

Introduction

- broad physics program covered by LHC experiments
- 2 general purpose pp experiments (ATLAS and CMS) cover: SM QCD/W/Z/top, Higgs, SUSY, Exotics, (b-physics) ...
\Rightarrow LHCb as dedicated b-physics experiment (forward physics)
- ALICE as a heavy ion experiment
- detectors designed to optimize physics performance
\Rightarrow at design luminosities ($10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$) and pileup (~ 23 min.bias events)
\Rightarrow b-physics trigger (LHCb)
\Rightarrow heavy ion "central" event multiplicities (ALICE)
- task of event reconstruction is to identify objects

C e/ μ / τ leptons, photons, (b) jets, missing $\mathrm{E}_{\mathrm{T},}$ exclusive hadronic states...
\Rightarrow input to physics analysis of complete event signature

Event Reconstruction"in a Nutshell"

Event Reconstruction "in a Nutshell"

Event Reconstruction"in a Nutshell"

Event Reconstruction"in a Nutshell"

Tracking at the LHC

- object reconstruction to cover LHC physics program
\Rightarrow often requires combining information from tracking detector with calorimetric and muon spectrometer measurements
- TRACKING is a central aspect of the event reconstruction and analysis

- requirements on tracking detectors

\Rightarrow precision tracking at LHC luminosities (central heavy ion event multiplicities) with a hermitic detector
\Rightarrow usually Pixel/Strip Detector for precise primary/secondary vertex reconstruction and to provide excellent b-tagging in jets
\Rightarrow reconstruction of electrons (and converted photons)
\Rightarrow tracking of muons combined with muon spectrometer, good resolution over the full accessible momentum range

- enable (hadronic) tau, exclusive b- and c-hadron reconstruction
- provide particle identification, e.g.:
- transition radiation in ATLAS TRT/ALICE TRD for electron identification
- dE/dx in Pixels/Silicon or ALICE TPC, Cherenkov detectors (LHCb)
-> not to forget: enable fast tracking for (high level) trigger

Evolution of (Silicon) Detectors

- LEP eg. DELPHI (1996)
- $1.8 \mathrm{~m}^{2}$ of silicon
- 175 k readout channels

- CDF SVX IIa (2001)
- $6 \mathrm{~m}^{2}$ of silicon
- 175k channels
- CMS tracker
- full silicon tracker
- $210 \mathrm{~m}^{2}$ of silicon
- 10.7 M channels
- results from huge technology advancements to match requirements of every generation of experiments

Example for an LHC Tracking Detector

- answer of the experiments to match physics requirements
- ATLAS:
- 3 layer Pixel system, 3 endcap disks
- 1744 Pixel modules
- 80.4 million channels
- pitch $50 \mu \mathrm{~m} \times 400 \mu \mathrm{~m}$
- total of $1.8 \mathrm{~m}^{2}$
- 4 layers of small angle stereo strips, 9 endcap disks each side (SCT)
- 4088 double sided modules
- 6.3 million channels
- pitch $80 \mu \mathrm{~m}, 40 \mathrm{mrad}$ stereo angle
- total of $60 \mathrm{~m}^{2}$
- Transition Radiation Tracker (TRT)
- typically 36 hits per track
- transition radiation to identify electrons

- total of 370K drift tubes

Outline of Lectures on next 3 Days

- part 1 ~ Passage of Particles through Matter
- part 2 ~ LHC Tracking Detectors
- part 3 ~ Concepts for Track Reconstruction
- part 4 ~ Vertex Reconstruction and its Applications
- part 5 ~ Commissioning, Alignment and Performance
- part 6 ~ High Luminosity and Upgrade

Feedback Welcome !

- first time I give this lecture series
a after years in this field I may take things for granted which in reality are technicalities that need to be explained
- will try to give a balanced overview on tracking and vertexing relevant for all LHC experiments
- material presented is probably biased towards ATLAS
- easier for me to find the relevant plots, etc.

Feedback Welcome !

- first time I give this lecture series
a after years in this field I may take things for granted which in reality are technicalities that need to be explained
- will try to give a balanced overview on tracking and vertexing relevant for all LHC experiments
- material presented is probably biased towards ATLAS
C. easier for me to find the relevant plots, etc.

