# Recent Results from the Large Hadron Collider

#### Markus Elsing COSMO 2012, September 10-14, Beijing





# Introduction: LHC

- LHC is a high energy and high luminosity proton-proton collider
  - → design centre-of-mass energy is 14 TeV and design luminosity is  $\mathscr{L} = 10^{34} \text{ cm}^{-2}\text{s}^{-1}$
  - ➡ first collider to reach energy regime of HECR
  - ➡ expect ~23 interactions at a bunch crossing frequency of 40 MHz (!)

#### • LHC is a unique machine

- → first collider to explore the physics at the *TeV* scale
- excellent sensitivity to rare (new physics) processes

#### expected production cross-sections

- large inclusive b, W/Z and top production rates
  LHC is a combined b-, W/Z- and top-factory
- cross-section for jet and W/Z production orders of magnitude larger than e.g. expected for Higgs
- ➡ total cross-section dominated by soft interactions







Markus Elsing

## Introduction: LHC Physics Programme

#### proton-proton programme:

- I. mass and electroweak symmetry breaking
  - search for the Higgs Boson, measurement of its properties
- II. hierarchy in the TeV domain
  - search for new phenomena moderating the hierarchy problem
- search for the unexpected at the high-energy frontier III.electroweak unification and strong interactions
  - precision measurements (m<sub>top</sub>, M<sub>W</sub>) and tests of the Standard Model
- tests of perturbative QCD at the high-energy frontier IV. flavour
  - B-,D-mixing, rare decays and CP violation as tests of the Standard Model
- heavy ion programme: (not covered here)



study quark-gluon plasma in Pb+Pb collisions at up to 5.5 TeV per colliding nucleon





Peter Higgs visiting CERN in 2008

### Introduction: LHC and Experiments





## Introduction: LHC and Experiments





# Introduction: LHC and Experiments





# LHC Operation in 2010 to 2012

#### • first LHC running period

- → 2010+2011at *7 TeV* and *8 TeV* in 2012
- ➡ increase in centre-of mass energy yields increase in parton luminosity, especially for large M<sub>X</sub> processes
- but jet, W/Z and top cross-sections scale fast, background for new physics searches

#### outstanding LHC performance

- ➡ peak luminosity of 7.7×10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup> with half the number of bunches
- $\Rightarrow$  expect to reach 20 fb<sup>-1</sup> in 2012
  - p+p run this year extended by 2.5 months

#### presented in the following

- → 7 TeV and latest 8 TeV results
- ➡ status of ICHEP'12, with SUSY'12 updates





W.J. Stirling, private communication





# High Luminosity comes at a Price

#### • typical LHC event in 2012

- → large number of interactions in 1 event
  - so-called event "pileup"
- ➡ exceeding detector design levels (!)

#### challenge for the experiments

- <u>trigger</u>: select interesting interactions, keeping acceptable total rate
- data volume: from the detector recorded on tape and to be processed/analyzed on computing GRID worldwide
- reconstruction and analysis: make sense out of these very complex events and extracting interesting physics information

#### huge development effort

- → during shutdown 2011/2012
- experiments improved as well their
  - sensitivity, especially for Higgs searches









# Standard Model Measurements

# • W<sup>±</sup>/Z, W/Z+jets and di-boson production

- ➡ important tests of SM
- ➡ background for searches (Higgs)

#### • W and Z studies

- ➡ huge event rates
  - heavily used for calibration
- W/Z rapidity distribution sensitive to strange quark sea contribution in proton PDFs
  - ATLAS compatible with no strange sea suppression

#### di-boson production

- $\rightarrow$  can put limits on anomalous
- Triple Gauge Couplings
- becoming competitive with LEP



Markus Elsing

## Top Cross-Sections and Mass

#### • LHC is a top factory

- → tt cross-section is large ~200 pb (~4 million events so far)
- rich top physics program

#### top pair and single top production

- ➡ several channels accessible, even all hadronic
- → 7 and first 8 TeV results in agreement with SM

#### precision top mass measurements

- → derive mt from kinematic mass reconstruction
- ➡ already systematically dominated (jet energy scale, ...)





