are busy with more than one
transfer in parallel most of the time.

For this test, I only considered periods of time where ATLAS was the single or the
major user of the storage system. Because this information is not known in advance,
data centres were manually contacted and asked to report during which periods in the
previous days ATLAS had been the sole user.

This method reduces the interference in the test, as only parallel disk server accesses
done from DQ2 (i.e. from ATLAS) are taken into account. Figure 6.14 shows the results
obtained for two channels. Clearly, as the number of parallel write operations increase
on the destination disk server, the transfer rate decreases (the duration increases) and
the variation is also wider. Note that destination sites have configured di↵erent sets of
limits for parallel writes to a disk server: site I appears to have a maximum of at least
32 (as can be seen by the maximum value in the y-axis), while site J appears to have a
maximum of 20 parallel writes. Based on this analysis, I concluded that to some extent,
it is possible to understand after the fact the variations observed in transfer rates. In a
next section I discuss whether it is possible or not to make use of this information but
first I briefly analyse failures.

6.3.3 Failed Transfers

Regarding failures, the most important factors are how often these occur, the types of
failures and most importantly, how many resources are consumed by the failure: that is,
the duration of the failure. The failure duration is particularly important because while
a failure occurs, no other file can be transferred since that transfer slot is busy.



Chapter 6 System Evaluation and Simulation 140

(a) Transfer of 3.6 GB files for channel A-I

(b) Transfer of 3.4 GB files for channel A-J

Figure 6.14: Scatter plot for duration of successful transfers for two di↵erent channels.

(a) Number of failures (b) Duration of failures

Figure 6.15: Stacked bins with failures for channel G-H



Chapter 6 System Evaluation and Simulation 141

Figure 6.16: Duration of failures for channel G-H

First, an analysis on the number and duration of failures is shown, followed by a discus-
sion on failure types in a later section. Figure 6.15 shows a stacked plot with all failures
that occurred in a 5-day period. Failures were added to bins and the figure shows these
bins stacked and ordered by the large bins first. Therefore, the first bin in the figure,
which is directly on top of the x-axis, corresponds to the peak of failures around the
300 seconds mark on Figure 6.16. What is evident is that a few bins contain most of
the failures. In the figure, 3 bins cover over 75% of failures. This indicates that failures
appear to occur in bursts.

The next bin on Figure 6.15 shows the same failures but now by duration. The domi-
nance is less noticeable but still present. In the figure, 7 bins cover over 75% of the total
duration failures. Also important is the amount of time spent in failures: a surprising
total of 65000 seconds. This means that out of all the transfer slots used in a 5-day
period, almost 18 hours of work were lost. Note that there are tens of transfer slots
available in total. Nonetheless, the amount of time lost is non-negligible.

Figure 6.16 shows the corresponding failure histograms. Failures have variable duration,
between 0 and 500 seconds and then there are timeouts, which were manually set to
3600 seconds.

An important factor is then to see how failures distribute over time. So far the analysis
has shown that failures appear to have a burst behaviour. One of the di�culties in mod-
elling failures arises from the fact that resources usually do not always fail completely7.
Most often, resources degrade. That is, the services continue to function but e.g. one
of the disk servers performs poorly (becomes slow or overloaded) but continues to serve
transfers for some time before the storage system (or system administrators) detect and
fix the problem. At the same time, all other disk servers in the storage continue to
operate normally and hence, only a subset of the transfers that happen to use a specific
disk server are a↵ected.

7For this analysis, I removed periods of full downtime, since these were scheduled and announced in
advance.



Chapter 6 System Evaluation and Simulation 142

(a) Channel G-H (b) Channel A-J

Figure 6.17: Arrivals of failures

Figure 6.17 shows the distribution of the arrival of failures for two channels. The x-axis
is the (binned) time at which the failure occurred. The y-axis is the time, within the bin,
at which the failure occurred. As an example: if a failure occurred at time 2500 using
bins of size 1000, it would be plotted at coordinates (x, y) = (b2500/1000c ⇤ 1000, 2500
mod 1000) = (2000, 500). These plots are interesting because they show that failures do
not appear to follow a Poisson distribution: if it were the case the plots would have a
more or less uniform gradient, which is not the case.

6.4 Modelling and Simulation

The previous sections presented usage results of DQ2 and a detailed analysis of the
behaviour of the infrastructure, through the study of file transfer performance. These
results suggest the importance of having realistic models of the infrastructure during
the development of the distributed data management system. Without such models,
any developments that are perceived as improvements may not be adequate under real
operational conditions.

Testing infrastructures are important to support the continuous development of any
software product. Production use of DQ2 limits the ability to test new, potentially
disruptive features. Similar limitations occur in other large scale systems. To address
this issue, I developed an approximate model of the infrastructure and a discrete event
simulator that uses this model. The objective is to allow DQ2 to be tested in a more
realistic environment prior to production deployment, but also to provide modelling
principles that can be used by the community at large. These modelling principles and
the simulator are described in the following sections.

Various systems have been proposed to simulate distributed systems and in particular
Data Grids. OptorSim [20] is an example of a Data Grid simulator built to study access



Chapter 6 System Evaluation and Simulation 143

to data from Grid jobs, in particular to help devise economic models on best replica
placement strategies conditioned by limited storage space. Other examples of generic
Grid simulators are Simgrid [38] and GridSim [163]. These simulators allow developers
to build advanced analytical models for a Data Grid, by defining and parameterizing
the behaviour of each resource in the Data Grid.

For instance, in GridSim [163] developers can configure in detail the performance pa-
rameters of every hard-disk and tape storage in the Data Grid. The work described
in this section is complementary to these contributions in that it defines an alternative
model that can be used by any simulator to model, in a realistic manner, the behaviour
of transfers in a Data Grid.

The motivation for developing new simulation models results from the di�culty in ap-
plying existing models. In some cases, existing models require the precise definition of
all resources in the Grid along its associated parameters (such as in GridSim). This is
di�cult to achieve for a very large, dynamic Grid infrastructure. Others (e.g. [21]) pro-
vide too simplistic network models, based for instance only in the network bandwidth.
This is clearly not su�cient to characterise the observed behaviour. Some models do
provide the ability to configure background tra�c (e.g. [163]) but as described in this
section, the observed behaviour is more complex and can be better characterised than
background network tra�c on a public network.

The main contribution in this section is the modelling techniques rather than the discrete
event simulator. The simulator was mainly developed to help fine tune the model. In
fact, it is in principle possible to apply the modelling principles to other simulators. On
the other hand, the simple discrete event simulator does not support alternative models
to be plugged in, which is a feature supported by most Grid simulators.

6.4.1 Modelling Principles

In a data management system, the hardest component to model is the underlying in-
frastructure, as is evident from the last sections. The goal is to model the behaviour of
file transfers and how these are a↵ected by the resources in the system. I restrict the
resources to be the storage systems, network links and the transfer services in DQ2. The
network links are represented by transfer channels, following the principles introduced
in Section 5.4.2. This is a significant simplification of the overall infrastructure, which
does not include for instance, the network routers or the individual disk servers in a
storage.

In addition, I assume that any resource in the model can fail except for the transfer
services. Therefore, failures can occur in the source or the destination storages or in the
channel. I assume the transfer services do not fail but only the transfers themselves may
fail. I believe this is a realistic assumption. Certainly for ATLAS, problems caused by the



Chapter 6 System Evaluation and Simulation 144

transfer services are extremely rare and usually due to hardware faults or temporary mis-
configurations that are quickly detected. These events are not interesting for analysis.

Following the terminology introduced by [92], the model is divided into availability,
reliability and performance modelling8. When performing a transfer, there are various
possible outcomes:

• The transfer is completed correctly. In this case, the important parameter is
the transfer duration. This corresponds to the performance modelling.

• The transfer is refused. For instance, the transfer does not start because one
of the endpoints is not available. This corresponds to the availability modelling.

• The transfer is completed incorrectly. For instance, the transfer stops halfway
leaving parts of the file transferred. Or the user abandons the transfer assuming
it has timed out. This corresponds to reliability modelling.

6.4.2 Model for Successful Transfers

To model the performance of successful transfers I use a training set for each transfer
channel. The objective is to derive a distribution from this training set, which is then
used as a model.

Initially I assumed transfer rates followed a Gaussian distribution but the analysis con-
ducted in previous sections demonstrated this is not the case. Nonetheless, discussions
with system administrators highlighted the fact that the disk server load is a main factor
a↵ecting the variation in transfer rates. The tests previously described also showed this
is likely to be the case, with di↵erent transfer rates observed with di↵erent numbers of
parallel writes.

Disk server load is di�cult to define and characterise in detail. It is not clear what
other factors, besides the number of parallel writes, a↵ect the load of a disk. The
information available during my analysis did not appear to contain su�cient detail to
identify additional factors. Nonetheless, while a gaussian distribution did not accurately
represent the disk server behaviour, intuition indicated that a mixture of a reduced
number of gaussians might be appropriate.

That is, as a result of discussions with system administrators, I formulated the hypothesis
that disk servers can be represented as being in (coarse) load states. For instance, these
load states could be cold, medium, hot disk servers. For each of these load states a
gaussian distribution could be used to model the disk server behaviour.

8In [92], the term ‘speed’ is also used for ‘performance’.



Chapter 6 System Evaluation and Simulation 145

Therefore, the following step is to create a Gaussian Mixture Model (GMM) [81]. A
GMM is a probabilistic model for density distribution that uses a mixture of under-
lying distributions. In this case, the underlying distributions are gaussian. A GMM
is appropriate in a situation in which there is the assumption of an underlying mech-
anism so that each observation belongs to one of some number of di↵erent sources or
categories. In this case, the GMM defines a single distribution to represent the transfer
performance, which itself is composed of several underlying gaussian distributions that
intuitively correspond to each of the disk server load states.

The next step is to determine the parameters to use for the GMM. The Expectation-
Maximisation (EM) algorithm in [61] is widely used for finding maximum likelihood
estimates of parameters in probabilistic models, with frequent applications on data clus-
tering and unsupervised learning. It is therefore an appropriate choice to determine the
GMM parameters.