Passage of Particles through Matter

- any device that is to detect a particle must interact with it in some way
\Rightarrow well, almost...
\Rightarrow in many experiments neutrinos are measured by missing transverse momentum

[^0]
Outline of Part 1

- overview of charged particle interactions with matter
\square provide not only the means to detect charged particles
- important as well to understand they affect the tracking performance of
C. energy loss
\Rightarrow multiple scattering
- Bremsstrahlung
- hadronic interactions

Charged Particle Interactions with Matter

- particles are detected through their interaction with the active detector materials

Charged Particle Interactions with Matter

- particles are detected through their interaction with the active detector materials
- energy loss by ionization
primary ionisation can generate secondary ionisation

typically:
total ionization $\approx 3 \times$ primary ionization
$\Rightarrow \sim 90$ electrons/cm in gas at 1 bar

Charged Particle Interactions with Matter

particles are detected through their interaction with the active detector materials

- energy loss by ionization
primary ionisation can generate secondary ionisation

typically:
total ionization $\approx 3 \times$ primary ionization
$\Rightarrow \sim 90$ electrons/cm in gas at 1 bar

- not directly used for particle identification by ATLAS/CMS

Charged Particle Interactions with Matter

- particles are detected through their interaction with the active detector materials
- energy loss by ionisation

Charged Particle Interactions with Matter

- particles are detected through their interaction with the active detector materials
- energy loss by ionisation
- Bremsstrahlung
due to interaction with Coulomb field of nucleus
dominant energy loss mechanism for electrons down to low momenta ($\sim 20 \mathrm{MeV}$)
initiates EM cascades (showers)

Charged Particle Interactions with Matter

- particles are detected through their interaction with the active detector materials
- Energy loss by ionization
- Bremsstrahlung

Charged Particle Interactions with Matter

- particles are detected through their interaction with the active detector materials
- Energy loss by ionization
Bremsstrahlung
- multiple scattering
charged particles traversing a medium are deflected by many successive small-angle scatters
angular distribution ~ Gaussian

$$
\sigma_{\mathrm{MS}} \sim 1 / \mathrm{p} *\left(x / X_{0}\right)^{1 / 2}
$$

but also large angles from Rutherford scattering $\sim \sin ^{-4}(\theta / 2)$
\Rightarrow complicates track fitting, limits momentum measurement

Charged Particle Interactions with Matter

- particles are detected through their interaction with the active detector materials
- energy loss by ionization
- Bremsstrahlung
- multiple scattering

Charged Particle Interactions with Matter

- particles are detected through their interaction with the active detector materials
- energy loss by ionization
- Bremsstrahlung
- multiple scattering
- radiation length
material thickness in detector is measured in terms of dominant energy loss reactions at high energies:
- Bremsstrahlung for electrons
- pair production for photons
definition:
$X_{0}=$ length over which an electron loses all but 1/e of its energy by bremsstrahlung
$=7 / 9$ of mean free path length of photon before pair production
describe material thickness in units of X_{0}

Charged Particle Interactions with Matter

- particles are detected through their interaction with the active detector materialsenergy loss by ionization
- Bremsstrahlung
multiple scattering
-

radiation length
material thickness in detector is measured in terms of dominant energy loss reactions at high energies:

- Bremsstrahlung for electrons
- pair production for photons
definition:
$X_{0}=$ length over which an electron loses all but $\mathbf{1 / e}$ of its energy by bremsstrahlung
$=7 / 9$ of mean free path length of photon before pair production
describe material thickness in units of X_{0}

Charged Particle Interactions with Matter

- particles are detected through their interaction with the active detector materials
- energy loss by ionisation
- Bremsstrahlung
- multiple scattering
- radiation length

Charged Particle Interactions with Matter

particles are detected through their interaction with the active detector materials

- energy loss by ionisation
- radiation length
- Bremsstrahlung
- Cherenkov radiation
- multiple scattering

$$
\begin{aligned}
& \text { a relativistic charge particle traversing a } \\
& \text { dielectric medium with refraction index } \\
& n>1 / \beta \text { emits Cherenkov radiation in cone } \\
& \text { with angle } \theta_{C} \text { around track: } \cos \theta_{C}=(n \beta)^{-1} \\
& \text { Charged particle with } \\
& \text { momentum } \beta \\
& \text { light cone emission when passing thin medium } \\
& \text { detector types RICH (LHCb), DIRC, Aerogel } \\
& \text { counters (not employed by ATLAS/CMS)) }
\end{aligned}
$$

