Tracking at the LHC (Part 4): Vertex Reconstruction and its Applications

Lectures given at the University of Freiburg Markus Elsing, 12-13.April 2016

Introduction to Vertex Reconstruction

vertex fitting techniques play an important role

- ➡ in reconstruction chain following track reconstruction
 - primary interaction vertex reconstruction and identification
 - in time pileup estimation and pileup mitigation in particle flow reconstruction
 - secondary vertex finding for b-/c-jet identification, τ-reconstruction, photon conversions finding
- → in physics analysis
 - primary interaction vertex selections for leptons, jets, ...
 - pileup corrections to jets and missing energy
 - full reconstruction of hadronic decays like heavy flavours (B/D/...) or strange hadrons (K_s^0 , Λ , ...)
 - displaced secondary vertex finding for R-hadron searches (RPV-SUSY)
 - material studies in tracker using photon conversions and hadronic showers
 - ...

Introduction to Vertex Reconstruction

Iarge parts of LHC physics program

depends on vertex reconstruction

precision heavy flavour physics (LHCb)
 b-jet tagging for SM/top/SUSY physics
 ...

explores b- and c-hadron lifetime

- → 1-1.5 psec (B) and 0.4-1psec (D)
- → allows to reconstruct secondary vertices
- ➡ tracks get significant impact parameters

silicon detectors allow for precise impact parameter reconstruction stereo strips in current LHCb Velo detector Pixels in ALICE, ATLAS and CMS

Introduction to Vertex Reconstruction

-0.626 < n < -0.100

300

350

R [mm]

•vertexing as well tool for material studies

→ remember tracker performance limited by material !

• photon conversions

- → used to study MC vs data
- ⇒ can normalise acceptance e.g. on "known" beam pipe

•hadronic interactions

- → larger multiplicity and opening angles allows for better positions resolution
- → e.g. ATLAS corrected in Monte Carlo the amount of liquid in Pixel cooling pipes

discuss vertex fitting and finding technique

- → Least Square and Kalman Filter vertex fitter
- → adaptive vertex fitting, vertex finding and related
- •examples for vertexing applications
 - → beam spot, primary vertex reconstruction and jet-vertex-fraction
 - ➡ b-jet tagging techniques

Vertex Fitting and Finding

•task of a vertex fit:

 \rightarrow start from a set of measured track parameters q_i

•task of a vertex fit:

→ start from a set of measured track parameters *q*_i

→ estimate the vertex position **v**

•task of a vertex fit:

- \Rightarrow start from a set of measured track parameters q_i
- ➡ estimate the vertex position v
- → and the parameters *pi* at the vertex

task of a vertex fit:

- start from a set of measured track parameters qi
- ➡ estimate the vertex position v
- → and the parameters *pi* at the vertex

measurement model (similar to track fit)

➡ in mathematical terms:

$$q_i = h_i(v, p_i) + \varepsilon_i$$

with: $h_i \sim \text{dependency of track parameters on}$ vertex V and parameters q_i at vertex $\mathcal{E}_i \sim \text{error of } q_i \text{ (noise term)}$ Jacobians: $A_i = \frac{\partial h_i(v, p_i)}{\partial v}$ $B_i = \frac{\partial h_i(v, p_i)}{\partial p_i}$

\rightarrow in practice: h_i is derived from parameter representation and propagator f:

$$h_i = f \circ \tilde{q}(v, p_i)$$
 with:
 $v = (v_x, v_y, v_z)$
 $p_i = (\theta_i, \phi_i, Q_i/P_i)$

commonly used is perigee representation for *h*_i

Helix Propagation for Perigee Parameters

most commonly used by vertexing codes

summary of equations for propagation of perigee parameters from reference point P to vertex V, and the corresponding Jacobian matrices A and B for fitting

Formulating a Least Square Vertex Fit

same approach as for Least Square track fit:

Least Square function to minimise for vertex fit:

$$\chi^2 = \sum_i \Delta q_i^T G_i \Delta q_i$$
 with: $\Delta q_i = q_i - h_i(v, p_i)$ from trajectory model
 $V_i = G_i^{-1}$ covariance of the measured q_i

