
Markus Elsing

Tracking and B-Tagging

♦Status of new Inner Detector reconstruction
♦Overview of b-tagging tools
♦Comments on B-tagging, Pixel software and tracking

Status of Track Reconstruction

Common Tracking EDM, DD and Tools
Basis for test beam, cosmics and newTracking reconstruction code

Muons joining the game
Lot of activities for release 11 and afterwards

Full tracking geometry in 11.2.0 for first time (Rome initial)
Migration of standalone packages into new framework progressing

Igor has been moving a lot of code from xKalman into Tracking/
Waiting for Alan to do so as well (Intersector/iPatFitter first to go)

Several new techniques are being studied now
STEP propagation (propagation in dense material)
TrackingGeometry for material corrections
Gaussian Sum Filter (electrons)
Deterministic Annealing Filter (high lumi TRT reconstruction)

Recent developments on Vertexing
“Classical” Billoir code is available (chi2-fit)
New effort on Kalman Filter vertex fitting, robust fitting
B-tagging and b-physics still use fortran based codes - migration needed

New Tracking - High Level Design

New Tracking in release 11.x.y
Event Filter version and offline version of each Algorithm, but same tools
Track finding strategy similar to xKalman or iPatRec (inside-out)
All tools have abstract interfaces, use new EDM, tracking tools, etc.

First Prototype is operational
Pattern strategy starts from Space Points in Pixels and SCT with an
extension into TRT (inside-out tracking)

Similar to xKalman and iPatRec

First prototype consists of 4 algorithms:
SiSPSeededTrackFinder - track candidate finding in Pixel and SCT
InDetAmbiguitySolver - select good track candidates, full track fit and
 resolve ambiguities
TRT_TrackExtension - extend resolve tracks into TRT
InDetExtensionProcessor - refit of extensions and replace original

Prototype covers 3 use-cases
Offline, Event Filter and Test Beam

Basic Functionality in place
Many opportunities to contribute still (see later)

Space Point Seeded Track Finder
Track finding in Pixel and SCT

Starting from Space Points combinations
Baseline: fast Z-vertex scan
 (optional without)
Space Point Seeds pointing back
Build up road for each Seed
Associate Clusters in all layers
Output are TrkTracks

Implementation using new EDM, abstract
 interfaces and common tracking tools

Region-of-Interest seeded mode is part
 of interface definition

Ambiguity Processor
Task: resolve track candidates from
different input track collections and
do final track fit
“Simple” strategy:

Reject double candidates first
Score all tracks

Number of clusters, holes, χ2, …
Take best, mark PRDs as used
Try next best track,

if all PRDs are still un-used, take it,
mark PRDs as used
otherwise drop used PRDs, new

score and add new track to candidates

Takes into account ganged pixels !
InDetAmbiguitySolver uses InDet
and Tracking Tools

All have abstract interfaces !!!

TRT Track Extension
Algorithm to extend Silicon tracks into TRT

Runs after ambiguity
Build up road in TRT each Si-track
Associate Drift Circles in TRT
Resolve L-R
Output is association list

Same design principles like for the
 SPSeededTrackFinder

Abstract interfaces, EDM, tracking…
Igor implemented both based in xKalman code
 (one finds a lot of tools with “_xk” in cvs)

Open design principle - see later

Extension Processor
Strategy:

Pattern Recognition provides set
 of track extensions (into TRT)
Refit track + extension
Score new and original track
If new track is better, replace original

Uses same scoring function, fitter,
 … as ambiguity solver

Comment:
Several outliers found in TRT

material interactions for electrons…
Changed TrkTrack to record those

save TR info, input to kink reconstruction in future, …
Same problem seen in xKalman and iPatRec