# Mt and Electroweak Fit

#### direct top and W mass measurements

- mostly precise TEVATRON results
- compatible with combined fit to electroweak precision data and a light Higgs
- ➡ as well with MSSM

#### precise measurements of top mass

experimental observable and pole mass ?

$$m_t^{\exp} = m_{pole}(1 \pm \Delta)$$

- kinematic reconstruction from uncolored final state
- sensitive to hadronisation effects (color reconnection...)
- determine running mass (MS-scheme) from CDF/DO top pair cross-section at NNLO, yields:

 $m_{pole} = 173.3 \pm 2.8 \, GeV$ 

- close to world average, factor 4 larger uncertainty
- PDF and  $\alpha_s$  uncertainties currently limiting for LHC,



may be reduced in the future ?

Alekhin, Djouadi, Moch, arXiv:1207.0980v2







Heinemeyer, Hollik, Stockinger, Weiglein, Zeune<sub>10</sub>

# Searches for the SM Higgs

#### SM Higgs phenomenology

- ➡ precisely predicted, but Higgs mass
  - NLO and NNLO calculations (typical  $\sigma \sim$  5-15%)
  - production dominated by gg fusion, then vector boson fusion (VBF), associated WH and ZH
- ➡ cross-section and branching ratios are strong function of M<sub>H</sub>

#### • Higgs searches in 2011 data

- ➡ both experiments saw hints for a light Higgs
  - around ~3 $\sigma$  each, ignoring "look elsewhere effect"
  - indications as well in TEVATRON data
- ➡ low mass region at LHC
  - many decay modes accessible (γγ,ZZ,WW,ττ,bb)
  - γγ and ZZ yield excellent mass resolution (~1%)
- challenging to control backgrounds, except for ZZ

#### • experiments "blinded" their 2012 data



huge effort to optimize expected sensitivity (pileup)
 and re-optimized analysis on published 2011 data
 results updated using 2012 data (8 TeV) up to ICHEP
 Markus Elsing





# Overview: Higgs $\rightarrow \gamma \gamma$

#### • experimental signature

- ⇒ 2 isolated photons  $p_T > 40$ , 30 GeV with  $\varepsilon \sim 40\%$
- → expect ~200 events at S/B~3%

#### huge background

- → <u>irreducible</u>: continuum di-photons
- $\rightarrow$  <u>reducible</u>: mis-identified jets ( $\pi^0$ )

#### sophisticated photon ID

→ shower shapes (especially ATLAS) and isolation yields:  $bkg(\gamma+jet/\gamma\gamma) \sim 20\%$ 

#### excellent mass resolution

 $M_h^2 = 2E_1E_2(1-\cos\theta_{12})$ 

- energies from precise shower calibration
- → angle from direction to primary vertex



- CMS: sophisticated primary vertex tagging
- ATLAS: ability to use photon pointing



25/07

24/08

23/09

date (day/month)

23/10

Markus Elsing

1.005 1.004

1.003

1.002 1.001

0.999

0.5

0.996

0.995

# Signals: Higgs $\rightarrow \gamma \gamma$

#### maximize expected sensitivity

- separate events into categories with different
  S/B and mass resolution
  - ATLAS uses 9 classes according to η, conversions, p<sub>Tt</sub>
  - CMS uses 4 classes from MVA combining all information

 $q_1$ 

 $q_3$ 

W/Z

 $q_2$ 

H⁰

q₄

Jet

- ➡ separate VBF channel
  - tagged using 2 forward jets

#### for illustration only

➡ combined signals from all classes, events weighted using expected S/B

#### extract signal from a set of fits

background shapes in each class taken from data (!) using sidebands

![](_page_14_Picture_11.jpeg)

![](_page_14_Figure_12.jpeg)

![](_page_14_Figure_13.jpeg)

# Results: Higgs $\rightarrow \gamma \gamma$

#### • combined 7 TeV and 8 TeV results:

|                                        | ATLAS             | CMS                |
|----------------------------------------|-------------------|--------------------|
| M <sub>h</sub> (min p <sub>0</sub> )   | 126.5 GeV         | 125 GeV            |
| local<br>significance                  | <b>4.5</b> σ obs. | <b>4.</b> Ι σ obs. |
| signal strength<br>μ=σ/σ <sub>sm</sub> | 1.8±0.5           | 1.56±0.43          |

#### • new particle is a boson

- ➡ it decays into γγ
- ➡ probably not spin 1 (Landau Yang theorem)
- •gg→Higgs→γγ
  - ➡ SM production and decay via loop processes

![](_page_15_Figure_8.jpeg)

![](_page_15_Picture_9.jpeg)

sensitive to t,W-couplings (and new physics)