Formulating a Least Square Vertex Fit

same approach as for Least Square track fit:

Least Square function to minimise for vertex fit:

 $\chi^2 = \sum_i \Delta q_i^T G_i \Delta q_i$ with: $\Delta q_i = q_i - h_i(v, p_i)$ from trajectory model $V_i = G_i^{-1}$ covariance of the measured q_i

linearise the problem around starting values V_0 and $q_{0,i}$: $v \rightarrow v_0 + \delta v$ $p_i \rightarrow p_{i,0} + \delta p_i$

$$h_i(v, p_i) \cong h_i(v_0, p_{i,0}) + A_i \delta v + B_i \delta p_i$$
 + higher terms

yields:

$$\chi^{2} = \sum_{i} \left(h_{i}(v_{0}, p_{i,0}) + A_{i}\delta v + B_{i}\delta p_{i} \right)^{T} G_{i} \left(h_{i}(v_{0}, p_{i,0}) + A_{i}\delta v + B_{i}\delta p_{i} \right)$$

Formulating a Least Square Vertex Fit

same approach as for Least Square track fit:

Least Square function to minimise for vertex fit:

 $\chi^2 = \sum_i \Delta q_i^T G_i \Delta q_i$ with: $\Delta q_i = q_i - h_i(v, p_i)$ from trajectory model $V_i = G_i^{-1}$ covariance of the measured q_i

linearise the problem around starting values V_0 and $q_{0,i}$: $v \rightarrow v_0 + \delta v$ $p_i \rightarrow p_{i,0} + \delta p_i$

$$h_i(v, p_i) \cong h_i(v_0, p_{i,0}) + A_i \delta v + B_i \delta p_i + \text{higher terms}$$

yields:

$$\chi^{2} = \sum_{i} \left(h_{i}(v_{0}, p_{i,0}) + A_{i} \delta v + B_{i} \delta p_{i} \right)^{T} G_{i} \left(h_{i}(v_{0}, p_{i,0}) + A_{i} \delta v + B_{i} \delta p_{i} \right)$$

minimizing the linearized χ^2 gives the following set of equations:

$$\frac{\partial \chi^2}{\partial v} = 0 \quad \Rightarrow \quad \left(\sum_i A_i^T G_i A_i \right) \cdot \delta v + \sum_i A_i^T G_i B_i \cdot \delta p_i = \sum_i A_i^T G_i \cdot \Delta q_{i,0}$$
$$\frac{\partial \chi^2}{\partial p_i} = 0 \quad \Rightarrow \qquad B_i^T G_i A_i \cdot \delta v + B_i^T G_i B_i \cdot \delta p_i = B_i^T G_i \cdot \Delta q_{i,0}$$

with: $\Delta q_{i0} = q_i - h_i(v_0, p_{i0})$

➡ system of (i+1) linear matrix equations which can be solved

→ let's solve the system of linear equations:

$$\left(\sum_{i} A_{i}^{T} G_{i} A_{i}\right) \cdot \delta v + \sum_{i} A_{i}^{T} G_{i} B_{i} \cdot \delta p_{i} = \sum_{i} A_{i}^{T} G_{i} \cdot \Delta q_{i,0}$$
(1)

$$B_i^T G_i A_i \cdot \delta v + B_i^T G_i B_i \cdot \delta p_i = B_i^T G_i \cdot \Delta q_{i,0}$$
⁽²⁾

→ let's solve the system of linear equations:

$$\left(\sum_{i} A_{i}^{T} G_{i} A_{i}\right) \cdot \delta v + \sum_{i} A_{i}^{T} G_{i} B_{i} \cdot \delta p_{i} = \sum_{i} A_{i}^{T} G_{i} \cdot \Delta q_{i,0}$$
(1)
$$B_{i}^{T} G_{i} A_{i} \cdot \delta v + B_{i}^{T} G_{i} B_{i} \cdot \delta p_{i} = B_{i}^{T} G_{i} \cdot \Delta q_{i,0}$$
(2)

transform (2) to replace δp_i in equation (1), gives:

$$\delta v = C \cdot \sum_{i} A_{i}^{T} G_{i}^{B} \cdot \Delta q_{i,0} \quad \text{with:} \quad G_{i}^{B} = G_{i} - G_{i} B_{i}^{T} W_{i} B_{i} G_{i}$$
$$W_{i} = \left(B_{i}^{T} G_{i} B_{i}\right)^{-1}$$
and
$$C = \left(\sum_{i} A_{i}^{T} G_{i}^{B} A_{i}\right)^{-1} \text{ covariance of } v$$