Charged Particle Interactions with Matter

- particles are detected through their interaction with the active detector materials
- energy loss by ionization
- Bremsstrahlung
- multiple scattering
- radiation length
- Cherenkov radiation

Charged Particle Interactions with Matter

- particles are detected through their interaction with the active detector materials
- energy loss by ionization
- radiation length
photon radiation when charged ultrarelativistic particles traverse the boundary of two different dielectric media (foil \& air)
foil air
- Bremsstrahlung
- Cherenkov radiation
- multiple scattering
- transition radiation

Charged Particle Interactions with Matter

- particles are detected through their interaction with the active detector materials
- energy loss by ionization
- radiation length
photon radiation when charged ultrarelativistic particles traverse the boundary of two different dielectric media (foil \& air)
- Bremsstrahlung
- Cherenkov radiation
- multiple scattering
- transition radiation
\Rightarrow significant radiation for $\gamma>1000$ and >100 boundaries

Charged Particle Interactions with Matter

particles are detected through their interaction with the active detector materials

- energy loss by ionization
- radiation length
- Bremsstrahlung
- Cherenkov radiation
multiple scattering
- transition radiation
photon radiation when charged ultrarelativistic particles traverse the boundary of two different dielectric media (foil \& air)
foil air
(polarized) (unpolarized)
electron with boost γ

\Rightarrow significant radiation for $\gamma>1000$ and >100 boundaries

Effects are visible by Eye...

- give rise to beautiful old bubble-chamber photos
- energy loss by ionization, δ-electrons, pair production, ...

... as well in modern Detectors

History of Energy Loss Calculations: dE/dx

1915: Niels Bohr, classical formula, Nobel prize 1922. 1930: non-relativistic formula found by Hans Bethe 1932: relativistic formula by Hans Bethe

Bethe's calculation is leading order in perturbation theory, thus only z^{2} terms are included.

additional corrections:

- z^{3} corrections calculated by Barkas+Andersen
- correction calculated by Felix Bloch (Nobel prize 1952,for nuclear magnetic resonance). Although the formula is called Bethe-Bloch formula the z^{4} term is usually not included.
- shell corrections: atomic electrons are not stationary
- density corrections: by Enrico Fermi (Nobel prize 1938, for discovery of nuclear reaction induced by slow neutrons)

Hans Bethe 1906-2005

Born in Strasbourg, emigrated to US in 1933. Professor at Cornell U. Nobel prize 1967 for theory of nuclear processes in stars.

The Bethe-Bloch Formula

$$
-\left\langle\frac{d E}{d x}\right\rangle=K z^{2} \frac{Z}{A} \frac{1}{\beta^{2}}\left[\frac{1}{2} \ln \frac{2 m_{e} c^{2} \beta^{2} \gamma^{2} T_{\max }}{I^{2}}-\beta^{2}-\frac{\delta(\beta \gamma)}{2}\right]
$$

F characteristics of the energy loss as a function of the particle velocity ($\beta \gamma$)

G with

- z \sim charge of incident particle
- Z ~ atomic number of absorber
- A ~ atomic mass of absorber

$$
\frac{K}{A}=4 \pi N_{A} r_{e}^{2} m_{e} c^{2} / A=0.307075 \mathrm{MeV} \mathrm{~g}^{-1} \mathrm{~cm}^{2}, \text { for } \mathrm{A}=1 \mathrm{~g} \mathrm{~mol}^{-1}
$$

- I ~ mean excitation energy of absorber
- $T_{\max } \sim$ maximum energy transfer in a single collision

$$
T_{\max }=\frac{2 m_{e} c^{2} \beta^{2} \gamma^{2}}{1+2 \gamma m_{e} / M+\left(m_{e} / M\right)^{2}}
$$

- $\delta(\beta \gamma) \sim$ density effect correction to ionization loss

C $x=\rho s \sim$ surface density or mass thickness, with unit g / cm^{2}, \boldsymbol{s} is the length ($d E / d x$ has the units $\mathrm{MeV} \mathrm{cm}{ }^{2} / \mathrm{g}$)

The Bethe-Bloch Formula

Bethe-Bloch formula:

$-\frac{d E}{d x}=K z^{2} \frac{Z}{A} \frac{1}{\beta^{2}}\left[\frac{1}{2} \ln f(\beta)-\beta^{2}-\frac{\delta(\beta \gamma)}{2}\right]$
except in hydrogen, particles of the same velocity have similar energy loss in different materials.