![](_page_15_Figure_11.jpeg)

![](_page_15_Figure_12.jpeg)

Markus Elsing

# Overview: Higgs $\rightarrow$ ZZ\* $\rightarrow$ 4 I

#### • experimental signature

- → isolated lepton pairs: 4e, 4µ, 2e2µ
- ➡ golden channel:
  - few events, good S/B, good mass resolution
- → key: efficient lepton identification
  - performance improvements over shutdown
  - e.g. CMS: FSR  $\gamma$  recovery, ATLAS:  $\mu$  2.5< $\eta$ <2.7

#### backgrounds

- $\rightarrow$  <u>irreducible</u>: continuum ZZ\*/Z $\gamma$ \* production
  - shape from MC, measured ZZ cross section slightly above SM predictions (ATLAS, CMS)
- → <u>reducible</u>: Z+bb/jets, tt (low mass)
  - estimate from data using control regions

#### • check: ATLAS+CMS observe Z→4I

![](_page_16_Picture_14.jpeg)

![](_page_16_Picture_15.jpeg)

![](_page_16_Picture_16.jpeg)

![](_page_16_Figure_17.jpeg)

![](_page_16_Figure_18.jpeg)

# Signals: Hig

# CMS: 2D fit for matrix element like

 matrix element like separate signal and

![](_page_17_Figure_3.jpeg)

![](_page_17_Figure_4.jpeg)

GeV

Events/5 ( 0 5 5

10

5

Data

W/// Syst.Unc.

 $15 Ldt = 7 \text{ TeV} \cdot \int Ldt = 4.8 \text{ fb}^{-1}$ 

 $\sqrt{s} = 8 \text{ TeV}: \int Ldt = 5.8 \text{ fb}^{-1}$ 

Background ZZ<sup>(\*)</sup>

Background Z+jets, tt

Signal (m<sub>µ</sub>=125 GeV)

ATLAS

 $H \rightarrow ZZ^{(*)} \rightarrow 4I$ 

![](_page_17_Figure_5.jpeg)

#### • events in signal region (~125 GeV)

| СМЅ                            | 4e                           | 2e2µ                           | 4μ                           | 41                 |
|--------------------------------|------------------------------|--------------------------------|------------------------------|--------------------|
| exp. bkg                       | 0.7±0.2                      | 1.9±0.3                        | 1.3±0.1                      | 3.8±0.5            |
| exp. sign                      | 1.36±0.22                    | 3.44±0.44                      | 2.74±0.32                    | 7.54±0.78          |
| obs.                           | 1                            | 5                              | 3                            | 9                  |
|                                |                              |                                |                              |                    |
|                                | 10                           | 22211                          | <i>A</i> 11                  | <b>A</b> I         |
| ATLAS                          | <b>4</b> e                   | 2e2µ                           | 4μ                           | 41                 |
| ATLAS<br>exp. bkg              | 4e<br>1.53±0.21              | 2e2µ<br>2.07±0.20              | 4μ<br>1.25±0.07              | 41<br>4.85         |
| ATLAS<br>exp. bkg<br>exp. sign | 4e<br>1.53±0.21<br>0.90±0.14 | 2e2µ<br>2.07±0.20<br>2.29±0.33 | 4μ<br>1.25±0.07<br>2.09±0.30 | 41<br>4.85<br>5.28 |

![](_page_17_Figure_8.jpeg)

# CERN

Markus Elsing

Results: Higgs  $\rightarrow$  ZZ\* $\rightarrow$ 4

#### • combined 7 TeV and 8 TeV results:

|                                        | ATLAS             | CMS                         |
|----------------------------------------|-------------------|-----------------------------|
| M <sub>h</sub> (min p <sub>0</sub> )   | 125 GeV           | 125.6 GeV                   |
| local<br>significance                  | <b>3.6</b> σ obs. | <b>3.2</b> σ obs.           |
|                                        | <b>2.7</b> σ exp. | 3.8 σ exp.                  |
| signal strength<br>μ=σ/σ <sub>sm</sub> | 1.4±0.6           | 0.7 <sup>+0.4</sup><br>-0.3 |

Markus Elsing

![](_page_18_Figure_3.jpeg)

![](_page_18_Figure_4.jpeg)

![](_page_18_Picture_5.jpeg)