➡ usually one iterates the fit to ensure convergence

→ let's solve the system of linear equations:

$$\left(\sum_{i} A_{i}^{T} G_{i} A_{i}\right) \cdot \delta v + \sum_{i} A_{i}^{T} G_{i} B_{i} \cdot \delta p_{i} = \sum_{i} A_{i}^{T} G_{i} \cdot \Delta q_{i,0}$$
(1)
$$B_{i}^{T} G_{i} A_{i} \cdot \delta v + B_{i}^{T} G_{i} B_{i} \cdot \delta p_{i} = B_{i}^{T} G_{i} \cdot \Delta q_{i,0}$$
(2)

transform (2) to replace δp_i in equation (1), gives:

- → usually one iterates the fit to ensure convergence
- \Rightarrow still have to compute the vertex correction to track parameters p_i
- \rightarrow but: can obtain a faster vertex fit, if we neglect the δp_i terms as an approximation

 \rightarrow compute the vertex correction to track parameters p_i :

$$\left(\sum_{i} A_{i}^{T} G_{i} A_{i}\right) \cdot \delta v + \sum_{i} A_{i}^{T} G_{i} B_{i} \cdot \delta p_{i} = \sum_{i} A_{i}^{T} G_{i} \cdot \Delta q_{i,0}$$
(1)

$$B_i^T G_i A_i \cdot \delta v + B_i^T G_i B_i \cdot \delta p_i = B_i^T G_i \cdot \Delta q_{i,0}$$
⁽²⁾

 \rightarrow compute the vertex correction to track parameters p_i :

$$\left(\sum_{i} A_{i}^{T} G_{i} A_{i}\right) \cdot \delta v + \sum_{i} A_{i}^{T} G_{i} B_{i} \cdot \delta p_{i} = \sum_{i} A_{i}^{T} G_{i} \cdot \Delta q_{i,0}$$
(1)
$$B_{i}^{T} G_{i} A_{i} \cdot \delta v + B_{i}^{T} G_{i} B_{i} \cdot \delta p_{i} = B_{i}^{T} G_{i} \cdot \Delta q_{i,0}$$
(2)

use δv in equation (2) to compute δp_i , gives:

$$\delta p_{i} = W_{i}B_{i}^{T}G_{i} \cdot \left(\Delta q_{i,0} - A_{i}\delta v\right)$$

and $D_{i} = W_{i} + W_{i}B_{i}^{T}G_{i}A_{i}CA_{i}^{T}G_{i}B_{i}W_{i}$ covariance of δp_{i}

 \rightarrow compute the vertex correction to track parameters p_i :

$$\left(\sum_{i} A_{i}^{T} G_{i} A_{i}\right) \cdot \delta v + \sum_{i} A_{i}^{T} G_{i} B_{i} \cdot \delta p_{i} = \sum_{i} A_{i}^{T} G_{i} \cdot \Delta q_{i,0}$$
(1)
$$B_{i}^{T} G_{i} A_{i} \cdot \delta v + B_{i}^{T} G_{i} B_{i} \cdot \delta p_{i} = B_{i}^{T} G_{i} \cdot \Delta q_{i,0}$$
(2)

use δv in equation (2) to compute δp_i , gives:

$$\delta p_{i} = W_{i}B_{i}^{T}G_{i} \cdot \left(\Delta q_{i,0} - A_{i}\delta v\right)$$

and $D_{i} = W_{i} + W_{i}B_{i}^{T}G_{i}A_{i}CA_{i}^{T}G_{i}B_{i}W_{i}$ covariance of δp_{i}