It is possible to generate multiple GMM models with a di↵erent number of underlying
clusters. For instance, it is possible to generate a GMM with 2, 3 or more mixed
gaussians. The EM algorithm can determine the maximum likelihood parameters for
each of these classes, but cannot determine which is the “best” out of them. For instance,
it is possible to determine the parameters for a GMM with 2 gaussians (i.e. 2 load states)
using the EM algorithm, but it is not possible to readily conclude whether it is a better
fit than a GMM that uses 3 mixed gaussians (i.e. 3 load states) instead.

Therefore, to deduce the appropriate number of clusters (of gaussians), I used the
Bayesian Information Criterion (BIC) [156]. BIC is a criterion for model selection among
a class of parametric models with di↵erent numbers of parameters. When estimating
model parameters using maximum likelihood estimation, it is possible to increase the
likelihood by adding additional parameters, which may result in over fitting. For in-
stance, if in the example above the transfer channel were modelled with hundreds of
gaussians, the resulting GMM would likely fit very adequately but it would result in a
clear over fit that is too specific to a particular distribution. The BIC resolves this prob-
lem by introducing a penalty term for additional number of parameters in the model.

The results from the modelling of successful transfers are shown in Section 6.4.4. The
next section discusses modelling of failed transfers.

6.4.3 Model for Failed Transfers

Failures are very di�cult to model in a realistic manner. Unavailability (storage down-
time) can be simulated although in practice these are often announced, scheduled and
even negotiated. Unexpected downtimes have been extremely rare occurrences.

More common is the situation where the system is almost completely down but still some



Chapter 6 System Evaluation and Simulation 146

transfers succeed. In my model, I have considered this to be reliability, not availability
modelling. Throughout this work I was unable to satisfactorily characterise failures and
also distinguish between timeout failures (triggered by the user after some time) from
other occurrences.

Another di�culty regarding failures is distinguishing between channel failures and stor-
age failures. In practice, this distinction is di�cult because the error messages are
inconclusive. A channel failure should be normally due to a severe network fault that is
not handled transparently by underlying protocols such as TCP.

Therefore, I have limited the failure analysis to replaying failure conditions observed
in the production system. This approach appears to give more realistic results than
e.g. a Poisson-based model. Nonetheless, experience suggests that the best approach
to validate data distribution strategies is to artificially create disruptive scenarios based
on the perceived limitations of the strategies being developed. One useful technique has
been to simulate a long downtime of a storage (a very rare occurrence in practice) to
study the backlog recovery.

6.4.4 Simulator

This section describes the discrete event simulator. This simulator is developed in
Python similarly to the rest of the DQ2 code. It implements an event scheduler and an
event-driven approach, incrementing the time automatically to the next earliest occur-
ring event [92]. (Appendix C contains relevant Python code excerpts from the simulator
implementation.)

At start-up, the discrete event simulator reads historical transfer logs from real transfers.
These logs are stored in a relational database and follow the same structure as the
transfer logs described in Section 6.3. These logs are used as the training set to determine
the model parameters for the GMM described in the previous sections. Therefore, at
start-up the discrete event simulator determines the GMM distribution to use for each
channel, based on the analysis of historical logs and the application of the EM algorithm
and BIC criterion. It also determines the occurrence of failures, by analysing the mean
time between failures from historical data.

In addition to the training set, the discrete event simulator also reads at start-up its
workload from a relational database. The workload consists of transfer requests that are
to be received by the storage services at a specific point in time. These are processed as
transfer requests by the discrete event simulator when its simulation clock reaches the
transfer request time. At that point the discrete event simulator simulates the transfer
outcome (success or failure) and duration of event based on the model parameters. This
is reported back when the event is complete according to the simulation clock.



Chapter 6 System Evaluation and Simulation 147

(a) Channel A-I: Observed results (b) Channel A-I: Simulated results

Figure 6.18: Overview of both observed and simulated throughput results.

(a) Channel A-I: Observed distribution (b) Channel A-I: Simulated distribution

Figure 6.19: Distribution of successful transfers, 2 GB files

In the remaining part of this section I validate the model used for the simulation. For
this, the set of transfer logs analysed in Section 6.3 is re-used. These logs are partitioned
into two separate sets. The total set of transfer logs constitute 1 month of transfers.
The first week of data is used exclusively as the training set, and the remaining 3 weeks
are used as the validation set.

The plots in the following figures include only the comparison between observed and
simulated events for 4 days out of the 3 weeks of validation data. This is done for
readability purposes, since plotting 4 days out of a period of 3 weeks allows the plots to
have higher resolution: in this case, 1 hour bins.

Figure 6.18 shows an overview of the observed and simulated throughput. Because the
mean time between failures was used, the exact occurrence of a specific failure can vary
slightly, but the total number of failures remains the same (hence, so does the total
number of successful transfers shown in the figure). The overview shows visually what
appears to be a very good match, which is nonetheless influenced by the bin size chosen
for the plot. Therefore, a more detailed analysis is required.



Chapter 6 System Evaluation and Simulation 148

Figure 6.20: Quantile-Quantile plot for distributions on Figure 6.19

Figure 6.19 shows the observed and simulated distribution of successful transfers of 2
GB files. This figure allows for a more detailed analysis of the model. The gaussians
that compose the simulated mixture model are also plotted and scaled for illustration
purposes. Figure 6.20 shows the corresponding Quantile-Quantile (QQ) plot, comparing
both distributions. In a QQ plot, a line overlapping with the ideal line represents a
perfect fit between the distributions.

These plots show a very good matching between the observed and simulated data. The
distributions are generated exclusively from the test set data, but the comparisons are
performed using workload from the validation set. This indicates that the simulator
appears to adequately model the real infrastructure.

Nonetheless, there are important limitations in the approach taken to build the model
and simulator. The fact that there is a close match between observed and simulated
distributions is due to the weights derived by EM algorithm and the clusters identified by
the BIC criterion. The examples shown are for a single channel but I observe successful
fits for other channels as well.

Nonetheless, the parameters for each GMM can be very di↵erent from channel to channel.
I did not find any specific relation between channels. Nonetheless, the fact that the best
fit is always achieved with a reduced number of gaussians (3 or 4) gives some degree of
confidence in the initial intuition, which informally characterises the disk servers into
separate load states.

Most importantly, the primary goal of this simulation work is to achieve a model closer
to reality, which can be used to test DQ2 in a simulator. The goal is not to develop a
detailed analytical model of a distributed infrastructure nor to use previous transfers for
prediction. Nonetheless, some important lessons can be learnt from this analysis. These
are discussed in the following section.



Chapter 6 System Evaluation and Simulation 149

6.5 Distributed Data Management under Uncertainty

The previous sections illustrated the uncertainty present in the underlying infrastruc-
ture and presented an approximate model of the overall system. This section discusses
whether it is possible to make use of this knowledge to improve the distributed data
management system.

While it is possible a posterior to understand some of the observed behaviour, there is
limited ability a priori to take any action. For example, when transferring a file between
two storage systems, the allocation of the source and destination disk servers only occurs
when the transfer starts. It is also not known if there are other users using the same
disk servers. Therefore, there is no mechanism to control one of the main factors of the
transfer performance, which is the load on the disk servers if we assume we are operating
using distributed and shared resources.

One option could be to reduce the number of transfer slots. This solution is of limited
interest: the network round trip time would a↵ect the overall transfer performance
enforcing low upper bounds on the throughput. In addition, it would still not be known
if there are other users of the disk servers, including non-ATLAS users. It would also
not be known how intensively these users are using the infrastructure. There is also no
control on the internals of each storage system: note that storage systems broker requests
to choose the most suitable disk server at a point in time using internal criteria. Finally,
deploying fully separate infrastructures for di↵erent users is not a cost-e↵ective option.
Nonetheless, this principle is applied throughout many areas of the infrastructure (e.g.
job queues, hierarchical storage management, etc).

In reality, the uncertainty is due to the nature of distributed and shared computing.
Computing centres try to optimise their global performance while each organisation,
with limited information, tries to optimise its own perceived performance.

Most of these considerations are only relevant if the goal is to have a system that aims to
provide some guarantees of quality of service, such as DQ2. One of the most used features
in DQ2 is the ability to allocate the competing transfer requests to channels fairly. If a
physics discovery leads to an increased interest in a specific activity, the data(sets) from
this activity should be distributed as fast as possible so that future processing activities
can start. Nonetheless, as observed, failures are very unpredictable. A timeout may
prevent a dataset from being completed because one of its files is not available due to a
timeout error.

There is a conclusion that follows from this discussion. If there are factors that fun-
damentally a↵ect transfer performance, which cannot be known in advance, then the
DQ2 design decision of not scheduling based on transfer prediction is quite appropriate.
DQ2 implements a feedback-based approach. That is, rather than trying to predict the



Chapter 6 System Evaluation and Simulation 150

transfer times and schedule based on predictions, DQ2 instead reacts to finished trans-
fers. When a transfer is complete, storage services ask for additional work. Based on
the analysis of the infrastructure this appears to be a more robust approach.

6.6 Summary

This chapter presented and analysed the performance of DQ2, which is the distributed
data management system for the ATLAS Experiment. The deployment scenario and
usage results were introduced. These results include overall performance figures as well
as a detailed analysis of specific data management activities, which range from high
throughput transfers (e.g. STEP09) to more complex data management workflows (e.g.
production activities).

These overall usage results provide very positive evidence regarding the scalability and
performance of DQ2. The amount of data stored in DQ2 is in the order of 14 petabytes
with a transfer throughput of 4 GB/s. Nonetheless, the results do not contain su�-
cient information to deduce the factors that most influence overall system performance.
Therefore, an extensive analysis of file transfer performance was conducted during a
one-month period. These results are also presented in this chapter. There are several
important conclusions from this analysis, which substantiate the premise that transfer
performance is a↵ected by factors outside the system’s control, such as the number of
parallel reads and writes in a disk server.