Legacy converters have been changed to mark the outliers correctly

Tests of newTracking
3 options now in
InDetRec_jobOptions.py:

xKalman
iPatRec (still def.)
newTracking

New Tracking is running in offline,
CTB and Event Filter

Offline

Combined TBEvent Filter

Efficiencies, Fakes…
Using new InDetRecStatistics package
Total multiplicity per event (P>1 GeV):

 xkalman iPatRec
 newTracking

 63.0 59.7 61.3
Primary track efficiency / fake rate :

 xkalman iPatRec
 newTracking

Barrel 96% / 4% 96% / 2% 92% / 3%
Transistion 91% / 3% 94% / 2% 91% / 4%
Forward 91% / 3% 94% / 3% 87% / 3%

Number of hits per track Pixel/SCT/TRT :
 xkalman iPatRec

 newTracking
Barrel 1.9/8.2/26.2 2.0/8.0/29.5 2.0/8.1/31.3
Transistion 1.9/8.1/25.1 2.0/7.9/28.6 2.0/8.1/28.4
Forward 2.0/8.6/17.3 2.0/8.2/19.1 2.0/8.6/18.6

Work needed on tuning newTracking - still often “best guess”

Timing in recent nightly
Big effort made to speed up Data Preparation for 11.0.0

More than a factor 4 in timing gain compared to 10.0.0
Mostly StoreGate, HistoryService, IdentifiableContainer (core framework…)

Timing of newTracking compared with xKalman/iPatRec ?
 (10 events tth-bb, nightly 11.2.0, lxbuild015)

DataPreparation ~ 599 ms (Pixel 48, SCT 172, TRT 344, SP 35)
iPatRec ~ 466 ms (excluding truth, stat, legacy-cnv)
xKalman ~ 608 ms (excluding legacy-cnv)
SiSPSeededTrackFinder ~ 97 ms
InDetAmbiguitySolver ~ 42 ms TOTALS: 357 ms (DKF)
TRT_TrackExtension ~ 45 ms
InDetExtensionProcessor ~ 173 ms
Truth ~ 479 ms (PRD 473, SP 2, Trk 4, …)
PostProcessing ~ 180 ms (VX 12, PC 118, Stat 50)

Timing overheads: POOL, EDM (set methods…), Truth (!)
Overall Inner Detector software is factors faster than LAr (!!!!)

We have done our homework, use good timing to add more functionality

}

Complete Functionality: recently
Ongoing work on new python configuration scripts

Need to make full use of modular reconstruction
Hence, replace fitter everywhere in a transparent way

Statistics package produces summary table at end of job + RTT input ntuple
Plus plenty of other activities on validation…

Shared hits, holes on track search
Help from the b-tagging people, both code and validation

Usage of Beam Spot from ConDB
Used in track finding and in primary vertex reconstruction

Changes in KalmanFilter and Extrapolation
Speed, storage of outlier, memory management

Completing Tracking Geometry for Material corrections
First full version in 11.2.0, to be validated

Complete Functionality: Brem.-Recovery
Electron tracks have a lot of

 outliers in TRT in track fits
EDM changed to flag those
 in ExtensionProcessor
 (and in xKalman/iPatRec)

3 tools available in CVS
Track fitter with electron material corr.
Gaussian Sum Filter
Prototype Kink reconstruction

Need an ID electron algorithm using the tools
Should have option to use either of them (or combination)
Study what works best and when
Opportunity to contribute, strong link to e/gamma

Complete Functionality: TRT seeded rec.
Several use-cases for TRT seeded reconstruction

Dedicated tracking for secondary particles
Fallback option for primary track finding
Test beam and comics reconstruction
TRT segments for calibration/alignment
Level-2 TRT track trigger

Igor is advanced with code
First do the secondaries
Will need to reshuffle post processing

Complete Functionality: V0, conversions
Use tracks from TRT seeded tracking
Develop 2 new packages ongoing

V0 reconstruction
Conversion finder

Existing code for both is in CVS
Different level of sophistication
New packages being worked on
Strong link with e/gamma and b-physics

Complementary:
work ongoing for late
 conversions in TRT

Complete Functionality: high lumi TRT
Possible way to improve reconstruction

 in TRT for high lumi

Deterministic Annealing Filter
High occupancy in TRT
DAF freezes out TRT tracks
 from clouds of points
thermodynamic picture of
 track finding

