Report from ATLAS Experiment (External Partner)

by Markus Elsing CERN EP-ADP Group

Introduction: LHC Physics Programme

Proton-proton programme:

- I. Mass and electroweak symmetry breaking
 - Precision measurements of the Higgs Boson properties (after the discovery in 2012)

II. Electroweak unification and strong interactions

- Precision measurements (m_{top}, M_W) and tests of the Standard Model
- Tests of perturbative QCD at the high-energy frontier
- **III. Hierarchy** in the TeV domain
 - Search for new phenomena moderating the hierarchy problem
 - Search for the unexpected at the high-energy frontier
- IV. Flavour
 - B-/D-mixing, rare decays and CP violation as tests of the Standard Model

Heavy ion programme:

- Study quark-gluon plasma in Pb-Pb collisions at
 - 5 TeV per colliding nucleon

Peter Higgs visiting CERN in 2008

Display of VBF H \rightarrow eeµµ + 2 jets candidate from 13 TeV pp collisions recorded in 2015.

... and this:

Run: 329716 Event: 857582452 2017-07-14 10:48:51 CEST

Display of di-jet event with mjj=9.3 TeV, produced in pp collisions at $\sqrt{s} = 13$ TeV in 2017. The two high-pT jets both have pT=2.9 TeV, one is at $\eta = -1.2$ and the other at $\eta = 0.9$.

... in an pile-up environment like this:

Event displays of the interaction region, showing a Z→II candidate produced with 65 reconstructed proton-proton collisions. (top: 100 MeV tracks, bottom 1 GeV tracks)

ATLAS Run-2 (2015-2018) Datasets

Run-2 Integrated pp luminosity

- ➡ Excellent data taking (94%) and data quality (95%) efficiency
- → 139 fb⁻¹ (!) of good pp data at $\sqrt{s} = 13$ TeV
- → Luminosity measured to a precision of 1.7% ATLAS-CONF-2019-021
- Excellent reconstruction performance based on precise detector calibrations

LHC is a versatile machine

- → Dedicated setups with different beam energies and optics for diffractive physics
- \rightarrow Low- μ data for precision W physics
- ➡ Collected 2.3 nb⁻¹ of 5 TeV Pb-Pb data, and p-Pb & Xe-Xe data

Rich harvest of physics results based on (full) Run-2 datasets

presented at summer conferences.

Standard Model Production Cross Sections

- So far, all measured total cross sections agree with theory
 - → Production cross sections span 14 orders of magnitude
 - → Also thanks to huge progress on theoretical calculations (NNLO revolution)

Precision Top Cross Section Measurements

Observation of light-by-light scattering in 5.02 TeV ultraperipheral Pb-Pb collisions

[arXiv:1904.03536]

Field strength of up to 10²⁵ V/m $\gamma\gamma$ luminosity ~ Z⁴ ~ 5*10⁷

Look for low-energy back-to-back photons pairs with no additional activity in detector

Higgs Boson Physics

Access to a new sector of SM Lagrangian:

- ➡ Only elementary scalar particle in the SM
- → Yukawa couplings (new types of interaction)
- → Gauge-scalar boson interactions
- → Higgs potential (incl. self coupling)

Large sample of ~8M Higgs bosons produced

→ Allows to do precise test of SM predictions

Channel	Produced	Selected		Mass resolution
$H \rightarrow \gamma \gamma$	18,200		6,440	1–2%
$H \rightarrow ZZ^*$	210,000	$(\rightarrow 4\ell)$	210	1–2%
$H \rightarrow WW^*$	1,680,000	$(\rightarrow 2\ell 2\nu)$	5,880	20%
$H \rightarrow \tau \tau$	490,000		2,380	15%
$H \rightarrow bb$	4,480,000		9,240	10%

Major progress over recent ~year

- ➡ Observation of H→bb decay and of ttH and VH production
- ➡ All major Higgs production and decay modes now observed
- → Detailed studies of cross sections, search for $H \rightarrow \mu\mu$ etc., anomalous Higgs couplings and more

Markus Elsing

Higgs Boson: Now and Then

Higgs Boson: Now and Then

Higgs Boson Decay to Muons (and Electrons)

m_{ee} [GeV]

Combination of Higgs Results

Kappa Framework assigns coupling modifiers to each interaction vertex (LO motivated) $\sigma(i \to H \to f) = \kappa_i^2 \sigma_i^{\rm SM} \frac{\kappa_f^2 \Gamma_f^{\rm SM}}{\kappa_H^2 \Gamma_H^{\rm SM}}$

Resolve loops, assume no BSM contribution in loops or total width

Higgs Boson and Electroweak Section

Higgs boson regularises the weak boson scattering cross section at high energies

Observation of vector boson scattering in rare channel ZZjj

→ Analysis exploits decays to four charged leptons (ℓℓℓℓ) and (ℓℓνν)
→ Multivariate analysis to separate EW signal from backgrounds (e.g. QCD ZZ)

ATLAS-CONF-2019-033

Full Run-2

16

Searching for Physics beyond the SM at the LHC: looking under the (many) lampposts

Searches for New Physics

•ATLAS running a vast programme that cover all areas:

- → High mass, electroweak production, long-lived particles, forbidden decays, ...
- → Theory-agnostic signature based searches, as well as highly targeted modeldependent ones

brig a selection of the available mass limits on rew states or meconees is shown. Many of the best are based on implified models, c.t. refs. for the sear-reptace made.