Fermi plateau: density effect, polarization of medium "screens" particle charge
classical $1 / \beta^{2}$ dependency (Rutherford Scattering)

Particle Identification using dE/dx

- energy loss depends on particle velocity
\Rightarrow ~ independent of particle mass M
- as a function of particle momentum
$\Rightarrow p=M c \beta \gamma$ depends on particle mass !
- application in an experiment:
\rightarrow measure momentum from curvature of particle track in magnetic field
\Rightarrow measure ionization along the track

Fluctuations in Energy Loss

from L. Ropelewski
Real detector (limited granularity) can not measure $\langle d E / d x>$!
It measures the energy ΔE deposited in a layer of finite thickness δx.
For thin layers or low density materials:
\rightarrow Few collisions, some with high energy transfer.

\rightarrow Energy loss distributions show large fluctuations towards high losses: "Landau tails"

Example: Si sensor: $300 \mu \mathrm{~m}$ thick. $\Delta \mathrm{E}_{\mathrm{m} . \mathrm{p}} \sim 82 \mathrm{keV} \quad<\Delta \mathrm{E}>\sim 115 \mathrm{keV}$

For thick layers and high density materials:
\rightarrow Many collisions.
\rightarrow Central Limit Theorem \rightarrow Gaussian shaped distributions.

Multiple Scattering

- a particle which traverses a medium is deflected
\Rightarrow by small angle Coulomb scattering in field of nuclei
\rightarrow for hadronic particles as well the strong interaction contributes

- angular deflection after traversing a distance \mathbf{x}
- described by the Molière theory
\Rightarrow angle has roughly a Gaussian distribution, but with larger tails due to Coulomb scattering
- Gaussian approximation

$$
\Delta \Theta=\frac{13.6 \mathrm{MeV}}{\beta c p} z \sqrt{x / X_{0}}\left[1+0.038 \ln \left(x / X_{0}\right)\right]
$$

- $x / X_{0} \sim$ thickness of material in units of radiation length
- z ~ charge of the particle

Illustration of M.S. Effect

- toy simulation
\Rightarrow simulation of single particle traversing a set of individual thin material layers
- single scattering steps accumulate

Illustration of M.S. Effect

- toy simulation

\Rightarrow simulation of single particle traversing a set of individual thin material layers

- single scattering steps accumulate
C) repeat N times:
- central limit theorem predicts gaussian distribution

Illustration of M.S. Effect

- toy simulation
\Rightarrow simulation of single particle traversing a set of individual thin material layers
- single scattering steps accumulate

C repeat N times:

- central limit theorem predicts gaussian distribution
- sometimes we experience the effect

Effect on Momentum Resolution

- magnetic spectrometer

\Rightarrow charged particle describes a circle in a magnetic field

$$
p_{T}[\mathrm{GeV} / \mathrm{c}]=0.3 \cdot B[\mathrm{~T}] \cdot R[\mathrm{~m}]
$$

\Rightarrow measure sagitta s of arc to determine curvature \mathbf{R}

$$
R=\frac{L^{2}}{8 s}+\frac{s}{2} \approx \frac{L^{2}}{8 s}
$$

- put into upper equation results in $p_{T} \equiv p_{T}(s)$
\Rightarrow relative error on momentum equals relative error on sagitta

$$
\frac{\sigma_{p_{T}}}{p_{T}}=\frac{8 p_{T}}{0.3 B L^{2}} \sigma_{S}
$$

\Rightarrow hence relative momentum uncertainty is proportional to momentum $\mathbf{p}_{\boldsymbol{T}}$ times sagitta uncertainty σ_{s}

- as well, one wants large field B and long path length \mathbf{L}

Effect on Momentum Resolution

- multiple scattering contribution to momentum uncertainty

- putting things together gives

$$
\frac{\sigma_{P T}}{P_{T}}=\frac{8 p_{T} \sigma_{S}}{0.3 B L^{2}} \oplus \frac{0.05}{B L} \sqrt{\frac{x}{X_{0}}} \approx a p_{T} \oplus b
$$