- vertex fit can be used to improve track momentum measurement at vertex
 - improve e.g. invariant mass resolution for reconstructed decays

Kalman Filter Notation

 → the Least Square vertex fit can as well be written as a progressive fit
 → results in an extended Kalman Filter vertex fit

I.Let's assume δv_{i-1} has been estimated using i-I tracks. Track i is added using the update equations:

$$\delta v_i = C_i^{-1} \cdot \left[C_{i-1} \delta v_{i-1} + A_i^T G_i^B \cdot \Delta q_{i,i-1} \right]$$

covariance: $C_i = \left(C_{i-1}^{-1} + A_i^T G_i^B A_i \right)^{-1}$

2.update to parameters is:

$$\delta p_{i,i} = W_i B_i^T G_i \cdot \left(\Delta q_{i,i-1} - A_i \delta v_i \right)$$
$$D_i = W_i + W_i B_i^T G_i A_i C_i A_i^T G_i B_i W_i$$

Billoir, Fruhwirth, Catlin et al.

Kalman Filter Notation

 → the Least Square vertex fit can as well be written as a progressive fit
 → results in an extended Kalman Filter vertex fit

I.Let's assume δv_{i-1} has been estimated using i-I tracks. Track i is added using the update equations:

$$\delta v_i = C_i^{-1} \cdot \left[C_{i-1} \delta v_{i-1} + A_i^T G_i^B \cdot \Delta q_{i,i-1} \right]$$

covariance: $C_i = \left(C_{i-1}^{-1} + A_i^T G_i^B A_i \right)^{-1}$

2.update to parameters is:

$$\delta p_{i,i} = W_i B_i^T G_i \cdot \left(\Delta q_{i,i-1} - A_i \delta v_i \right)$$
$$D_i = W_i + W_i B_i^T G_i A_i C_i A_i^T G_i B_i W_i$$

Billoir, Fruhwirth, Catlin et al.

eight matrix notation

Kalman Filter Notation

 the Least Square vertex fit can as well be written as a progressive fit
 results in an extended Kalman Filter vertex fit

I.Let's assume δv_{i-1} has been estimated using i-I tracks. Track i is added using the update equations:

$$\delta v_i = C_i^{-1} \cdot \left[C_{i-1} \delta v_{i-1} + A_i^T G_i^B \cdot \Delta q_{i,i-1} \right]$$

covariance: $C_i = \left(C_{i-1}^{-1} + A_i^T G_i^B A_i \right)^{-1}$

2.update to parameters is:

$$\delta p_{i,i} = W_i B_i^T G_i \cdot \left(\Delta q_{i,i-1} - A_i \delta v_i \right)$$
$$D_i = W_i + W_i B_i^T G_i A_i C_i A_i^T G_i B_i W_i$$

Billoir, Fruhwirth, Catlin et al.

→ the smoother in this case is equivalent to computing the parameters $q_{i,n}$ from the final vertex estimate δv_n and $\delta p_{i,n}$

$$q_{i,n} = h_i(v_0 + \delta v_n, p_{i,0} + \delta p_{i,n})$$

with: $\operatorname{cov}(q_{i,n}) = B_i W_i B_i^T +$

with:
$$\operatorname{cov}(q_{i,n}) = B_i W_i B_i^T + V_i^B G_i A_i C_n A_i^T G_i V_i^B$$
 and $V_i^B = V_i - B_i W_i B_i^T$

Beam Spot Constraint Fit

- → important for primary vertex reconstruction
 - beam spot b and its covariance matrix Eb⁻¹ determined externally
- → use beam spot in fit as external constraint
 - straight forward in Kalman Filter vertex fit,

its the starting vertex:

$$\delta v_0 = b$$
 and $C_0 = E_b^{-1}$

Beam Spot Constraint Fit

- → important for primary vertex reconstruction
 - beam spot b and its covariance matrix Eb⁻¹ determined externally
- ➡ use beam spot in fit as external constraint
 - straight forward in Kalman Filter vertex fit,

its the starting vertex:

$$\delta v_0 = b$$
 and $C_0 = E_b^{-1}$

 $B_i^T G_i A_i \cdot \delta v + B_i^T G_i B_i \cdot \delta p_i = B_i^T G_i \cdot \Delta q_{i,0}$