*Only a selection of the available mass limits on new states or phenomena is shown +Small-radius (large-radius) jets are denoted by the letter j (J)

SUSY: Strong Production

Sensitive searches for squarks and gluinos

- R-parity conserving scenarios with neutralino as LSP (no leptons)
- ➡ High mass reach at LHC
- Many different scenarios investigated, examples:
 - gluino decays to quarks and neutralino
 - squark decays to quarks, W boson, and neutralino
 - Significant improvement over previous limits
 - ATLAS-CONF-2019-040

Full Run-2

Electroweak SUSY Production

- If squarks and gluinos are very heavy, then electroweak production of SUSY particles could dominate
 - → Much lower cross sections, challenging phase space to explore
 - → Summary of recent ATLAS SUSY EWK results:

Full Run-2

Most favourable case: electroweakino production with decays through light sleptons: exclusion reaches up to 1 TeV (not shown) Markus Elsing

Direct slepton production excluded up to 700 GeV mass ATLAS-CONF-2019-008

20

BSM Searches: Di-Jet Resonances, W', Z'

Dark Matter Searches

And what if New Physics is all different?

Long-lived particles can occur in case of weak couplings, small phase space (mass degeneracy), high virtuality (scale suppression)

Example for long-lived Particle Searches

Preparing for the Future

Current Long-Shutdown 2

- ➡ Phase-1 upgrade
- → First set of upgrades for ATLAS
- •Run-3 to collect 300 fb⁻¹ at 14 TeV

Long-Shutdown 3

- ➡ Phase-2 upgrade
- ➡ Major upgrade of ATLAS experiment
- High Luminosity LHC (3000 fb⁻¹)

ATLAS Phase-I and Phase-II Upgrades

HL-LHC Computing Challenges...

To explore high luminosity:

- → Increased event rate to 10 KHz (disk space)
- → Increased Monte Carlo statistics (disk and CPU)
- → Pile-up up to 200 (CPU for reconstruction)
- ➡ Precision of event generators (CPU)

Computing model extrapolations exceed current budget !

→ Explore all options to reduce computing costs

Phase-II Tracker Upgrade (ITk)

Markus El

Current Inner Detector will reach end-of-lifetime

- → To be replaced by all silicon tracker (ITk)
 - 4 layer (double sided) strip detector
 - 5 layer pixel system
- → Will extend coverage in $|\eta|$ from 2.5 to 4

ITk designed for precision tracking at 200 pile-up

- Better resolutions and less fakes than for current detector during Run-2
- Detector designed to also minimise CPU needs for track reconstruction

Phase-II and Algorithm Developments

Event

per

HS06 × Seconds

- Phase-II software upgrade program
 - ➡ Complements detector upgrades
- Algorithmic optimisation of track reconstruction
 - Prototype based on classical tracking techniques at 200 pile-up faster than current detector at 20 !

Intensive R&D on algorithmic software

- ➡ ACTS as an open source tracking project
 - "community" project ATLAS, Belle-II, FCC ...
- Tracking community workshops (CTD/WIT)
- ➡ R&D on support for GPUs and other co-processors

Tracking Machine Learning Challenge

- ➡ Reaching data science community (Kaggle/Codalab)
- Machine learning and novel algorithmic approaches

Rucio Scientific Data Management

Exa-scale data volumes for HL-LHC

- Rucio is a generic service for large scale scientific data management
- Supports heterogeneous computing infrastructures (GRID, CLOUD, HPC)
- Developed originally for ATLAS experiment, became an open source community project

• Rucio in ATLAS today:

- more than 1 billion files
- total >0.4 ExaByte
- 2.5 M files (2.5 PetaByte) transferred per day
- more than 150 computing centres
- more than 1000 active users

•Rucio Community is growing fast...

Many experiments and science organisations within HEP and beyond ...

Community workshops every year <u>https://indico.cern.ch/event/773489/</u>

Summary

- Plenty of new ATLAS Run-2 results presented this summer
 - → Gave a short overview of recent ATLAS SM, top and Higgs physics results
 - → No signs for physics beyond the SM in full Run-2 dataset yet
- ATLAS is getting ready for Run-3 with Phase-I upgrades
 - → And ATLAS is moving from pure GRID computing to inclusion of HPCs and clouds
- Detector, software and computing upgrades for HL-LHC
- Opportunities for collaboration within EuroPlex
 - ➡ Physics (of course)
 - ➡ Data science techniques and algorithmic software developments
 - Software development for heterogenous computing using co-processors (GPUs...)
 - → Computing and HPC/HTC:
 - Middleware services for Scientific Data Management and alike