- $\mathbf{a} \sim$ resolution term dominating at high p_{T}
b ~ multiple scattering term limiting at low pT
\Rightarrow sagitta uncertainly from \mathbf{N} points, each with resolution $\boldsymbol{\sigma}_{\mathbf{R} \phi}$

$$
\sigma_{S}=\sqrt{\frac{A_{N}}{N+4}} \frac{\sigma_{\mathrm{R} \phi}}{8} \quad \text { Statistical factor } \underset{\substack{A_{N} \\ \text { (Gluckstern) }}}{ }
$$

Effect on Momentum Resolution

- multiple scattering contribution to momentum uncertainty

- putting things together gives

$$
\frac{\sigma_{P T}}{P_{T}}=\frac{8 p_{T} \sigma_{S}}{0.3 B L^{2}} \oplus \frac{0.05}{B L} \sqrt{\frac{x}{X_{0}}} \approx a p_{T} \oplus b
$$

\Rightarrow a ~ resolution term dominating at high p_{T}
b ~ multiple scattering term limiting at low pT $_{T}$
\Rightarrow sagitta uncertainly from \mathbf{N} points, each with resolution $\boldsymbol{O}_{\mathrm{R} \phi}$

$$
\sigma_{s}=\sqrt{\frac{A_{N}}{N+4}} \frac{\sigma_{\mathrm{R} \phi}}{8}
$$

Effect on Impact Parameter Resolution

- uncertainty on the transverse impact parameter do
\Rightarrow depends on the radii and space point precision
\Rightarrow simplified formula for straight line and just two layers:

$$
\sigma_{d_{0}}^{2}=\frac{r_{2}^{2} \sigma_{1}^{2}+r_{1}^{2} \sigma_{2}^{2}}{\left(r_{2}-r_{1}\right)^{2}}
$$

\Rightarrow suggests: small r_{1}, large r_{2}, small σ_{1}, σ_{2}

- precision is degraded by multiple scattering

$$
\Delta d_{0}=r \tan \Delta \Theta \approx r \Delta \Theta=r \frac{0.0136}{\beta c p} \sqrt{\frac{x}{X_{0}}}
$$

- at low momentum scattering contribution becomes large
\Rightarrow best precision if small radius \mathbf{r} and minimum thickness \mathbf{x}

Effect on Impact Parameter Resolution

- for tracks with $\Theta \neq 90^{\circ}: r \rightarrow r / \sin \theta x \rightarrow x / \sin \theta$

$\sigma_{d_{0}}$	$\approx \sqrt{\frac{r_{2}^{2} \sigma_{1}^{2}+r_{1}^{2} \sigma_{2}^{2}}{\left(r_{2}-r_{1}\right)^{2}} \oplus \frac{r}{p \sin ^{3 / 2} \theta} 13.6 \mathrm{MeV} \sqrt{\frac{x}{x_{0}}}}$
$\sigma_{d_{0}}$	$\approx a \oplus \frac{b}{p_{T} \sin ^{1 / 2} \theta}$

- constant term describing resolution
- multiple scattering term decreasing with pT
- similarly momentum resolution term becomes:

$$
\frac{\sigma_{p_{T}}}{p_{T}} \approx a \cdot p_{T} \oplus \frac{b}{\sin ^{1 / 2} \theta}
$$

Effect on Impact Parameter Resolution

- for tracks with $\Theta \neq 90^{\circ}: r \rightarrow r / \sin \theta x \rightarrow x / \sin \theta$

- constant term describing resolution
- multiple scattering term decreasing with pT
- similarly momentum resolution term becomes:

$$
\frac{\sigma_{p_{T}}}{p_{T}} \approx a \cdot p_{T} \oplus \frac{b}{\sin ^{1 / 2} \theta}
$$

Bremsstrahlung

- charged particle deflected by field of nucleus
\rightarrow deflecting a charged particle means "acceleration"

\rightarrow therefore radiates a photon \rightarrow Bremsstrahlung
\square effect is strong for light particles (electrons), as acceleration is large for given force
\Rightarrow for heavier particles (muons), bremsstrahlung only important at energies of a few hundred GeV (important for ATLAS/CMS at the LHC!)
\Rightarrow presence of a nucleus is required to restore energy-momentum conservation