 $\left(E_{b} + \sum_{i} A_{i}^{T} G_{i} A_{i}\right) \cdot \delta v + \sum_{i} A_{i}^{T} G_{i} B_{i} \cdot \delta p_{i} = E_{b} (b - v_{0}) + \sum_{i} A_{i}^{T} G_{i} \cdot \Delta q_{i,0}$ (1')

which can be solved as before...

added to the χ^2

minimizing the linearize χ^2 leads to the modified set of equations:

 $\chi^2 = \sum \Delta q_i^T G_i \Delta q_i + (b - v)^T E_b (b - v)$

Beam Spot Constraint Fit

- → important for primary vertex reconstruction
 - beam spot **b** and its covariance matrix E_b^{-1}

q₁ **p**₁ beam spot vertex v **p**₃ **p**₄ reference surface **q**4

13

(2)

Inspecting Outliers

common problem:

- ➡ fit quality is bad, need to calculate the x² contribution of each track to overall fit to identify outliers
- \Rightarrow need to compare χ^2 of fit to all tracks to the χ^2 of fit with 1 track less:

$$\Delta \chi_i^2 = \left[\Delta q_i^T \cdot G_i \cdot \Delta q_i \right] + \left[\left(\Delta q_i - A_i \delta v \right)^T \cdot G_i^B A_i C^{-1} A_i^T G_i^B \cdot \left(\Delta q_i - A_i \delta v \right) \right]$$

track χ^2 change to χ^2 from including this track in δv

➡ used to iteratively remove outliers

Inspecting Outliers

common problem:

- ➡ fit quality is bad, need to calculate the x² contribution of each track to overall fit to identify outliers
- \Rightarrow need to compare χ^2 of fit to all tracks to the χ^2 of fit with 1 track less:

$$\Delta \chi_i^2 = \left[\Delta q_i^T \cdot G_i \cdot \Delta q_i \right] + \left[\left(\Delta q_i - A_i \delta v \right)^T \cdot G_i^B A_i C^{-1} A_i^T G_i^B \cdot \left(\Delta q_i - A_i \delta v \right) \right]$$

track **\chi2** change to **\chi2** from including this track in **\delta v**

used to iteratively remove outliers

application: Iterative Vertex Finder for multiple vertices

- → fit all tracks into 1 vertex
- \rightarrow remove worst track one by one, until fit χ^2 is acceptable
- → take removed tracks and try to find next vertex
- → repeat until no further vertex with at least 2 tracks can be found

Adaptive Vertex Fit

obust fitting can suppress effects of outliers on fit result

- ➡ concept used for adaptive track fitting in Deterministic Annealing Filter (DAF)
- ➡ can be applied as well on vertex fitting

Adaptive Vertex Fit

obust fitting can suppress effects of outliers on fit result

- ➡ concept used for adaptive track fitting in Deterministic Annealing Filter (DAF)
- → can be applied as well on vertex fitting

technique called Adaptive Vertex Fit

- can be implemented as iterative, re-weighted Kalman Filter
 - *w_{nk}* is weight of track *k* w.r.t. vertex *n*
 - like for DAF, uses Boltzman factors with "temperature" $T(\chi^2_{cut} \text{ is tuning parameter})$
 - reducing *T* results in automatically down-weighted outlying tracks
- ➡ technique commonly used in ATLAS and CMS

extension for Multi-Vertex-Fitter

- → adaptive fit for *n* vertices in one go
- compute track weights w.r.t. each vertex, such
 that vertices compete for tracks

•vertex z-scan on beam line

- histogram technique that searches for peaks in z0 of hit combinations extrapolated to beam line
- used e.g. to seed primary vertex finding or to constrain HLT tracking to point to primary vertex

•vertex z-scan on beam line

- histogram technique that searches for peaks in z0 of hit combinations extrapolated to beam line
- used e.g. to seed primary vertex finding or to constrain HLT tracking to point to primary vertex