The final sections of this chapter investigate the use of modelling and simulation tech-
niques. Such techniques are required to test new versions of DQ2 without disrupting the
production facility. Existing Grid simulators either do not provide su�ciently realistic
models (e.g. simplistic models that do not capture the observed file transfer behaviour),
or are very di�cult to apply in practice (e.g. require a large amount of low-level in-
formation on the distributed computing fabric). Therefore, I developed new modelling
techniques for file transfer performance. These techniques are presented in this chapter.
The resulting models (and corresponding simulator) include the performance, availability
and reliability of file transfers on the wide-area network. The validation of the simulator
with real transfers demonstrates that it adequately models the observed behaviour.

Finally, I discussed the problem of distributed data management under uncertainty.
Throughout this chapter I identified several factors that influence the performance of
the system. Some of these factors are outside the system’s control. Nonetheless, these
factors critically define its performance. Therefore, it is important to discuss whether
the uncertainty in the infrastructure imposes practical limits to the development of a
distributed data management system. I believe this to be the case. Finally, I established
an important conclusion on the design of DQ2: if there are factors that fundamentally
a↵ect transfer performance, and which cannot be known in advance, then the DQ2



Chapter 6 System Evaluation and Simulation 151

design decision of scheduling based on a feedback approach appears to be the more
robust solution.



Chapter 7

Conclusion and Future Work

7.1 Contributions

I now review the main contributions of this work.

• Chapter 4 introduces a set of design principles that can be applied to the creation
of a non-intrusive and scalable distributed data management system. The set of
design principles are:

– The introduction of datasets, which are loosely defined as collections of files,
as the underlying data unit. Therefore, systems that employ proprietary data
models can easily integrate with the distributed data management system
without changing the existing data flows.

– The adoption of (eventually) consistent principles for the replication of datasets
across data centres.

– The separation between logical and physical data units, allowing (logical)
dataset definitions to change independently of physically stored data, and
having dataset updates eventually propagate to the various physical replicas.

– The definition of fabric independence, or the ability to change any part of
the underlying distributed fabric (architecture of data centre, location of the
data, etc) transparently to the users.

– Following from the previous design principle, the definition of a layered system
that does not require modifications to the middleware already employed at a
data centre.

• Based on the set of design principles, Chapter 4 and Chapter 5 describe an archi-
tecture and implementation of a system that is scalable, fault tolerant and secure.

152



Chapter 7 Conclusion and Future Work 153

• Chapter 6 evaluates the system proposed, which is called DQ2. DQ2 is currently
managing over 14 petabytes of data distributed across data centres worldwide.
In addition, the real world usage of DQ2 for the ATLAS Experiment has shown
that the system is able to scale with the amount of stored data, maintain ade-
quate performance and is integrated with diverse data flows of various degrees of
complexity.

• As a consequence of the real world usage of DQ2, Chapter 6 also proposes new
principles to model the behaviour of transfers on a Data Grid. These algorithms
are based on the generation of Gaussian Mixture Models, and employ statistical
methods to model more accurately the behaviour observed. These models have
the advantage of being simpler to apply, compared to existing simulation tools.

Finally, in this thesis I have made an attempt to describe more accurately the problem of
managing distributed data. This is described throughout this work, from the collection
of requirements to the identification of the uncertainty that underlies a shared Data
Grid environment, and includes the identification of practical limits to the development
of transfer algorithms.

7.2 Future Work

In this section, I identify two areas for future work. These areas are a logical contin-
uation of the work presented in this thesis. The first area focuses on exploiting data
access interfaces. The second area aims to improve the behaviour of the lower layers
by introducing new mechanisms to route very large datasets. I discuss each of them in
turn.

7.2.1 Data Access Interfaces

As data moves into “the cloud”, the problem of managing distributed data will certainly
grow. As argued in Section 2.4.4, cloud systems already include a growing convergence
between file systems and database technologies. I believe developer APIs will become
more relevant in the near future. These APIs must be simple to use, provide rich
functionality but still allow cloud providers to independently store and transfer data
across data centres or even across clouds.

POSIX-style access has brought distributed systems a long way, even with some success
in niche use-cases when applied to the wide-area network. Nonetheless, it is of interest
to re-appraise this approach. In this thesis, the introduction of datasets has enabled the
implementation of a simple, distributed and easily partitioned system. Other approaches



Chapter 7 Conclusion and Future Work 154

may be possible, which can also take advantage of both structured and unstructured
data.

As such, an area of future work concerns the creation of new data model paradigms that
allow for the network latency limits to be circumvented in the wide-area network. This
may lead to the creation of new transaction models that exploit the internal organisation
of the data, or perhaps the data processing primitives.

In addition, and expanding on the research initially presented in [28], these data model
and data processing primitives could include transparent mechanisms to record prove-
nance information. This provides a tighter coupling, and results in a more functional
distributed data management system for storing structured information.

7.2.2 Routing of Very Large Datasets

In Section 1.3, I stated that an important component of this work is an analysis of the
systems that rely on predictive frameworks as well as simplistic models. The di�culty
is in creating (mathematical) models that accurately represent a large, dynamic and
shared infrastructure. A parallel can be made to the domain of network routing, where
various theoretical contributions have been developed.

Therefore, a line of future work is to adapt and expand the work that has been done
within the network routing domain onto the routing of very large datasets. There are
important di↵erences between the two: network routing focuses on routing small packets,
where routing decisions must be made very quickly and where routers have very limited
bu↵er space. Routes also do not share the same access costs to the data (e.g. recalls
from tape) as storage systems do. Nonetheless, important parallels can be established
between the two. In network routing, a major challenge is in predicting and/or reacting
to the workload. In addition, network routing aims to establish paths between source
and destination, so that future requests follow the same paths. There are clear parallels
to the routing of very large datasets. Additional parallels can made between routers
with limited bu↵er space and storage systems with limited disk space. This line of work
is more relevant if there are the goals of not assuming a completely connected network,
as in DQ2, and if the choice of sources for replication is moved from being primarily
(but not exclusively) on the user side, to being on the system side.

It is also instructive to discuss some important developments within the network routing
domain. There are two fundamental approaches to routing in networks. One is to route
data depending on the current load in the network (i.e. adaptive routing). The alter-
native is to route data independently of the current state of the network (i.e. oblivious
routing). Adaptive protocols can achieve reduced network congestion, but are harder to
implement in a distributed system.



Chapter 7 Conclusion and Future Work 155

In [11] the authors design a routing algorithm that is log(n) competitive with respect to
congestion. It is an adaptive, centralised algorithm that serialises routing requests. [12]
introduces a distributed algorithm that chooses routes by repeatedly scanning the net-
work. The algorithm requires shared variables for each edge, and hence is considerably
more di�cult to implement.

In a more recent paper, Räcke [136] introduced the surprising result of a competitive
oblivious routing algorithm for general undirected networks. This result means that it
is possible to come close to minimal network congestion without any information on the
current load in the network. This oblivious algorithm has been constructed in [14].

There is considerable potential in exploring Räcke’s oblivious algorithm for higher-level
applications and in particular the principle of hierarchical decomposition for congestion
minimisation recently presented in [137]. When routing large datasets instead of network
packets, the network congestion can instead be a function the number of transfer slots
in a transfer channel. This results in a novel use of the transfer channel concept as a
congestion model. In addition, the fact that the algorithm is oblivious to the workload
addresses (partially) the problem of uncertainty discussed throughout this thesis.

Alternative approaches to the problem may derive from exploiting other forms of ran-
domised algorithms, or adapting approaches to network routing that rely on game the-
oretical principles [131].

7.3 Concluding Remarks

A team of physicists and engineers in Geneva tune the data taking process of a complex
detector. The data taking process incorporates real-time processing to filter out events
of no significance, but early trials reveal that it is able to discard far too few events. As a
result, the data taking volume is several times what was expected. Meanwhile, physicists
in Orsay, Glasgow and Texas collaborate on the production of a large statistical sample
that should show the detection of a new physical behaviour. The deadline is short,
because the results are to be presented in an upcoming physics conference. At the
same time, managerial meetings decide to invite a new computing centre to join the
experiment, exchanging additional computing and storage resource by privileged access
to experimental data.

The question addressed in this thesis is how to integrate these conflicting interests and
building a unified data management system? Users need undisturbed access to the data;
managers are concerned with overall data storage requirements, while data centres are
always busy dealing with the needs of diverse communities of users.

In theory, the data management problem can be addressed by devising integrated data
storage and processing systems. Experimental workflows and algorithms can be re-



Chapter 7 Conclusion and Future Work 156

designed and adjusted to the underlying technical constraints. Computing resources
can, in theory, be centralised into a single large computing centre, and the work carried
out in a near optimal fashion. In practice, this solution is of little interest given the
constraints set by policies, budgets and even geography.

In [84] Jim Gray et al argue that the file modus operandi will just not work at the
peta-scale. They argue that “some new way of managing and accessing information is
needed” and that “metadata is the key to this”. While I disagree that the file modus
operandi does not work at the peta-scale - the proposed system in this thesis does work
at the peta-scale and is, at its lowest level, based on files - the key to my proposed
solution has indeed been the opportunistic use of metadata in the form of datasets as
collections of files. This thesis builds upon these ideas, and presents a set of basic
design principles out of which a subtle exploitation of metadata is fundamental. These
principles have been successfully applied in a straightforward implementation that has
served the practical needs of a large running experiment. The resulting implementation
has successfully managed tens of petabytes of data, in perhaps one of the largest data
management systems built to date.



Appendix A

Dataset Catalogue API

The dataset catalogue interface includes the following methods:

• create dataset(dsn): Creates a new dataset definition, given a dataset name
(dsn). The first version of the dataset is created (version 1) and the dataset
state is set to OPEN. The dataset contains no files at this time.

• add files(dsn, list of files): Adds logical files to the dataset with name
dsn. The dataset state must be OPEN. The list of files is a list of tuples with
(GUID, LFN). The GUID is the Globally1 Unique Identifier [112] for the file. Each
file has a unique GUID, which is assigned once and not re-used with very high
probability. The LFN is a human-friendly name of the file, which may be di↵erent
for each dataset containing the file. An usage example and additional details are
presented below.

