Markus Elsing

Tracking at the LHC (Part 6)

High Luminosity and Upgrade

Outline of Part 6

expected tracking performance with high pileup

evolution of tracking settings

- ➡ including CPU and memory/size issues
- brief look at heavy ion data to study those

discuss Phase-0 and Phase-1 upgrades for CMS+ATLAS

➡ as well hardware track trigger concepts

Tracking for High Occupancy - Pileup

- event pileup is a feature of the LHC
 - ➡ already sizable effects this year
 - ➡ ~23 events at design lumi
- detectors designed for 10³⁴ cm⁻²s⁻¹
 - occupancies from pileup do not exceed hit density in jet cores !

Tracking at High Luminosity (pp)

• tracking with very high pileup

- → rate of fake tracks (fakes) increases
- more tracks with large IP significant (tracking mistakes)

pileup track selection

- ➡ adapt tracking settings to pileup conditions
 - e.g. ATLAS: requiring 9 out of 11 hits, cut on "no Pixel holes"

→ suppresses fakes at expense of some efficiency

Tracking at High Luminosity (pp)

- small effects expected on tracking resolution
 - ➡ occupancy in pixels and strips still small
- exception is ATLAS TRT
 - ➡ rate of good hit (leading edge seen) drops
 - momentum resolution slowly deteriorates

Pileup and Computing Resources

resource needs scale fast

→ tracking is a resource driver

• tracking principles:

- ➡ combinatorial problem
- ➡ naive scaling
 - like ~n!
- ➡ clever tracking strategies
 - dampen it to $\sim n^2$ or $\sim n^3$

natural tension between

- → desire to maximize physics
- → requirement to stay within available resources

Reconstruction Strategy vs Pileup (ATLAS)

2009 / early 2010	commissioning Min.Bias	pt > 50 MeV open cuts, robust settings min. 5 clusters
2010 stable running < ~4 events pileup	low lumi physics program (soft QCD, b-physics,), b-tagging	pt > 100 MeV min. 7 clusters
2011 pp running ~8 events pileup	focus more on high-pt physics (top,W/Z, Higgs), b-tagging	pt > 400 MeV, harder cuts in seeding min. 7 clusters
Phase I upgrade including IBL 24-50 events pileup	high-pt physics, study new physics (I hope), b-tagging	pt > 900 MeV, harder tracking cuts, min. 9 clusters
SLHC up to 100-200 events pileup	replace Inner Detector to cover very high luminosity physics program	further evolve strategy R-o-I or z-vertex seeding, reco. per trigger type, GPUs

- → requirements on tracking evolves with physics program
- different luminosity regimes require different working points

Tracking in Heavy lons

What if the tracker suddenly looks like this ?

2 central Pb-Pb events pileup, result was a timeout crash in Tier-0

Heavy Ion Tracking

high multiplicity tracking

- adapt seed finding
 (z vertex constraint to save CPU)
- ➡ tighten hit requirement to control fakes in central events (similar to sLHC setup)

excellent tracking performance

- → good testing ground for high occupancy tracking
- ➡ can study performance vs "centrality" (occupancy)

LHC draft plan

Tracker related upgrades

ATLAS Upgrade: IBL

Insertable B-Layer

- ➡ 4th Pixel layer
- \Rightarrow smaller beam pipe (R_{min} = 25 mm)
- → IBL material adjusted to 1.5% X0
- → smaller z pitch (250 um)

installation next shutdown

- ➡ 2013/2014
- ➡ ready for 14 TeV running
- → peak luminosities of 2*10³⁴ cm⁻²s⁻¹
- ⇒ 25-50 pileup events

Tracking Performance with no Pileup

expected results

- ➡ smaller radius
- ➡ small z pitch
- less material between first and 2nd layer
- ➡ track length ~ same

improvements

- ➡ better d₀ resolution
- ➡ better z₀ resolution
- θ and φ improved at low-pT
- momentum resolution
 unchanged

• as expected !