•vertex z-scan on beam line

- histogram technique that searches for peaks in z0 of hit combinations extrapolated to beam line
- used e.g. to seed primary vertex finding or to constrain HLT tracking to point to primary vertex

•vertex z-scan on beam line

- histogram technique that searches for peaks in z0 of hit combinations extrapolated to beam line
- used e.g. to seed primary vertex finding or to constrain HLT tracking to point to primary vertex

half sample mode algorithm

- ➡ find points of closest approach between all track pairs
- ➡ in each of the 3 projections:
 - A. try all the intervals which cover 50 % of the points and take the smallest one
 - (in this case number 3.)
 - **B.** iterate again until you have \leq 3 points left (in this case number 2.)
 - C. take the mean of the 2 or 3 remaining
- ➡ defines vertex seed, find matching tracks...

Topological Vertex Finder (ZVTOP)

example for an inclusive vertex finder

→ very powerful, developed by SLD experiment in the 1990th

•3 dimensional vertex search

 \rightarrow construct for each track Gaussian probability tube $f_i(v)$

$$f_i(\boldsymbol{v}) = \exp\left[-\frac{1}{2}(\boldsymbol{v}-\boldsymbol{r})^{\mathrm{T}}\boldsymbol{V}_i^{-1}(\boldsymbol{v}-\boldsymbol{r})\right]$$

here *r* is point of closest approach of track *i* to point v \Rightarrow find all points *v* where *f_i(v)* is significant for 2 tracks

Topological Vertex Finder (ZVTOP)

example for an inclusive vertex finder

→ very powerful, developed by SLD experiment in the 1990th

•3 dimensional vertex search

 \Rightarrow construct for each track Gaussian probability tube $f_i(v)$

$$f_i(\boldsymbol{v}) = \exp\left[-\frac{1}{2}(\boldsymbol{v}-\boldsymbol{r})^{\mathrm{T}}\boldsymbol{V}_i^{-1}(\boldsymbol{v}-\boldsymbol{r})\right]$$

here **r** is point of closest approach of track **i** to point **v**

- \rightarrow find all points v where $f_i(v)$ is significant for 2 tracks
- ➡ define vertex probability function V(r) using all tracks around those points v

$$V({f r}) = \sum_{i=0}^N f_i({f r}) - rac{\sum_{i=0}^N f_i^2({f r})}{\sum_{i=0}^N f_i({f r})}$$

- search for maxima, merge nearby vertex candidates
- run a vertex fit on the set of tracks

Medical Imaging inspired Vertexing

•based on inverse Radon transformation

- ➡ inspired by imaging techniques used for PET scans
- ➡ vertex finder is essentially a variant of ZVTOP
 - See: 2012 J. Phys.: Conf. Ser. 396 022021
- ➡ potentially faster with high pileup
 - evaluated e.g. in ATLAS for primary vertex finding

steps for vertex finder:

➡ create 3D track density maps

Medical Imaging inspired Vertexing •based on inverse Radon transformation → inspired by imaging techniques used for PET scans → vertex finder is essentially a variant of ZVTOP • See: 2012 J. Phys.: Conf. Ser. 396 022021 ➡ potentially faster with high pileup • evaluated e.g. in ATLAS for primary vertex finding apply ramp filter steps for vertex finder: → create 3D track density maps → Fourier transform the Gaussian tubes 80 → apply (ramp) k-filter → back transform image 60 → find vertex candidates as local maxima 40 → run vertex fits on candidates (like ZVTOP) 20 -2 sharper image, but more noise -3 0 5