• delete files(dsn, list of files): Deletes logical files from the dataset with
name dsn. The dataset state must be OPEN. The list of files is a list with
either GUIDs or LFNs, because both can uniquely identify a file within a dataset
as discussed below.

• close dataset(dsn): Sets the dataset with name dsn from state OPEN to state
CLOSED. At this point, no files can be added or removed from the dataset, except
if it is re-opened or a new version created.

• open dataset(dsn): Sets the dataset with name dsn from state CLOSED to state
OPEN so that the contents of the latest dataset version can be modified.

• freeze dataset(dsn): Sets the dataset with name dsn from state OPEN or CLOSED
to state FROZEN.

1Also referenced as “Universally Unique IDentifier” (UUID) or “Globally Unique IDentifier” (GUID).

157



Appendix A Dataset Catalogue API 158

• create version(dsn): Creates a new version for the dataset with name dsn. The
dataset state must be OPEN or CLOSED. The version number, which is an integer
set at dataset creation time to version 1, is incremented by 1. The new dataset
version includes the same files as the latest version; the dataset state is reset to
OPEN.

• list files(dsn[, version]: Lists the files in the latest version of the dataset
with name dsn. If the optional attribute version is set, the method lists the files
on the specific dataset version instead of the latest version.

• list datasets(pattern): Returns all dataset names that match the given pat-
tern.

• get dataset attributes(dsn): Returns the system attributes for the dataset
with name dsn. System attributes include creation date, last modification date,
dataset owner, number of files in dataset and total dataset size.

• delete dataset(dsn): Deletes the entire dataset definition for the dataset with
name dsn from the catalogue.



Appendix B

Brief Description of the SRM

v2.2 API

The storage services use the following subset of the SRM v2.2 methods:

• srmPing: Used to check if the service is operational.

• srmPrepareToGet: Used for preparing a file for transfer or access. The method as-
signs TURLs for each requested SURL, and allows the requester to specify a desired
lifetime for the TURLs. It does not immediately return prepared files, since these
operations can take some time. Instead, the method srmStatusOfGetRequest is
used to check whether the files are prepared for access.

• srmStatusOfGetRequest: This function checks the status of the previously re-
quested srmPrepareToGet.

• srmReleaseFiles: This releases the provided TURLs, after the read operation
is concluded by the user.

• srmLs: Used to check whether files and directories exist, and return their meta-
data attributes. These attributes include the locality of the files, which may be
one of ONLINE, NEARLINE, ONLINE AND NEARLINE, LOST, NONE or UNAVAILABLE.

• srmMkdir: Used to create directories in the storage namespace.

• srmPrepareToPut: Used to write files into the storage. Upon the client request,
the SRM prepares a TURL so that the client can write data into that TURL.
A lifetime is assigned on the TURL. The TURLs are not immediately provided
because space may need to be allocated (e.g. copies that were left in a disk from
previous requests may need to be removed first to make free space). The method
srmStatusOfPutRequest is used to check whether the TURLs are prepared.

159



Appendix B Brief Description of the SRM v2.2 API 160

• srmStatusOfPutRequest: Used to check whether the files are prepared for write.

• srmPutDone: This method follows from the srmStatusOfPutRequest sequence,
to indicate that the file has been fully written by the user into the provided TURL.

• srmCopy: Where supported, the method allows for third-party transfers between
storages. More details are described in Section 5.3.4.1.

• srmBringOnline: This method brings files online upon the client request so that
client can make certain data readily available for future access. In hierarchical
storage systems, this method brings the files to the top hierarchy and requests the
storage system to make sure that the files stay ONLINE for a specified period of
time. It is equivalent to the srmPrepareToGet method, but does not immediately
provide TURLs: it is used to anticipate access to files.

• srmRm: This function removes SURLs (the name space entries) from the storage.



Appendix C

Simulator

This appendix includes relevant code excerpts from the simulator described in Chapter 6.
The code uses the following external libraries:

• SciPy/NumPy, a package for scientific computing with Python, available from
http://www.scipy.org/.

• RPy, a Python interface to the R Programming Language, available from
http://rpy.sourceforge.net/.

• PyEM, a Python module that implements the EM and BIC algorithms, developed
by David Cournapeau and available from
http://www.ar.media.kyoto-u.ac.jp/members/david/softwares/em/index.html.

• SimPy, an object-oriented process-based discrete-event simulation language for
Python, available from http://simpy.sourceforge.net/.

The imported external Python modules are:

# Modules for NumPy/SciPy and R

import numpy

import pylab

import rpy

import scipy

import scipy.stats

# David Cournapeau’s PyEM module

from em import GM, GMM, EM

# SimPy Discrete Event Simulator

from SimPy.Simulation import *

161



Appendix C Simulator 162

The following excerpt is the class that applies EM algorithm with Bayesian Information
Clustering. The input data is passed in matrix.

class Learn_GM_BIC(object):

def __init__(self, dimension, kmax, matrix, max_iterations=30, threshold=1e-10):

lgm = []

bics = numpy.zeros(kmax)

em = EM()

for i in xrange(0, kmax):

lgm.append(GM(dimension, i+1, ’diag’))

gmm = GMM(lgm[i], ’kmean’)

em.train(matrix, gmm, maxiter=max_iterations, thresh=threshold)

bics[i] = gmm.bic(matrix)

self.__best_lgm = lgm[numpy.argmax(bics)]

self.__iterator = self.__samples()

def __samples(self):

while True:

val = self.__best_lgm.sample(1)[0][0]

if val > 0:

yield val

def sample(self):

# Generate random sample

return self.__iterator.next()

def gaussian(self):

return self.__best_lgm

The following class contains the code that predicts the duration of successful file trans-
fers, given the input file size. This includes the instantiation of the previous class
Learn GM BIC and the call that reads the historical workload from the relational database
records in method get durations.

class DurationPredictorByFilesize(object):

def __init__(self, run, channel):

self.__run = run

self.__channel = channel

self.__predictors = {}

filesize_durations = self.__get_durations()

for typical_filesize in filesize_durations:

durations = filesize_durations[typical_filesize]

if len(durations) >= MIN_SUCCESS_SAMPLES: # skip if not enough samples



Appendix C Simulator 163

matrix = numpy.array(map(lambda d: numpy.array([d])

learn = Learn_GM_BIC(1,

MAX_DURATION_PREDICTOR_CLUSTERS,

matrix,

durations)))

self.__predictors[typical_filesize] = learn

def __get_durations(self):

# Read Workload from historical data.

durations = {}

for row in select("""SELECT duration, filesize, time

FROM """+TABLE_NAME+"""

WHERE runid=%s

AND channel=%s

AND service=%s

AND phase=%s

AND action=%s

AND success=%s

AND filesize>=%s""",

(self.__run,

self.__channel,

SERVICE_TRANS,

PHASE_TRANS,

ACTION_END,

True,

MIN_FILESIZE)):

duration, filesize, evtime = row

evtime = _to_epoch(evtime)

typical_filesize = get_typical_size(filesize)

durations.setdefault(typical_filesize, [])

durations[typical_filesize].append(long(duration))

return durations

def sample(self, filesize):

typical_filesize = get_typical_size(filesize)

if typical_filesize in self.__predictors:

return self.__predictors[typical_filesize].sample()

# use closest size available!

closest_size = get_closest_size(filesize, self.__predictors.keys())

return self.__predictors[closest_size].sample()



Appendix C Simulator 164

The following SimPy process class is responsible for simulating each transfer. It reads
transfer requests from a job queue (jobq) and uses the DurationPredictorByFilesize

class for predicting the duration (in seconds) of successful transfers.

class TransferWorker(Process):

def __init__(self,

jobq,

predictor_success,

bin_size, st_date,

bins, success_duration_filesize):

Process.__init__(self)

# input

self.__jobq = jobq

# parameters

self.__predictor_success = predictor_success

# output

self.__bin_size = bin_size

self.__st_date = st_date

self.__bins = bins

self.__success_duration_filesize = success_duration_filesize

def execute(self):

while True:

job = self.__jobq.get()

if not job:

yield hold, self, 1

continue

# process job

filesize = job

typical_filesize = get_typical_size(filesize)

# transfer success

duration = self.__predictor_success.sample(filesize)

# sleep until the transfer is finished

yield hold, self, duration

cur = (int(now())-self.__st_date)/self.__bin_size

self.__bins[cur][0] += filesize

self.__bins[cur][1] += 1

self.__success_duration_filesize.setdefault(typical_filesize, [])

self.__success_duration_filesize[typical_filesize].append(duration)



Bibliography

[1] A. Aamnitchi, S. Doraimani, and G. Garzoglio. Filecules in High-Energy Physics: Char-
acteristics and Impact on Resource Management. In Proceedings of the 15th International
Symposium on High Performance Distributed Computing, pages 69–80. IEEE Computer
Society, 2006.

[2] David Adams, Dario Barberis, Chris Bee, Richard Hawkings, Sverre Jarp, Roger Jones,
David Malon, Luc Poggioli, Gilbert Poulard, David Quarrie, and Torre Wenaus. The Atlas
Computing Model. http://cdsweb.cern.ch/record/811058, 2004.

[3] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken, John R.
Douceur, Jon Howell, Jacob R. Lorch, Marvin Theimer, and Roger P. Wattenhofer. Farsite:
Federated, Available, and Reliable Storage for an Incompletely Trusted Environment.
ACM SIGOPS Operating Systems Review, 36(SI):1–14, 2002.

[4] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, Á. Frohner, A. Gianoli, K. L orentey,
and F. Spataro. Voms, an Authorization System for Virtual Organizations. In Proceed-
ings of the 1st European Across Grids Conference, volume 2970/2004 of Lecture Notes in
Computer Science, pages 33–40. Springer, 2004.