Tracking and Vertexing with High Pileup

pileup selection with IBL

- ➡ similar to current ATLAS
- → \geq 10 IBL+Pixel+SCT hits, \leq 1 pixel hole
- → benefit from additional layer
- leaves room for eventual inefficiencies in b-layer (tracking robustness)

vertexing with pileup

- ➡ pileup effects visible
- with IBL gains in resolution and vertex tail fraction as well with pileup
- → signal vertex efficiency affected
- pileup selection better overall

b-Tagging with IBL and Pileup

- example state of the art b-tagging
 - → "IP3D" ~ $d_0 \oplus z_0$ impact significance likelihood
 - ➡ "IP3D+SV1" ~ adding secondary vertex information

• pileup affects b-tagging in many ways

- ➡ additional jets and fake jets from in/out of time pileup
 - restrict to truth jets to get comparable results
 - real data: can use e.g. Jet-Vertex-Fraction
- close-by pileup vertices
 - additional b-tag tracks
 - lead to significant z₀ offsets affecting IP3D

• good performance with IBL and pileup

→ as good or better as for current ATLAS without pileup

Number of pileup interactions

b-Tagging with Pileup

performance could degrade fast

- especially IP3D is very sensitive to tracks from nearby pileup vertices
- ➡ significant z offsets due to nearby pileup vertices
 - needed to add cut to veto pileup tracks:
 dz < 3.8σ if d0 < 2σ
- ➡ IP2D (Rφ only)is much more "stable"

Number of pileup interactions

Number of pile-up interactions

CMS Pixel Upgrade

• goals of the upgrade

- → replace 3 layer, 2x2 disk system with a 4 layer, 2x3 disk system
 - hence 4 space points instead of 3
- \Rightarrow CO₂ cooling and move material to larger eta
 - significantly reduce X/X₀
- ➡ reduce radius of innermost layer
 - better impact resolution
- → readout upgrade to be able to operate up to $2 \cdot 10^{34}$ occupancies

Shift Material out of Tracking Region

3

eta

Effect on Physics Performance

ATLAS Hardware Trigger Tracking (FTK)

- goal is to provide high quality tracks at input to High Level Trigger
 - ➡ FTK runs at nominal 100 kHz Level-1 trigger rate
- physics motivation
 - \rightarrow b and τ tagging, lepton isolation, improve Level-2 rejection at high lumi.

• requires hardware system with special readout links

FTK - Overview

• architecture follows CDF

- ➡ Data formatter
 - clustering, routing to η - ϕ towers
- ➡ Data organizer (DO)
 - stores hits, communicates between pattern recognition and track fitting
- ➡ Associative Memory (AM) board
 - Pattern recognition
- ➡ track Fitter (TF)
 - FPGA-based track fitting

associative memory

- ➡ millions of predefined hit patterns
- hits are evaluated against all patterns in parallel, leading to hugh timing gains !

21

FTK - Overview

fast track fitting

- ➡ divide detector in regions
- ➡ approximate track fit by a linear equation
- → determine constants using full resolution in those regions (from offline)

Track parameters

and χ^2 components

➡ implement in FPGA chips, track fit ~ 1 nsec (full ~ 1 msec)

performance

- → timing for H→bb with 75 pileup, full scan, $p_T > 1$ GeV
- ➡ tracking efficiency > 90% compared to offline
- ➡ approximated track fit limits resolution of fit
- ➡ example: b-tagging performance at 75 pileup

 $p_i = \sum c_{ij} \cdot x_j + q_i$

Hit coordinates

Constants

Tungle, Vertex 2011

CMS Track Trigger for Phase-2

• R&D for a track trigger

- → pushes ideas similar to FTK to bring tracking to Level-1 (!)
- ➡ motivation is to keep Level-1 rate at 100 kHz
 - confirm muons in tracker
 - electron/photon isolation with tracks
- → requires ~6 μ sec latency (length of ECAL pipelines)

seed finding in coincidences in 2 adjacent modules

➡ double module layers would drive the layout of the upgrade tracker

• track finding/fitting

- currently investigating FPGA solution
- ➡ consider associative memory (like FTK)

Let's Summarize...

discussed expected pileup tracking performance

- ➡ effects on resolutions and fake rates
- ➡ vertexing and b-tagging
- ➡ tracking settings to optimize performance and resource needs

discussed Phase-0 and Phase-1 upgrades

- → ATLAS and CMS Pixel upgrades
- ➡ hardware track trigger concepts for Level-1 and Level-2

THAT'S ALL !!!