# Higgs $\rightarrow$ WW $\rightarrow$ 2l2v

#### experimental signature

- → 2 isolate leptons (e,  $\mu$ ), missing E<sub>T</sub>, 0-2 jets (VBF)
- $\Rightarrow$  large BR, but limited mass resolution (±15 GeV)

#### backgrounds vary vs jet multiplicity

- → mostly tt, irreducible WW, W/Z+jets
- → kinematic selection ( $\Delta \phi_{\parallel}$ , m<sub>||</sub>), b-tag veto (top)

#### broad access compatible with SM

- $\rightarrow$  CMS updated ee,  $\mu\mu$  and  $e\mu$  with 2012 data
- ➡ ATLAS updated only eµ
  - less sensitive to Drell-Yan at large pileup

![](_page_19_Figure_11.jpeg)

![](_page_19_Figure_12.jpeg)

![](_page_19_Picture_13.jpeg)

![](_page_19_Figure_14.jpeg)

![](_page_19_Figure_15.jpeg)

#### for completeness

# Higgs $\rightarrow \tau \tau$ and W/Z(H $\rightarrow b\overline{b}$ )

#### • CMS updated both with 2012 data

- → Higgs→ττ in 4 final states  $μτ_h$ ,  $eτ_h$ , eμ, uu
  - challenging large backgrounds (DY  $\rightarrow \tau \tau$ , W+jets, QCD)
  - $\bullet~VBF$  most sensitive, split others by 0/1 jet and low/high  $p_T$
- → W/Z(H→bb) in 3 final states (Z→II)H, (W→lv)H, (Z→vv)H
  - largest SM BR at low mass, but huge QCD background
  - search in association with W or Z
  - sophisticated MVA to extract signal
- → total expected limits in both channels close to SM ( $\mu$ =1)
  - CMS improved sensitivities by 50% (70%) w.r.t. 2011
  - observed limits are close, needs more data

![](_page_20_Figure_13.jpeg)

![](_page_20_Figure_14.jpeg)

![](_page_20_Figure_15.jpeg)

...ATLAS did not yet update their 2011 result with 2012 data, will be part of HCP updates in November

### Putting All Together...

#### full mass rage excluded, but window around ~125 GeV

→ all channels, including those sensitive to high m<sub>H</sub>

![](_page_21_Figure_3.jpeg)

![](_page_21_Picture_4.jpeg)

## Putting All Together...

#### full mass rage excluded, but window around ~125 GeV

→ all channels, including those sensitive to high m<sub>H</sub>

![](_page_22_Figure_3.jpeg)

#### • local significance at min. p<sub>0</sub>:

| ATLAS             | CMS               |              |
|-------------------|-------------------|--------------|
| <b>5.9</b> σ obs. | <b>5.0</b> σ obs. |              |
| 4.9 σ exp.        | 5.8 σ exp.        | •            |
|                   |                   | Markus Elsin |

![](_page_22_Figure_6.jpeg)

# Properties of the New Particle

#### • establishing its nature: is it the SM Higgs ?

- → measure its mass, spin properties (J<sup>PC</sup>), couplings, ...
- $\rightarrow$  it is a boson and probably not spin 1 (H $\rightarrow$   $\gamma\gamma$ )

| ATLAS | 126.0±0.4±0.4 GeV |
|-------|-------------------|
| CMS   | 125.3±0.4±0.5 GeV |

#### • mass values:

➡ naive average 125.7±0.4 GeV

| •         |              |         |      | •    |
|-----------|--------------|---------|------|------|
| experimen | its start to | o study | COUD | inds |
| схреппе   |              | Juan    | coup | 1195 |

→ disentangle decay and production properties

![](_page_23_Figure_9.jpeg)

![](_page_23_Figure_10.jpeg)

![](_page_23_Figure_11.jpeg)

5

![](_page_23_Picture_12.jpeg)

# Searches for Supersymmetry

#### excluded up to $\sim 1.5 \text{ TeV}$ for $m(\tilde{q})=m(\tilde{g})$

#### motivations for (minimal) SUSY

- → provides solution for hierarchy problem
- Higgs mechanism for EWSB is built in and predicts a light Higgs
- ➡ unification of couplings
- ➡ R-parity conservation: LSP is DM candidate
- SUSY is broken
  - ➡ plenty of SUSY breaking models (CMSSM, ...)
    - different sets of free SUSY parameters
    - each model has rich phenomenology