[5] Bill Allcock, Joe Bester, John Bresnahan, Ann L. Chervenak, Ian Foster, Carl Kesselman,
Sam Meder, Veronika Nefedova, Darcy Quesnel, and Steven Tuecke. Data Management and
Transfer in High-Performance Computational Grid Environments. Parallel Computing,
28(5):749–771, 2002.

[6] William Allcock, John Bresnahan, Rajkumar Kettimuthu, and Michael Link. The Globus
Striped GridFTP Framework and Server. In Proceedings of the 2005 ACM/IEEE confer-
ence on Supercomputing. IEEE Computer Society, 2005.

[7] Peter A. Alsberg and John D. Day. A principle for resilient sharing of distributed resources.
In Proceedings of the 2nd International Conference on Software Engineering, pages 562–
570. IEEE Computer Society, 1976.

[8] Chris Anderson. The End of Theory: The Data Deluge Makes the Scientific Method Ob-
solete, 2008. Wired Magazine, http://www.wired.com/science/discoveries/magazine/16-
07/pb theory.

[9] Phil Andrews, Patricia Kovatch, and Christopher Jordan. Massive High-Performance
Global File Systems for Grid computing. In Proceedings of the 2005 ACM/IEEE con-
ference on Supercomputing. IEEE Computer Society, 2005.

165



BIBLIOGRAPHY 166

[10] Mario Antonioletti, Malcolm Atkinson, Rob Baxter, Andrew Borley, Neil P. Chue Hong,
Brian Collins, Neil Hardman, Alastair C. Hume, Alan Knox, Mike Jackson, Amy Krause,
Simon Laws, James Magowan, Norman W. Paton, Dave Pearson, Tom Sugden, Paul Wat-
son, and Martin Westhead. The Design and Implementation of Grid Database Services
in OGSA-DAI: Research Articles. Concurrency and Computation: Practice & Experience,
17(2-4):357–376, 2005.

[11] James Aspnes, Yossi Azar, Amos Fiat, Serge Plotkin, and Orli Waarts. On-Line Routing
of Virtual Circuits with Applications to Load Balancing and Machine Scheduling. Journal
of the ACM, 44(3):486–504, 1997.

[12] Baruch Awerbuch and Yossi Azar. Local Optimization of Global Objectives: Competitive
Distributed Deadlock Resolution and Resource Allocation. In Proceedings of the 35th IEEE
Symposium on Foundations of Computer Science, pages 240–249. IEEE Computer Society,
1994.

[13] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced Allocations
(extended abstract). In Proceedings of the 26th ACM Symposium on Theory of computing,
pages 593–602. ACM, 1994.

[14] Yossi Azar, Edith Cohen, Amos Fiat, Haim Kaplan, and Harald Räcke. Optimal Oblivious
Routing in Polynomial Time. Journal of Computer and System Sciences, 69(3):383–394,
2004.

[15] Ricardo Baeza-Yates and Raghu Ramakrishnan. Data challenges at Yahoo! In Proceedings
of the 11th International Conference on Extending Database Technology, pages 652–655.
ACM, 2008.

[16] Olof Bärring, Ben Couturier, Jean-Damien Durand, Emil Knezo, Sebastien Ponce, and
Vitaly Motyakov. Storage Resource Sharing with CASTOR. In Proceedings of the 12th
NASA Goddard Conference on Mass Storage Systems and Technologies, 2004.

[17] Chaitanya Baru, Reagan Moore, Arcot Rajasekar, and Michael Wan. The SDSC Storage
Resource Broker. In Proceedings of the 1998 conference of the Centre for Advanced Studies
on Collaborative Research. IBM Press, 1998.

[18] Sujoy Basu, Sujata Banerjee, Puneet Sharma, and Sung-Ju Lee. NodeWiz: Peer-to-peer
Resource Discovery for Grids. In Proceedings of the 5th IEEE International Symposium
on Cluster Computing and the Grid, volume 1, pages 213–220. IEEE Computer Society,
2005.

[19] J-P. Baud, J. Casey, S. Lemaitre, C. Nicholson, D. Smith, and G. Stewart. Lcg Data
Management: From EDG to EGEE. In UK eScience All Hands Meeting Proceedings,
Nottingham, UK, 2005.

[20] William H. Bell, David G. Cameron, Luigi Capozza, A. Paul Millar, Kurt Stockinger,
and Floriano Zini. Simulation of Dynamic Grid Replication Strategies in OptorSim. In
Proceedings of the 3rd International Workshop on Grid Computing, volume 2536 of Lecture
Notes in Computer Science, pages 46–57. Springer, 2002.



BIBLIOGRAPHY 167

[21] William H. Bell, David G. Cameron, Ruben Carvajal-Schia�no, A. Paul Millar, Kurt
Stockinger, and Floriano Zini. Evaluation of an Economy-Based File Replication Strategy
for a Data Grid. In Proceedings of the 3rd IEEE International Symposium on Cluster
Computing and the Grid, pages 661–668. IEEE Computer Society, 2003.

[22] Tim Berners-Lee, Roy Thomas Fielding, and L. Masinter. Uniform Resource Identifiers
(URI): Generic Syntax. RFC 2396 (Draft Standard), 1998.

[23] Joseph Bester, Ian Foster, Carl Kesselman, Jean Tedesco, and Steven Tuecke. GASS: A
Data Movement and Access Service for Wide Area Computing Systems. In Proceedings of
the 6th Workshop on I/O in Parallel and Distributed Systems, pages 78–88. ACM, 1999.

[24] Ranjita Bhagwan, Kiran Tati, Yu Cheng, Stefan Savage, and Geo↵ Voelker. Total Re-
call: System Support for Automated Availability Management. In Proceedings of 1st
USENIX Symposium on Networked Systems Design and Implementation. USENIX Asso-
ciation, 2004.

[25] Charles Blake and Rodrigo Rodrigues. High Availability, Scalable Storage, Dynamic Peer
Networks: Pick Two. In Proceedings of the 9th conference on Hot Topics in Operating
Systems, volume 9. USENIX Association, 2003.

[26] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn, Hen-
rik Frystyk Nielsen, Satish Thatte, and Dave Winer. Simple Object Access Protocol
(SOAP) 1.1 - NOTE-SOAP-20000508. World Wide Web Consortium, 2000.

[27] Peter Braam. File Systems for Clusters from a Protocol Perspective. In Proceedings of
Second Extreme Linux Topics Workshop. USENIX Association, 1999.

[28] Miguel Branco and Luc Moreau. Enabling Provenance on Large Scale e-Science Applica-
tions. In Provenance and Annotation of Data, volume 4145 of Lecture Notes in Computer
Science, pages 55–63. Springer, 2006.

[29] Miguel Branco, Ed Zaluska, David De Roure, Mario Lassnig, and Vincent Garonne. Man-
aging very large distributed datasets on a Data Grid. Concurrency and Computation:
Practice & Experience (in press), 2009.

[30] Miguel Branco, Ed Zaluska, David De Roure, Pedro Salgado, Vincent Garonne, Mario
Lassnig, and Ricardo Rocha. Managing Very-Large Distributed Datasets. In Proceedings
of the OTM Conferences, volume 5331/2008 of Lecture Notes in Computer Science, pages
775–792. Springer, 2008.

[31] Lee Breslau, Pei Cue, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web Caching
and Zipf-like Distributions: Evidence and Implications. In Proceedings of the 18th Annual
Joint Conference of the IEEE Computer and Communications Societies, volume 1, pages
126–134. IEEE Computer Society, 1999.

[32] John Bresnahan, Michael Link, Gaurav Khanna, Zulfikar Imani, Rajkumar Kettimuthu,
and Ian Foster. Globus GridFTP: What’s New in 2007. In Proceedings of the 1st Inter-
national Conference on Networks for Grid Applications, pages 1–5. ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering), 2007.



BIBLIOGRAPHY 168

[33] Mike Burrows. The Chubby Lock Service for Loosely-Coupled Distributed Systems. In
Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implemen-
tation, pages 335–350. USENIX Association, 2006.

[34] Ali Butt, Troy Johnson, Yili Zheng, and Y. Hu. Kosha: a Peer-to-Peer Enhancement for
the Network File System. Journal of Grid Computing, 4(3):323–341, 2006.

[35] Min Cai, Ann Chervenak, and Martin Frank. A Peer-to-Peer Replica Location Service
Based on A Distributed Hash Table. In Proceedings of the 2004 ACM/IEEE conference
on Supercomputing. IEEE Computer Society, 2004.

[36] D. G. Cameron, A. P. Millar, C. Nicholson, R. Carvajal-Schia�no, K. Stockinger, and
F. Zini. Analysis of Scheduling and Replica Optimisation Strategies for Data Grids Using
OptorSim. Journal of Grid Computing, 2(1):57–69, 2004.

[37] David G. Cameron, Ruben Carvajal-Schia�no, A. Paul Millar, Caitriana Nicholson, Kurt
Stockinger, and Floriano Zini. Evaluating Scheduling and Replica Optimisation Strategies
in OptorSim. In Proceedings of the 4th International Workshop on Grid Computing, pages
52–59. IEEE Computer Society, 2003.

[38] Henri Casanova, Arnaud Legrand, and Martin Quinson. SimGrid: A Generic Framework
for Large-Scale Distributed Experiments. In Proceedings of the 10th International Con-
ference on Computer Modeling and Simulation, pages 126–131. IEEE Computer Society,
2008.

[39] Miguel Castro, Manuel Costa, and Antony Rowstron. Debunking some myths about struc-
tured and unstructured overlays. In Proceedings of the 2nd USENIX Symposium on Net-
worked Systems Design and Implementation, volume 2, pages 85–98. USENIX Association,
2005.

[40] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance. In Proceedings
of the 3rd USENIX Symposium on Operating Systems Design and Implementation, pages
173–186. USENIX Association, 1999.

[41] Fay Chang, Je↵rey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A Distributed
Storage System for Structured Data. ACM Transactions on Computer Systems, 26(2):1–26,
2008.