Bremsstrahlung

- charged particle deflected by field of nucleus
\rightarrow deflecting a charged particle means "acceleration"

C) therefore radiates a photon \rightarrow Bremsstrahlung
\Rightarrow effect is strong for light particles (electrons), as acceleration is large for given force
\rightarrow for heavier particles (muons), bremsstrahlung only important at energies of a few hundred GeV (important for ATLAS/CMS at the LHC!)
\Rightarrow presence of a nucleus is required to restore energy-momentum conservation
- Bremsstrahlung proportional to
- Z2/A and ρ of the material
- q^{4} and $1 / M^{2}$ of incoming particle
\Rightarrow energy lost ~ proportional to energy of particle:

$$
E(x) \approx E_{0} e^{-x / X_{0}} \quad X_{0} \propto \frac{M^{2} A}{q^{4} \rho Z^{2}}
$$

- radiation length $X_{0} \sim$ characteristic amount of material traversed before it looses $1 / \mathrm{e}$ of its energy
- Bremsstrahlung of electrons in tracker material is limiting reconstruction efficiency!

important above critical energy E_{c}

Pair-Production

- $\mathrm{Y}^{\rightarrow} \mathrm{e}^{+} \mathrm{e}^{-}$conversion process in field of nucleus
\Rightarrow described by diagram similar to Bremsstrahlung

- conversion probability:

\Rightarrow radiation length X_{0} is $7 / 9$ of mean free path for pair production by a high energy photon
\Rightarrow pair production in tracker material main source of inefficiency for photons

Pair-Production

- $\gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$conversion process in field of nucleus
\Rightarrow described by diagram similar to Bremsstrahlung

- conversion probability:

$$
P(x) \propto e^{-\frac{7}{9} \frac{x}{X_{0}}}
$$

\Rightarrow radiation length X_{0} is $7 / 9$ of mean free path for pair production by a high energy photon
\Rightarrow pair production in tracker material main source of inefficiency for photons

- together they give rise to electromagnetic showers
\Rightarrow processes contributing to showers, detection in EM calorimeters

Hadronic Interactions

- nuclear interaction length λ : mean free path of hadrons between strong collisions

material	$\lambda[\mathbf{c m}]$
Si	45.5
Fe	16.8
Pb	17.1

interactions with nuclei lead to hadronic (HAD) showers

- $\lambda>X\left[X_{0}\right]$, can separate EM (close) from HAD (far) showers
- detection of HAD showers in hadronic calorimeters

Hadronic Interactions

- nuclear interaction length λ : mean free path of hadrons between strong collisions

material	$\lambda[\mathbf{c m}]$
Si	45.5
Fe	16.8
Pb	17.1

interactions with nuclei lead to hadronic (HAD) showers

- $\lambda>X\left[X_{0}\right]$, can separate EM (close) from HAD (far) showers
- detection of HAD showers in hadronic calorimeters

a hadronic shower consists of:
- EM energy (e.g., $\left.\pi^{0} \rightarrow \gamma \gamma\right) O(50 \%)$
- non-EM energy (e.g., dE/dx from $\left.\pi^{ \pm}, \mu^{ \pm}, K^{ \pm}\right) O(25 \%)$
- invisible energy
(nuclear fission/excitation, neutrons) O(25\%)
- escaped energy (e.g. neutrinos) $O(2 \%)$
hadronic shower in material of tracking detector is main source of inefficiency for pions, kaons and protons !

Effect on Expected Performance

- ATLAS/CMS tracking resolution and efficiency mostly driven by interactions in detector material

- total weight of Inner Detector: 4.5 tons

Let's Summarize...

- discussed the most relevant physics processes for particles passing through (detector) material
- discussed some of the consequences
\Rightarrow provide the means to detect charged particles and to identify them
- measuring the ionization of charged particles in a medium (gas, silicon...)
- detecting transition and Cherenkov radiation
- as well, limiting factor for the performance of a detector
- e.g. multiple scattering effects or effects from hadronic interactions...
- next is to talk about LHC tracking detectors

[^0]: Claus Grupen, Particle Detectors, Cambridge University Press, Cambridge 1996 (455 pp. ISBN 0-521-55216-8)