#### recent results disfavor CMSSM

- ➡ no light SUSY discovered (so far)
- → Higgs(?) at 125.7 GeV still within SUSY reach
- → constraints from rare B decays ( $B_s \rightarrow \mu \mu$  ...)
- instead, "bottom up" approaches

![](_page_24_Picture_16.jpeg)

 phenomenological SUSY model (pMSSM)
 simplified models to express results for SUSY s-particle searches

![](_page_24_Figure_18.jpeg)

#### excluded $m(\tilde{g}) < \tilde{I}$ TeV for any $m(\tilde{q})$

![](_page_24_Figure_20.jpeg)

## "Natural" SUSY ?

not fine tuned Higgs requires:

 $\delta m_H^2 = \cdots \delta M \cdots + \cdots \delta N \cdots \sim 0$ 

s-particles linked to Higgs loop need to be light

#### 3rd generation squarks

 cross-sections at LHC expected to be smaller than for 1st and 2nd generation

#### • generic SUSY searches at LHC

- → like: "0-lepton" (signature: jets + missing ET)
  - interpretation in simplified model
- → yield stringent limits on 1st and 2nd gen.
  - excluded up to ~1.5 TeV for  $m(\tilde{q})=m(\tilde{g})$
- not constraining 3rd generation squarks
  - needs specialized  $\tilde{t}$  and  $\tilde{b}$  searches

![](_page_25_Figure_13.jpeg)

![](_page_25_Figure_14.jpeg)

Markus Elsing

Perez (

Sundrum

# **Dedicated Stop Searches**

Gev

Markus Elsing

- simplified models
  - → assumes 100% branching ratios

#### gluino mediated Stop

- → 4 top squarks in final state
- → modes via virtual/on-shell stop
  - but limit on  $m(\tilde{g})$  depends little on  $\tilde{g}$  $m(\tilde{t})$  above/below  $m(\tilde{g})$
- → sensitive to  $m(\tilde{g}) < 1000 \text{ GeV}$  for  $m(\tilde{\chi}_1^0) < 380 \text{ GeV}$

#### direct Stop pair production

- $\Rightarrow$  2W+2b-jets+missing E<sub>T</sub>
- $\rightarrow$  modes with m(t) above/below m(t)
  - combination of several signatures to maximize sensitivity

![](_page_26_Picture_12.jpeg)

"If you cover the white then Weak scale SUSY is probably

![](_page_26_Figure_14.jpeg)

# WIMP Searches

![](_page_27_Figure_1.jpeg)

![](_page_27_Figure_2.jpeg)

#### complementary to (in)direct searches

 $\Rightarrow$  experimental signature is  $\gamma$ /jet+missing E<sub>T</sub>

#### interpretation is model dependent

- → needs assumption about the "blue bubble"
- → effective theory approach for contact interaction
  - choice of operators (~Dn)
  - parameters mass  $m_X$  and scale  $\Lambda = M_*$ J.Goodman et al., arXiv:1008.1783
- → 90% CL limits on WIMP-nucleon cross-section for Dirac fermions X
  - operator for spin independent scattering

(D5)

(vector)

(axial)

(tensor)

Markus Elsing

![](_page_27_Figure_12.jpeg)

![](_page_27_Figure_13.jpeg)

![](_page_27_Picture_14.jpeg)

#### strong limits on spin dependent scattering

![](_page_27_Figure_16.jpeg)

![](_page_27_Figure_17.jpeg)

## No TeV Scale New Physics (yet)

- huge list of experimental signatures and models covered
- typical limits achieved up to:
  - ➡ singly produced objects with QCD couplings ~ 3.5 TeV
  - $\Rightarrow$  singly produced objects with EW couplings  $\sim 4 TeV$
  - ⇒ pair produced objects with QCD couplings ~ 600 GeV
  - → unitarity limited rates ~ 4 TeV
  - ➡ compositeness scale ~ 8 TeV
- details in figures...