[42] Ann Chervenak, Ewa Deelman, Ian Foster, Leanne Guy, Wolfgang Hoschek, Adriana
Iamnitchi, Carl Kesselman, Peter Kunszt, Matei Ripeanu, Bob Schwartzkopf, Heinz
Stockinger, Kurt Stockinger, and Brian Tierney. Giggle: A Framework for Construct-
ing Scalable Replica Location Services. In Proceedings of the 2002 ACM/IEEE conference
on Supercomputing, pages 1–17. IEEE Computer Society, 2002.

[43] Ann Chervenak, Ian Foster, Carl Kesselman, Charles Salisbury, and Steven Tuecke. The
Data Grid: Towards an Architecture for the Distributed Management and Analysis of
Large Scientific Datasets. Journal of Network and Computer Applications, 23(3):187–200,
2000.



BIBLIOGRAPHY 169

[44] Ann Chervenak, Robert Schuler, Carl Kesselman, Scott Koranda, and Brian Moe. Wide
Area Data Replication for Scientific Collaborations. International Journal of High Perfor-
mance Computing and Networking, 5(3):124–134, 2008.

[45] Hung chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D. Stott Parker. Map-Reduce-Merge:
Simplified Relational Data Processing on Large Clusters. In Proceedings of the 2007 ACM
SIGMOD International Conference on Management of Data, pages 1029–1040. ACM, 2007.

[46] Byung-Gon Chun, Frank Dabek, Andreas Haeberlen, Emil Sit, Hakim Weatherspoon,
M. Frans Kaashoek, John Kubiatowicz, and Robert Morris. E�cient Replica Maintenance
for Distributed Storage Systems. In Proceedings of the 3rd USENIX Symposium on Net-
worked Systems Design and Implementation, volume 3, pages 45–58. USENIX Association,
2006.

[47] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: A Dis-
tributed Anonymous Information Storage and Retrieval System. In Proceedings of the
ICSI International Workshop on Design Issues in Anonymity and Unobservability, volume
2009/2001 of Lecture Notes in Computer Science, pages 46–66. Springer, 2001.

[48] Bram Cohen. Incentives build robustness in BitTorrent. In Workshop on Economics of
Peer-to-Peer Systems, 2003.

[49] Edith Cohen and Scott Shenker. Replication Strategies in Unstructured Peer-to-Peer Net-
works. In Proceedings of the 2002 ACM SIGCOMM Conference, pages 177–190. ACM,
2002.

[50] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli↵ord Stein. Introduc-
tion to Algorithms. The MIT Press, 2nd edition, 2001.

[51] Karl Czajkowski, Carl Kesselman, Steven Fitzgerald, and Ian Foster. Grid Information
Services for Distributed Resource Sharing. In Proceedings of the 10th IEEE International
Symposium on High-Performance Distributed Computing. IEEE Computer Society, 2001.

[52] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica. Wide-area
cooperative storage with CFS. ACM SIGOPS Operating Systems Review, 35(5):202–215,
2001.

[53] Frank Dabek, Jinyang Li, Emil Sit, James Robertson, Frans Kaashoek, and Robert Morris.
Designing a DHT for Low Latency and High Throughput. In Proceedings of 1st USENIX
Symposium on Networked Systems Design and Implementation, pages 85–98. USENIX
Association, 2004.

[54] Miguel de Cervantes. El ingenioso hidalgo don Quijote de la Mancha. Originally published
by Iuan de la Cuesta, 1605.

[55] Je↵rey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. In Proceedings of the 6th USENIX Symposium on Operating Systems Design and
Implementation. USENIX Association, 2004.

[56] Je↵rey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. Communications of the ACM, 51(1):107–113, 2008.



BIBLIOGRAPHY 170

[57] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vo-
gels. Dynamo: Amazon’s Highly Available Key-value Store. In Proceedings of 21st ACM
SIGOPS Symposium on Operating Systems Principles, pages 205–220. ACM, 2007.

[58] Ewa Deelman and Ann Chervenak. Data Management Challenges of Data-Intensive Sci-
entific Workflows. In Proceedings of the 8th IEEE International Symposium on Cluster
Computing and the Grid, pages 687–692. IEEE Computer Society, 2008.

[59] Ewa Deelman, Gurmeet Singh, Miron Livny, Bruce Berriman, and John Good. The
Cost of Doing Science on the Cloud: The Montage Example. In Proceedings of the 2008
ACM/IEEE conference on Supercomputing, pages 1–12. IEEE Computer Society, 2008.

[60] Kemal A. Delic and Martin Anthony Walker. Emergence of The Academic Computing
Clouds. Ubiquity, 9(31):1–1, 2008.

[61] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete
Data via the EM Algorithm. Journal of the Royal Statistical Society, 39(1):1–38, 1977.

[62] Mustafa Mat Deris, Jemal H. Abawajy, and Ali Mamat. An e�cient replicated data
access approach for large-scale distributed systems. Future Generation Computer Systems,
24(1):1–9, 2008.

[63] P. Deutsch and J-L. Gailly. ZLIB Compressed Data Format Specification version 3.3. RFC
1950 (Informational), 1996.

[64] Shyamala Doraimani and Adriana Iamnitchi. File grouping for scientific data management:
lessons from experimenting with real traces. In Proceedings of the 17th International
Symposium on High Performance Distributed Computing, pages 153–164. ACM, 2008.

[65] P. Druschel and A. Rowstron. PAST: A large-scale, persistent peer-to-peer storage utility.
In Proceedings of the 8th Workshop on Hot Topics in Operating Systems, pages 75–80.
USENIX Association, 2001.

[66] L. Dusseault. HTTP Extensions for Web Distributed Authoring and Versioning (Web-
DAV). RFC 4918 (Proposed Standard), 2007.

[67] The Economist. Microsoft v Google: When clouds collide.
http://www.economist.com/business/displaystory.cfm?story id=10650607, February
7th 2008.

[68] Giacomo V. Mc Evoy and Bruno Schulze. Using Clouds to address Grid Limitations. In
Proceedings of the 6th International Workshop on Middleware for Grid computing, pages
1–6. ACM, 2008.

[69] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, 2000.

[70] Roy Thomas Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and Tim
Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard), 1999.

[71] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, 1985.



BIBLIOGRAPHY 171

[72] Ian Foster, K. Czajkowski, D. E. Ferguson, J. Frey, S. Graham, T. Maguire, D. Snelling,
and S. Tuecke. Modeling and Managing State in Distributed Systems: The Role of OGSI
and WSRF. Proceedings of the IEEE, 93(3):604–612, 2005.

[73] Ian Foster and Adriana Iamnitchi. On Death, Taxes, and the Convergence of Peer-to-
Peer and Grid Computing. In Peer-to-Peer Systems II, volume 2735 of Lecture Notes in
Computer Science, pages 118–128. Springer, 2003.

[74] Ian Foster and Carl Kesselman. The Grid 2: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, 2nd edition, 2003.

[75] Ian Foster, Carl Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration. Open Grid Service
Infrastructure WG, 2002.

[76] Ian Foster, Carl Kesselman, Gene Tsudik, and Steven Tuecke. A Security Architecture
for Computational Grids. In Proceedings of the 5th ACM conference on Computer and
Communications Security, pages 83–92. ACM, 1998.

[77] Ian T. Foster. The Anatomy of the Grid: Enabling Scalable Virtual Organizations. In
Proceedings of the 7th International Conference on Parallel Processing, pages 1–4. Springer,
2001.

[78] David Freedman and Persi Diaconis. On the histogram as a density estimator: l2 theory.
Probability Theory and Related Fields, 57:453–476, 1981.

[79] Patrick Fuhrmann and Volker Gülzow. dcache, Storage System for the Future. In Euro-
Par 2006 Parallel Processing, volume 4128 of Lecture Notes in Computer Science, pages
1106–1113. Springer, 2006.

[80] Sanjay Ghemawat, Howard Gobio↵, and Shun-Tak Leung. The Google File System. ACM
SIGOPS Operating Systems Review, 37(5):29–43, 2003.

[81] Geof H. Givens and Jennifer A. Hoeting. Computational Statistics. Wiley-Interscience, 1st
edition, 2005.

[82] P. Brighten Godfrey, Scott Shenker, and Ion Stoica. Minimizing Churn in Distributed
Systems. In Proceedings of the 2006 ACM SIGCOMM Conference, pages 147–158. ACM,
2006.

[83] Jim Gray and Leslie Lamport. Consensus on Transaction Commit. ACM Transactions on
Database Systems, 31(1):133–160, 2006.

[84] Jim Gray, David T. Liu, Maria Nieto-Santisteban, Alex Szalay, David J. DeWitt, and
Gerd Heber. Scientific Data Management in the Coming Decade. ACM SIGMOD Record,
34(4):34–41, 2005.

[85] Alon Halevy, Peter Norvig, and Fernando Pereira. The Unreasonable E↵ectiveness of Data.
IEEE Intelligent Systems, 24(2):8–12, 2009.

[86] Brian Hayes. Cloud computing. Communications of the ACM, 51(7):9–11, 2008.



BIBLIOGRAPHY 172

[87] Joseph M. Hellerstein. Toward Network Data Independence. ACM SIGMOD Record,
32(3):34–40, 2003.

[88] Tony Hey and Anne Trefethen. The data deluge: An e-science perspective. In Fran Berman,
Geo↵rey Fox, and Tony Hey, editors, Grid Computing: Making the Global Infrastructure
a Reality, chapter 36. Wiley, 2003.

[89] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satya-
narayanan, Robert N. Sidebotham, and Michael J. West. Scale and Performance in a
Distributed File System. ACM Transactions on Computer Systems, 6(1):51–81, 1988.

[90] Wilson Hsieh, Jayant Madhavan, and Rob Pike. Data management projects at Google.
In Proceedings of the 2006 ACM SIGMOD International Conference on Management of
Data, pages 725–726. ACM, 2006.

[91] IPOQUE. Internet Study 2007: Data about P2P, VoIP, Skype,
file hosters like RapidShare and streaming services like YouTube.
http://www.ipoque.com/media/internet studies/internet study 2007, 2007.

[92] R. K. Jain. The Art of Computer Systems Performance Analysis: Techniques for Experi-
mental Design, Measurement, Simulation, and Modeling. Wiley-Interscience, 1991.