Vertexing Applications

Beam Spot + Primary Vertex

beam spot routinely determined

- either average unbiased primary vertices, or estimate from impact parameter vs φ
- averaged over short periods of time to follow eventual beam (or detector) movements
- → input to primary vertex fitting as a constraint

orimary vertex (PV) finding

- reconstruct primary and pileup vertices
 - identify primary (hard) interaction vertex, e.g.
 highest Σp_T² of associated tracks
- ➡ ATLAS (and CMS) use an iterative vertex finder and an adaptive fitter
- ➡ input to:
 - object selection, e.g. IP of leptons w.r.t. PV
 - \bullet pileup corrections to jets and missing E_T
 - Iuminosity monitoring with PV counting

sion

CÈRI

 \rightarrow defined fraction of p_T of tracks in jets associated to primary vertex:

$$JVF(jet_i, vtx_j) = \frac{\sum_k p_T(trk_k^{jet_i}, vtx_j)}{\sum_n \sum_l p_T(trk_l^{jet_i}, vtx_n)}$$

good separation in D0 for different types of jets

more complex at LHC

➡ interaction region is a factor ~6 smaller and LHC reached higher levels of pileup

ATLAS replaced JVF with multi-variant techniques, CMS uses combined particle flow

b-Jet Tagging

several different reconstruction techniques being explored to tag b-(and c-) jets

- → explore b-(c-) hadron fragmentation, lifetimes, mass and decay properties
- → a "large industry" to combine the different techniques with multi-variant methods

•3 categories

- ⇒ soft lepton tagging
 - explore semi-leptonic b- and c-decays (BR~10%)
 - tagging is done using p_T of lepton to jet axis
- ➡ impact parameter tagging
 - sign impact parameter (*IP*) w.r.t. jet axis
 - tagging is done using *IP* significance w.r.t. *PV*
 - done in $R\phi$ (2D) or in $R\phi+Rz$ (3D)
- → secondary vertex (SV) tagging
 - reconstruct b-(c-)decay vertex
 - use decay length significance
 - additional vertex information:
 - mass, multiplicity, momentum

b-Jet Tagging

 several different reconstruction techniques being explored to tag b-(and c-) jets

→ explore b-(c-) hadron fragmentation, lifetimes, mass and decay properties

→ a "large industry" to combine the different techniques with multi-variant methods

•3 categories

- ⇒ soft lepton tagging
 - explore semi-leptonic b- and c-decays (BR~10%)
 - tagging is done using p_T of lepton to jet axis
- ➡ impact parameter tagging
 - sign impact parameter (*IP*) w.r.t. jet axis
 - tagging is done using *IP* significance w.r.t. *PV*
 - done in $R\phi$ (2D) or in $R\phi+Rz$ (3D)
- → secondary vertex (SV) tagging
 - reconstruct b-(c-)decay vertex
 - use decay length significance
 - additional vertex information: mass, multiplicity, momentum

Jet-Fitter and b-Jet Tagging

• conventional secondary vertex tagger

→ fits all displaced tracks into one common vertex

Jet-Fitter developed here in Freiburg

- → fit of 1 to N vertices near the b-jet axis
 - **b** and **c**-hadron vertices are approximately on the jet axis from primary vertex
- → mathematical extension of conventional Kalman Filter vertex fitter

up to 40% better light rejection

- → much improved control of charm rejection
- → IP3D+JetFitter best b-tagging technique in ATLAS

G.Piacquadio

b-Jet Tagging Performance

ATLAS and CMS use similar techniques

➡ soft lepton tagger

- explore pr of leptons to jet axis
- limited by B/D semi-leptonic branching ratio
- → track counting of tracks with significant IP offsets
 - robust, but not optimal usage of information
- ⇒ jet probability (JetProb)
 - construct probability that IP significance of all tracks in jet is compatible with PV
- → variant of JetProb is IP3D

CERN

- likelihood ratio using b/c/light templates
- ➡ secondary vertex (SV1) tagger
 - high purity, but limited by vertexing efficiency
- ⇒ combined secondary vertex (IP3D+SV1) tagger
 - combined IP significance and secondary vertexing techniques using e.g. likelihood ratios
- ➡ variant of a combined tagger is IP3D+JetFitter
 - best vertex tagger combined with IP significance
- → multi-variant techniques to classify jets (e.g. MV1)
 - baseline today, aims at optimal combination of tagging techniques

Let's Summarise...

discussed vertex fitting and finding techniques

•b-tagging and other examples for vertexing applications

... that's it for this set of lectures ! **Thanks** !

