Markus Elsing

BL - Physics Performance

summary of results shown in IBL TDR

Physics at sLHC Phase-I

ATLAS physics goals will remain the same before and after phase-I upgrade

→ exploration of new energy regime, advanced using 7 to 14 TeV data

• physics program evolves as first discoveries are made

- ➡ physics signatures involving flavor jets tagging will remain central
- e.g. low mass Higgs discovery in b-jets is difficult, but confirmation of observation is crucial to study Higgs coupling

• LHC phase-I

- → expect to have 66 fb⁻¹ collected by 2016 and 340 fb⁻¹ until end of phase-I
- ➡ phase-I peak luminosities of 2*10³⁴ cm⁻²s⁻¹

• IBL upgrade

➡ improve tracking, vertexing and b-tagging in presence of very high luminosity pileup and recover eventual failures in present Pixel detector

Phase I - Current Inner Detector

occupancy

- → Pixel and SCT scales linearly
- → TRT good hit occupancy vs efficiency

tracking in pileup

- → efficiency, most resolutions same
- ➡ momentum resolution slowly deteriorates with TRT occupancy
- → rate of fake tracks and rate of significant impact parameters increases fast

pileup track selection

- → suppresses fakes at expense of some efficiency
- → requiring 9 out of 11 hits robust ? cut on "no Pixel holes" ...

IBL in the ATLAS Simulation

• IBL as 4th Pixel layer in G4

- ➡ new beam pipe (R_{min} = 25 mm)
- re-use Pixel digitization model
 - similar to IBL planar sensors
 - 8bit (FE-I3) instead of 4bit (FE-I4)
- IBL material adjusted to 1.5% X₀
 - → reconstruction: 4 layer tracking geometry

Markus Elsing

Tracking Performance with no Pileup

expected results

- ➡ smaller radius
- ➡ small z pitch
- less material between first and 2nd layer
- ➡ track length ~ same

improvements

- ➡ better d₀ resolution
- ➡ better z₀ resolution
- θ and φ improved at low-pT
- momentum resolution
 unchanged

Primary Vertexing

current vertex finder

- ➡ "IterativeVertexFinder"
- d₀, z₀ resolution without
 pileup improved with IBL
 - ➡ as expected

• with beam spot constraint

- → IBL improvement mostly in z₀
- \Rightarrow ~ 20% better RMS or σ

non Gaussian tails

➡ especially without BS constraint

b-Tagging Performance

• state of the art ATLAS tagging code

- → "IP3D" $\sim d_0 \oplus z_0$ impact significance likelihood
- ➡ "IP3D+SV1" ~ adding secondary vertex information
- likelihood taggers ~ re-calibration
- light rejection as function of b-jet efficiency in tt events

→ normalized to jets with $p_T>15$ GeV, ≥ 1 b-tag track

• IBL without pileup:

- ➡ ~ 10% more secondary vertices found
- ➡ at 60% b-jet efficiency a
 - factor 1.8 in light rejection for IP3D
 - factor 1.9 in light rejection for IP3D+SV1

Robustness of Tracking with Pileup

tracking efficiency rather constant with luminosity

- ➡ with and without IBL
- similarly, impact parameter resolutions not much affected

• with pileup

- increased rate of secondaries and combinatorial fakes
- ➡ especially at 2*10³⁴ cm⁻²s⁻¹

• pileup selection with IBL

- \Rightarrow ≥10 IBL+Pixel+SCT hits, ≤1 pixel hole
- ➡ benefit from additional layer
- leaves room for eventual inefficiencies in b-layer
- following result shown with default and pileup selections

Markus Elsing

8

tt events

Primary Vertexing with Pileup

- "IterativeVertexFinder"
 - \rightarrow conservative 7 σ before seeding new

• clear improvements with IBL

- gains in resolution and vertex tail fraction as well with pileup
- ➡ signal vertex efficiency better
- \Rightarrow Σp_T² identification of primary vtx ?
- pileup selection better overall

vertex identification is analysis level issue

- ➡ use lepton+jets in tt
- truth vertex identification used in the following

tt events

b-Tagging with Pileup

pileup affects b-tagging in many ways

- ➡ additional jets and fake jets from in/out of time pileup
 - restrict to truth jets to get comparable results
 - real data: can use e.g. Jet-Vertex-Fraction
- close-by pileup vertices
 - additional b-tag tracks
 - lead to significant z₀ offsets affecting IP3D

good performance with IBL and pileup

- ➡ as good or better as for current ATLAS without pileup!
- → pileup selection is again better

ſ

0

Number of pileup interactions

25

50

Detector Defects: Scenario I

- 10% cluster inefficiency in b-layer
 - emulates e.g. so-called double column readout inefficiency
- IBL fully recovers tracking efficiency and impact resolution
- with IBL only small effects on b-tagging performance
 - even at high luminosity
 - with IBL even better than ATLAS without pileup and defects !

Detector Defects: Scenario II

- catastrophic failure of b-layer
- again, IBL recovers tracking efficiency
 - without IBL, loosing the b-layer means loosing all tracks for b-tagging algorithms
- effect on b-tagging is bigger than for scenario l
 - ➡ loss of 1 layer reduces redundancy
 - more material between 1st and 2nd cluster
 - ⇒ performance with IBL ⊕ lost b-layer ⊕ pileup equivalent to current ATLAS without pileup !

Detector Defects: Scenario III

• 10% ROD errors in the SCT

- means loosing data in several layers (!) in certain η-φ regions
- ROD errors are recorded in data, reconstruction tries to correct for it
- tracking efficiency loss with and without IBL
 - essentially not enough clusters to find tracks
 - additional layer helps, but distance between Pixels and TRT is big
- b-tagging performance with IBL still recovered !
 - ➡ compared to ATLAS without defects

Summary

IBL detector

- ➡ additional low mass layer close to interaction point
- IBL improves impact parameter resolution, therefore improved vertex reconstruction and b-tagging
- b-tagging performance with IBL at 2*10³⁴ cm⁻²s⁻¹ is similar to current ATLAS without pileup

 in all studied scenarios with detector defects, the IBL recovers the tracking and b-tagging performance

Number of staves	14	
Number of modules per stave (single/double FE-I4)	32 / 16	
Pixel size (ϕ, z)	50, 250	μm
Module active size W×L (single/double FE-I4)	16.8×40.8 / 20.4	mm ²
Coverage in η , no vertex spread	$ \eta < 3.0$	
Coverage in η , 2σ (=112 mm) vertex spread	$ \eta < 2.58$	
Active z extent	330.15	mm
Geometrical acceptance in z (min, max)	97.4, 98.8	%
Stave tilt angle in ϕ (center of sensor, min, max)	14.00, -0.23, 27.77	degree
Overlap in ϕ	1.82	degree
Sensor thickness	230±15	μm
Radiation length at $z = 0$	1.5	% of X_0

Table 4. Main IBL layout parameters.

Markus Elsing

Digitization Model for IBL

- re-used Pixel digitization model
 - ➡ no radiation effects
 - ➡ model is closest to planar IBL modules

• 4bit (FE-I4) cluster calibration vs 8bit (FE-I3)

- ➡ different dynamic range
 - FE-I4 different in handling overflow
- ➡ average cluster size in IBL bigger than in b-layer
 - broader spectrum of incident angles

• IBL (FE-I4) and b-layer (FE-I3) resolutions

- → pitch drives Z_{local}
- used 8-bit for the following studies