[93] Dieter Jungnickel. Graphs, Networks and Algorithms. Springer, 2nd edition, 2003.

[94] G. Khanna, U. Catalyurek, T. Kurc, R. Kettimuthu, P. Sadayappan, and J. Saltz. A
Dynamic Scheduling Approach for Coordinated Wide-Area Data Transfers using GridFTP.
In Proceedings of the 22nd IEEE International Symposium on Parallel and Distributed
Processing, pages 1–12. IEEE Computer Society, 2008.

[95] Gaurav Khanna, Umit Catalyurek, Tahsin Kurc, Rajkumar Kettimuthu, P. Sadayappan,
Ian Foster, and Joel Saltz. Using Overlays for E�cient Data Transfer Over Shared Wide-
Area Networks. In Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
pages 1–12. IEEE Computer Society, 2008.

[96] Gaurav Khanna, Umit Catalyurek, Tahsin Kurc, P. Sadayappan, Joel Saltz, Rajkumar
Kettimuthu, and Ian Foster. Multi-Hop Path Splitting and Multi-Pathing Optimizations
for Data Transfers over Shared Wide-Area Networks using GridFTP. In Proceedings of
the 17th International Symposium on High Performance Distributed Computing, pages
225–226. ACM, 2008.

[97] J. Klensin. Role of the Domain Name System (DNS). RFC 3467 (Informational), 2003.

[98] John C. Klensin. Simple Mail Transfer Protocol. RFC 5321 (Draft Standard), 2008.

[99] Donald Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching.
Addison-Wesley, 3rd edition, 1997.

[100] Tevfik Kosar and Miron Livny. Stork: Making Data Placement a First Class Citizen in
the Grid. In Proceedings of the 24th International Conference on Distributed Computing
Systems, pages 342–349. IEEE Computer Society, 2004.



BIBLIOGRAPHY 173

[101] Nicolas Kourtellis, Lydia Prieto, Adriana Iamnitchi, Gustavo Zarrate, and Dan Fraser.
Data Transfers in the Grid: Workload Analysis of Globus GridFTP. In Proceedings of the
2008 International Workshop on Data-aware Distributed Computing, pages 29–38. ACM,
2008.

[102] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton, Dennis
Geels, Ramakrishan Gummadi, Sean Rhea, Hakim Weatherspoon, Westley Weimer, Chris
Wells, and Ben Zhao. OceanStore: An Architecture for Global-Scale Persistent Storage.
ACM SIGPLAN Notices, 35(11):190–201, 2000.

[103] P. Kunszt, P. Badino, A. Frohner, G. McCance, K. Nienartowicz, R. Rocha, and D. Ro-
drigues. Data Storage, Access and Catalogs in gLite. In Proceedings of the 2005 IEEE
International Symposium on Mass Storage Systems and Technology, volume 0, pages 166–
170. IEEE Computer Society, 2005.

[104] Peter Kunszt, Erwin Laure, Heinz Stockinger, and Kurt Stockinger. File-based replica
management. Future Generation Computer Systems, 21(1):115–123, 2005.

[105] H. Lamehamedi, B. Szymanski, Z. Shentu, and E. Deelman. Data Replication Strategies
in Grid Environments. In Proceedings of the 5th International Conference on Algorithms
and Architectures for Parallel Processing, pages 378–383. IEEE Computer Society, 2002.

[106] Houda Lamehamedi, Zujun Shentu, Boleslaw Szymanski, and Ewa Deelman. Simulation
of Dynamic Data Replication Strategies in Data Grids. In Proceedings of the 17th IEEE
International Symposium on Parallel and Distributed Processing. IEEE Computer Society,
2003.

[107] Houda Lamehamedi, Boleslaw K. Szymanski, and Brenden Conte. Distributed Data Man-
agement Services for Dynamic Data Grids. Technical report, Rensselaer Polytechnic Insti-
tute, 2005.

[108] Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM, 21(7):558–565, 1978.

[109] Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing Col-
umn), 32(4):18–25, 2001.

[110] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals Problem.
ACM Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

[111] Simon St. Laurent, Edd Dumbill, and Joe Johnston. Programming Web Services with
XML-RPC. O’Reilly Media, 2001.

[112] P. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier (UUID) URN Names-
pace. RFC 4122 (Proposed Standard), 2005.

[113] Ming Lei, Susan V. Vrbsky, and Xiaoyan Hong. An on-line replication strategy to increase
availability in Data Grids. Future Generation Computer Systems, 24(2):85–98, 2008.

[114] Ming Lei, S.V. Vrbsky, and Xiaoyan Hong. A Dynamic Data Grid Replication Strategy
to Minimize the Data Missed. In Proceedings of the 3rd International Conference on
Broadband Communications, Networks and Systems, pages 1–10. IEEE Computer Society,
2006.



BIBLIOGRAPHY 174

[115] Elias Leontiadis, Vassilios Dimakopoulos, and Evaggelia Pitoura. Creating and Maintaining
Replicas in Unstructured Peer-to-Peer Systems. In Euro-Par 2006 Parallel Processing,
volume 4128/2006 of Lecture Notes in Computer Science, pages 1015–1025. Springer, 2006.

[116] Yi-Fang Lin, Pangfeng Liu, and Jan-Jan Wu. Optimal Placement of Replicas in Data
Grid Environments with Locality Assurance. In Proceedings of the 12th International
Conference on Parallel and Distributed Systems, volume 1. IEEE Computer Society, 2006.

[117] Witold Litwin. Linear Hashing: a new tool for file and table addressing., pages 570–581.
Morgan Kaufmann Publishers Inc., 1988.

[118] Pangfeng Liu and Jan-Jan Wu. Optimal Replica Placement Strategy for Hierarchical
Data Grid Systems. In Proceedings of the 6th IEEE International Symposium on Cluster
Computing and the Grid, volume 1. IEEE Computer Society, 2006.

[119] Dionysios Logothetis and Kenneth Yocum. Ad-Hoc Data Processing in the Cloud. Journal
of the VLDB Endowment, 1(2):1472–1475, 2008.

[120] Eng Keong Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A Survey and Comparison
of Peer-to-Peer Overlay Network Schemes. IEEE Communications Surveys & Tutorials,
7(2):72–93, 2005.

[121] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and Replication in
Unstructured Peer-to-Peer Networks. In Proceedings of the 16th International Conference
on Supercomputing, pages 84–95. ACM, 2002.

[122] John MacCormick, Nicholas Murphy, Venugopalan Ramasubramanian, Udi Wieder, Jun-
feng Yang, and Lidong Zhou. Kinesis: A New Approach to Replica Placement in Dis-
tributed Storage Systems. ACM Transactions on Storage, 4(4):1–28, 2009.

[123] Y. Machida, S. Takizawa, H. Nakada, and S. Matsuoka. Multi-Replication with Intelli-
gent Staging in Data-Intensive Grid Applications. In Proceedings of the 7th IEEE/ACM
International Conference on Grid Computing, pages 88–95. IEEE Computer Society, 2006.

[124] Ravi K. Madduri, Cynthia S. Hood, and William E. Allcock. Reliable File Transfer in Grid
Environments. In Proceedings of the 27th Annual IEEE Conference on Local Computer
Networks, pages 737–738. IEEE Computer Society, 2002.

[125] Tadashi Maeno. PanDA: distributed production and distributed analysis system for AT-
LAS. Journal of Physics: Conference Series, 119(6), 2008.

[126] Frank Manola and Eric Miller. RDF Primer. World Wide Web Consortium, 2004.

[127] Ralph Merkle. Secrecy, authentication and public key systems / A certified digital signature.
PhD thesis, Stanford University, 1979.

[128] Sun Microsystems. Lustre Networking: High-Performance Features and Flexible Support
for a Wide Array of Networks. http://www.sun.com/o↵ers/details/lustre networking.html,
2008.

[129] Ruggero Morselli, Bobby Bhattacharjee, Aravind Srinivasan, and Michael A. Marsh. Ef-
ficient Lookup on Unstructured Topologies. In Proceedings of the 24th ACM Symposium
on Principles of Distributed Computing, pages 77–86. ACM, 2005.



BIBLIOGRAPHY 175

[130] Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and Benjie Chen. Ivy: a Read-
/Write Peer-to-Peer File System. ACM SIGOPS Operating Systems Review, 36(SI):31–44,
2002.

[131] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani. Algorithmic Game
Theory. Cambridge University Press, 2007.

[132] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew
Tomkins. Pig Latin: A Not-So-Foreign Language for Data Processing. In Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data, pages 1099–1110.
ACM, 2008.

[133] Ekow Otoo and Arie Shoshani. Accurate Modeling of Cache Replacement Policies in a Data
Grid. In Proceedings of the 20th NASA Goddard Conference on Mass Storage Systems and
Technologies, page 10. IEEE Computer Society, 2003.

[134] Mayur R. Palankar, Adriana Iamnitchi, Matei Ripeanu, and Simson Garfinkel. Amazon S3
for Science Grids: a Viable Solution? In Proceedings of the 2008 International Workshop
on Data-aware Distributed Computing, pages 55–64. ACM, 2008.

[135] LIGO Project. Lightweight Data Replicator. http://www.lsc-group.phys.uwm.edu/LDR/,
2004.

[136] Harald Räcke. Minimizing Congestion in General Networks. In Proceedings of the 43rd
IEEE Symposium on Foundations of Computer Science, pages 43–52. IEEE Computer
Society, 2002.

[137] Harald Räcke. Optimal Hierarchical Decompositions for Congestion Minimization in Net-
works. In Proceedings of the 40th ACM Symposium on Theory of computing, pages 255–264.
ACM, 2008.

[138] Ioan Raicu, Yong Zhao, Ian T. Foster, and Alex Szalay. Accelerating Large-scale Data
Exploration through Data Di↵usion. In Proceedings of the 2008 International Workshop
on Data-aware Distributed Computing, pages 9–18. ACM, 2008.