DAF available in common tracking area
Alternative TRT_TrackExtensionTool in CVS

record all DriftCircles near track
DAF as fitter in ExtensionProcessor

Just a JobOption change

Tracking Milestones and Plans
Release 11.0.4 - newTracking used for test productions
Release 11.3.0 - newTracking is default in RecExCommon
Release 12.0.0:

newTracking “inside-out” is production quality for Offline+Event Filter
Using fully functional TrackingGeometry
newTracking works for Cosmics reconstruction, alongside CTB_Tracking

Prototypes: - TRT-seeded tracking for V0, conversions, secondaries
 - V0, kink and conversion finding
 - package to use electron refitting (GSF/Kalman)
 - DAF extension into TRT
Intersector and iPatFitter in /Tracking

Release 13.0.0:
newTracking with 2nd pass TRT-seeded track finding is default
V0, conversion and electron refitting packages fully operational
iPatRec track finding tools in /InnerDetector for testing

Release 14.0.0:
Final decision on track finding strategies for first beam

B-Tagging Overview

B-Tagging Framework on AOD
Goal was to develop a flexible b-tagging framework

Easy inclusion of new tagging routines
Flexible usage, combination of different taggers
B-tagging EDM is part of AOD, poses design requirements

Framework was starting point for b-tagging developments in ATHENA
In absence of any b-tagging in ATHENA Fredrik and Andi started to write

some simple taggers to get going on AOD analysis
Later migration of Marseille tagging package to ATHENA and inclusion in

tagging framework
Since then developments progressed in parallel

See next talk for performance comparisons, results, etc.
Just some overview in the following from talks given in Paris

b-tagging EDM
• the b-tagging EDM is way more complex than the one for vertexing!

• a varying amount of different taggers can be used
• every tagger produces a likelihood/weight and lots of individual
information
• tag results of different tools have to be “recombinable” without
retagging
• bjet is an “AOD object” and therefore has to behave like one

b-tagging flow

JetTagging Sequence Diagram

 Software status

A number of redundant taggers are available in AODs :
basically two streams with similar taggers wrt the discriminating variables

1st stream
(AOD and

CBNT)

2nd stream
(AOD only)

IP
(long. impact)

Lifetime1D
needs good

primary
reconstruction(trans.

impact) IP2D Lifetime2D the most robust

IP3D Lifetime3D combination

Inclusive
Secondary

Vertex

SV1 SecVtxBU
more demanding

for tracking

Inclusive
Secondary

Vertex SV2 SecVtxTD

more demanding
for tracking

The Soft Electron Tag should be soon available
 (only the implementation in AOD is missing)

 All taggers are kept for performance studies and cross-checks

 ⇒ low performance taggers (Lifetime2D/IP2D) are usually rather robust
 (easier to understand and commission)

 ⇒ high performance ones (SV1/SV2) will require more time to control

 ⇒ taggers identical wrt discriminating variables
 (Lifetime2D ~ IP2D, Lifetime3D ~ IP3D)
 are kept for cross-checks and do differ in some point
 (refined track selection in IPxD,
 one 2D vs one 1D pdf for IP3D vs Lifetime3D, …)

 For physics analysis, a combination is given :

 “1st stream” taggers : (*JetTag)→weight()
 corresponding to SV1+IP3D

 “2nd stream” taggers : (*JetTag)→weightForTag(“lhSig”)
 corresponding to Lifetime1D+Lifetime2D(+SecVtxBU)

The most powerful tagger

WH 120 GeV/c2

ttH

(release 7.8.0)

 Soft Electron Tagging :

 use Soft Electron identification variables to build a probability for each track in a jet
 ⇒ the track with the highest probability is the “electron candidate”

⇒ light jet rejection vs algorithm efficiency :

 @ 60% algorithm efficiency
 (i.e. 0.6*BR(b→eX) ~7.8% b-jet efficiency)

 Ru = 151±11 (WH events)
 64±11 (ttH events, caveat : mislabel)

Pions

Electrons

 Calibration functions, tagging efficiency and light jet rejection determination on data

The most important but least studied topics !