![](_page_28_Figure_9.jpeg)

![](_page_28_Figure_10.jpeg)

# Indirect Constraints on New Physics

#### • LHCb took 1fb<sup>-1</sup> in 2011 (and in 2012)

- ➡ excellent dataset to place indirect constraints on NP
- ➡ precision measurements, compare to SM predictions

#### • rare *B* decays, especially: $B_s \rightarrow \mu \mu$

- → helicity suppressed in SM, large NP effects prediced
- → places stringent limit on models increasing BR

 $BR(B_s \rightarrow \mu\mu) < 4.2 \times 10^{-9} (95\% CL) SM:(3.1\pm0.2) \times 10^{-9}$ 

• e.g. excludes large  $tan\beta$  in 2HDM models (like SUSY)

#### • CP violation in *B* sector

- $\rightarrow$  new measurement of B<sub>s</sub> mixing parameters
  - CP violating phase  $\varphi_s$  and width differences  $\Delta\Gamma_s$
- → reduces phase space for NP:

 $\phi$ s=-0.002±0.083±0.027*rad*,  $\Delta\Gamma$ s=0.116±0.018±0.006*p*s<sup>-1</sup>

• CP violation in charm sector ?

![](_page_29_Picture_15.jpeg)

 $\Delta A_{CP} = A_{CP}(K^{+}K^{-}) - A_{CP}(\pi^{+}\pi^{-}) = (-0.82 \pm 0.21 \pm 0.11)\% (3.5\sigma)$ 

➡ no 1% asymmetry in SM, but control on QCD effects ?

![](_page_29_Figure_18.jpeg)

M.Straub, arXiv:1205.6094v

![](_page_29_Figure_20.jpeg)

# What if SM unchanged up to $M_{PI}$ ?

- no new physics up to very high scales ?
  - → special meaning of  $\lambda \approx 0$  at M<sub>PI</sub>?
- absolute vacuum stability with Higgs self coupling λ(M<sub>PI</sub>)≥0 ?
  - → not quite achieved for current "best" values of M<sub>t</sub> and M<sub>H</sub>
  - → see discussion of M<sub>t</sub>, theoretical uncertainties...

![](_page_30_Figure_6.jpeg)

![](_page_30_Figure_7.jpeg)

### Future Prospects

#### • current pp run ends in 2012

- ➡ hope to accumulate ~20 fb<sup>-1</sup> at 8 TeV before shutdown
- ➡ prepare for 13-14 TeV to accumulate another ~100 fb<sup>-1</sup> until 2018 and ~350 fb<sup>-1</sup> until 2021
- ➡ High Luminosity LHC: ~3000 fb<sup>-1</sup> until 2030

#### ATLAS/CMS physics reach driven by

- increase in parton luminosity going from 8 to 14 TeV
- sensitivity to smaller cross sections

#### • LHCb plans for ~50 fb<sup>-1</sup> over 10 years

⇒ 10% on  $BR(B_s \rightarrow \mu\mu)$ ,  $\sigma(\phi_s)=\pm 0.003$ , ...

#### very active detector upgrade programs

- keep and improve on physics performance
- sustain harder pileup and radiation environment
- $\rightarrow$  especially trigger is an issue:

![](_page_31_Picture_14.jpeg)

keep p<sub>T</sub> thresholds in ATLAS/CMS

no Level-1 trigger selection in LHCb (40 MHz readout)

![](_page_31_Figure_17.jpeg)

500

today

600

700

800

900

1000

1100

m<sub>f</sub> [GeV]

1200

Markus Elsing

### Summary and Outlook

#### • LHC and experiments are doing fantastically well

- → very rich harvest of physics results, much broader than any talk could cover
- → apologies if I did not cover your favorite subject in the last 35 minutes

#### • a new Boson has been discovered !

- → its properties are compatible with Standard Model Higgs, but early to tell
- exciting times for understanding the nature of EW symmetry breaking

#### • LHC is a discovery machine for new physics

- → experiments cover a huge spectrum of signatures and BSM models
- ➡ no signs for TeV scale physics beyond the Standard Model yet

#### • this is just the start

- → machine upgrade from 8 TeV to close to 14 TeV in the 2013/2014 shutdown
- ⇒ expect to take ~350 fb<sup>-1</sup> at 14 TeV until 2021 (before start of HL-LHC)

![](_page_32_Picture_13.jpeg)

### Acknowledgements

many thanks for help in preparing this talk, special plots and useful discussions to:

M.Baak, D.Berge, T.Eifert, M.Costa, M.Cristinziani, M.Duehrssen, D.Froidevaux, R.Hawkings, S.Heinemeyer, A.Hoecker, Z.Marshall, K.Moenig, K.Peters, R.Schwienhorst, ...

... and of course, all material presented here is the result of the fabulous work by many, many people...

![](_page_33_Picture_4.jpeg)