[139] A. Rajasekar, M. Wan, R. Moore, and W. Schroeder. Data Grid federation. In Proceedings
of the International Conference on Parallel and Distributed Processing Techniques and
Applications, pages 541–546. CSREA Press, 2004.

[140] A. Rajasekar, M. Wan, R. Moore, and W. Schroeder. A Prototype Rule-Based Distributed
Data Management System. In HPDC workshop on Next Generation Distributed Data
Management, 2006.

[141] Kavitha Ranganathan and Ian Foster. Design and Evaluation of Dynamic Replication
Strategies for a High Performance Data Grid. In International Conference on Computing
in High Energy and Nuclear Physics. IOP, 2001.

[142] Kavitha Ranganathan and Ian Foster. Decoupling Computation and Data Scheduling in
Distributed Data-Intensive Applications. In Proceedings of the 11th International Sympo-
sium on High Performance Distributed Computing, pages 352–358. IEEE Computer Soci-
ety, 2002.



BIBLIOGRAPHY 176

[143] Kavitha Ranganathan and Ian Foster. Simulation Studies of Computation and Data
Scheduling Algorithms for Data Grids. Journal of Grid Computing, 1(1):53–62, 2003.

[144] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker. A
Scalable Content-Addressable Network. In Proceedings of the 2001 ACM SIGCOMM Con-
ference, pages 161–172. ACM, 2001.

[145] J. Rehn, T. Barrass, D. Bonacorsi, J. Hernandez, I. Semeniouk, L. Tuura, and Y. Wu.
PhEDEx high-throughput data transfer management system. In International Conference
on Computing in High Energy and Nuclear Physics, 2006.

[146] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Weatherspoon, Ben Zhao, and John
Kubiatowicz. Pond: The OceanStore Prototype. In Proceedings of the 2003 Conference
on File and Storage Technologies, pages 1–14. USENIX Association, 2003.

[147] John Risson and Tim Moors. Survey of Research towards Robust Peer-to-Peer networks:
Search Methods. Computer Networks, 50(17):3485–3521, 2006.

[148] Mema Roussopoulos, Mary Baker, David S. H. Rosenthal, T.J. Giuli, Petros Maniatis, and
Je↵ Mogul. 2 P2P or Not 2 P2P? CoRR, cs.NI/0311017, 2003.

[149] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems. In Proceedings of the
IFIP/ACM International Conference on Distributed Systems Platforms (Middleware), vol-
ume 2218/2001 of Lecture Notes in Computer Science, pages 329–350. Springer, 2001.

[150] Asad Samar and Heinz Stockinger. Grid Data Management Pilot (GDMP): A Tool for
Wide Area Replication. In Proceedings of the IASTED International Conference on Applied
Informatics, 2001.

[151] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon. Design
and Implementation of the Sun Network Filesystem. In Proceedings of the Summer 1985
USENIX Conference, pages 119–130. USENIX Association, 1985.

[152] M. Satyanarayanan, J.J. Kistler, P. Kumar, M.E. Okasaki, E.H. Siegel, and D.C. Steere.
Coda: A Highly Available File System for a Distributed Workstation Environment. IEEE
Transactions on Computers, 39(4):447–459, 1990.

[153] Frank Schmuck and Roger Haskin. GPFS: A Shared-Disk File System for Large Computing
Clusters. In Proceedings of the 2002 Conference on File and Storage Technologies, pages
231–244. USENIX Association, 2002.

[154] Fred B. Schneider. Implementing Fault-Tolerant Services Using the State Machine Ap-
proach: A Tutorial. ACM Computing Surveys, 22(4):299–319, 1990.

[155] Philip Schwan. Lustre: Building a File System for 1,000-node Clusters. In Proceedings of
the 2003 Linux Symposium, 2003.

[156] Gideon Schwarz. Estimating the Dimension of a Model. The Annals of Statistics, 6(2):461–
464, 1978.



BIBLIOGRAPHY 177

[157] A. Shoshani, A. Sim, and J. Gu. Storage Resource Managers: Middleware Components
for Grid Storage. In Proceedings of the 10th NASA Goddard Conference on Mass Storage
Systems and Technologies. IEEE Computer Society, 2002.

[158] Stephen C. Simms, Gregory G. Pike, S. Teige, Bret Hammond, Yu Ma, Larry L. Simms,
C. Westneat, and Douglas A. Balog. Empowering Distributed Workflow with the Data
Capacitor: Maximizing Lustre Performance across the Wide Area Network. In Proceedings
of the 2007 Workshop on Service-Oriented Computing Performance: Aspects, Issues, and
Approaches, pages 53–58. ACM, 2007.

[159] Mauro Sozio, Thomas Neumann, and Gerhard Weikum. Near-Optimal Dynamic Replica-
tion in Unstructured Peer-to-Peer Networks. In Proceedings of the 27th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, pages 281–290. ACM,
2008.

[160] Heinz Stockinger, Asad Samar, Koen Holtman, Bill Allcock, Ian Foster, and Brian Tierney.
File and Object Replication in Data Grids. Cluster Computing, 5(3):305–314, 2002.

[161] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications. In Proceedings
of the 2001 ACM SIGCOMM Conference, pages 149–160. ACM, 2001.

[162] Jeremy Stribling, Yair Sovran, Irene Zhang, Xavid Pretzer, Jinyang Li, M. Frans Kaashoek,
and Robert Morris. Flexible, Wide-Area Storage for Distributed Systems with WheelFS.
In Proceedings of the 6th USENIX Symposium on Networked Systems Design and Imple-
mentation, pages 43–58. USENIX Association, 2009.

[163] Anthony Sulistio, Uros Cibej, Srikumar Venugopal, Borut Robic, and Rajkumar Buyya.
A toolkit for modelling and simulating data Grids: an extension to GridSim. Concurrency
and Computation: Practice & Experience, 20(13):1591–1609, 2008.

[164] Alexander S. Szalay, Jim Gray, Ani R. Thakar, Peter Z. Kunszt, Tanu Malik, Jordan
Raddick, Christopher Stoughton, and Jan vandenBerg. The SDSS SkyServer: Public
Access to the Sloan Digital Sky Server data. In Proceedings of the 2002 ACM SIGMOD
international conference on Management of data, pages 570–581. ACM, 2002.

[165] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems: Principles and
Paradigms. Pearson Prentice Hall, 2nd edition, 2007.

[166] Osamu Tatebe, Satoshi Sekiguchi, and Youhei Morita. Gfarm v2: A grid file
system that supports high-performance distributed and parallel data computing.
http://datafarm.apgrid.org/pdf/CHEP04-gfarmv2.pdf, 2004.

[167] S. Tuecke, K. Czajkowski, Ian Foster, J. Frey, S. Graham, C. Kesselman, D. Snelling, and
Vanderbilt. Open Grid Services Infrastructure (OGSI), 2003.

[168] S. Venugopal and R. Buyya. A Set Coverage-based Mapping Heuristic for Scheduling Dis-
tributed Data-Intensive Applications on Global Grids. In Proceedings of 7th IEEE/ACM
International Conference on Grid Computing, pages 238–245. IEEE Computer Society,
2006.



BIBLIOGRAPHY 178

[169] Srikumar Venugopal, Rajkumar Buyya, and Kotagiri Ramamohanarao. A Taxonomy of
Data Grids for Distributed Data Sharing, Management, and Processing. ACM Computing
Surveys, 38(1), 2006.

[170] Werner Vogels. Eventually consistent. Communications of the ACM, 52(1):40–44, 2009.

[171] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos Maltzahn.
Ceph: A Scalable, High-Performance Distributed File System. In Proceedings of the 7th
USENIX Symposium on Operating Systems Design and Implementation, pages 307–320.
USENIX Association, 2006.

[172] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and Carlos Maltzahn. CRUSH: Con-
trolled, Scalable, Decentralized Placement of Replicated Data. In Proceedings of the 2006
ACM/IEEE conference on Supercomputing, page 31. IEEE Computer Society, 2006.

[173] Sage A. Weil, Andrew W. Leung, Scott A. Brandt, and Carlos Maltzahn. RADOS: A
Scalable, Reliable Storage Service for Petabyte-scale Storage Clusters. In Proceedings of
the 2nd International Workshop on Petascale Data Storage, pages 35–44. ACM, 2007.

[174] Aaron Weiss. Computing in the clouds. netWorker, 11(4):16–25, 2007.

[175] Brian S. White, Michael Walker, Marty Humphrey, and Andrew S. Grimshaw. LegionFS:
A Secure and Scalable File System Supporting Cross-Domain High-Performance Applica-
tions. In Proceedings of the 2001 ACM/IEEE conference on Supercomputing, pages 59–59.
ACM, 2001.

[176] Nancy Wilkins-Diehr, Dennis Gannon, Gerhard Klimeck, Scott Oster, and Sudhakar
Pamidighantam. TeraGrid Science Gateways and Their Impact on Science. Computer,
41(11):32–41, 2008.

[177] Chao-Tung Yang, I-Hsien Yang, Chun-Hsiang Chen, and Shih-Yu Wang. Implementation of
a dynamic adjustment mechanism with e�cient replica selection in data grid environments.
In Proceedings of the 2006 ACM Symposium on Applied Computing, pages 797–804. ACM,
2006.

[178] Yulai Yuan, Yongwei Wu, Guangwen Yang, and Feng Yu. Dynamic Data Replication based
on Local Optimization Principle in Data Grid. In Proceedings of the 6th International
Conference on Grid and Cooperative Computing, pages 815–822. Springer, 2007.

[179] Zheng Zhang, Qiao Lian, Shiding Lin, Wei Chen, Yu Chen, and Chao Jin. BitVault: a
Highly Reliable Distributed Data Retention Platform. ACM SIGOPS Operating Systems
Review, 41(2):27–36, 2007.

[180] Ben Y. Zhao, John D.Kubiatowicz, and Anthony D. Joseph. Tapestry: A Fault-Tolerant
Wide-area Application Infrastructure. ACM SIGCOMM Computer Communication Re-
view, 32(1):81–81, 2002.