 Experience from past or running experiments :

 Tevatron ⇒ Space b-tagging cross calibrated from Soft Lepton tagging
 * select relatively easily pure b/c from electron/muon tag
 * correct for c contamination and for purely hadronic decays with MC

 ⇒ a Soft Muon Tag is urgently needed !
 (should be easier than a Soft Electron Tag)

 Use negative impact parameter (à la LEP) :
 at zero order, ~ resolution effect, identical for b- and light-jets
 ⇒ build a tag using a measure of the compatibility of the tracks
 with the primary vertex

Tagging Algorithm Developments
Jean-Baptiste already mentioned several aspects…

Study of calibration for different physics analysis use-cases

Soft-Lepton tagging - some work ongoing
Need to contribute to soft electron/muon identification first (common tracking)
Then turn it into a b-tagging algorithm

Alternative tagging algorithms
a la ALEPH/DELPHI using negative IP for auto-calibration
SLD inclusive vertex b-tagging, inclusive B vertex chain tagging

Trigger b-tagging studies
Event Filter supposed to use offline code (seeded?)
Currently Inner Detector only covers e/gamma-slice in Event Filter
Level-2 code existing
Little activity on full slice studies with realistic menus

Pixel Software, Tracking and B-Tagging

Tuning of Clustering
Time-over-Threshold Clustering enabled since 11.0.0 in CTB and offline
Cluster errors unchanged, still pitch/sqrt(12)
ToT clustering studied mostly using

 Standalone Test Beam data
Discussion ongoing how to calibrate
 individual pixels, if needed

Cluster errors and position corrections
 should depend on eta/phi

Corrections at time of track fitting missing

Simulation/Digitization does not reproduce
 Combined Test Beam data

Control over G4 parameters
Digitization model, parameters
Noise…

General pattern in Inner Detector software
Standalone Test Beam software well tuned
Not migrated into ATHENA

Shared Hits in Pixels (and SCT)
Dense tracking environment in jets may lead to large/shared clusters

See studies in Physics/Detector TDR on this effect
Handling of such situations very different in tracking codes

iPatRec - so called “wide” (==shared) and “narror” cluster width used in fit
xKalman - allow for shared hit if quality criteria of track passed after fit
newTracking - use ambiguity processor to decide on association

All seem to give comparable results, optimal solution ?

B-Tagging now has special treatment
 of shared hit tracks

Significant tails seen in light jets
Different track classes
10-20% gain in rejection @ same effi.

Goal should be:
 Study how to fix tracks in reconstruction directly

Re-clustering of shared Pixel Clusters
xKalman at time of Physics TDR (Fortran)

Try to re-cluster shared pixel clusters to improve
Functionality missing in ATHENA

Basic idea:
(large) clusters may match 2 tracks in event
Try to split cluster using this knowledge in 2nd stage clustering
Reassign split clusters to tracks and refit them
Use b-tagging to study effects and tune re-clustering

Side-remark:
DAF/MTF might be an option for very high Pt b-jets
Some studies (CMS) in literature

Ganged Pixel Ambiguities
Simulation of so called Ganged Pixel ambiguities has been introduced to software
about a year ago

Ganged Pixel readout handled in Digitization and in Clustering
Clusters are flagged for ganged Pixel hits
Pointer to mirror ambiguity recorded in EDM

NewTracking first package trying to resolve explicitly these cases
Relatively frequent in jets, may give rise to impact parameter offsets

Observations:
Ganged ambiguities in B-layer difficult (no interpolation from surrounding layers)
Chance to get it wrong in B-layer therefore seems higher…
 (NewTracking/iPatRec)

Need to properly study this effect and how to handle it in reconstruction
Make use of cluster size (mirror should mostly be 1 pixel cluster) ?
Best strategy in reconstruction ? Or record both solutions for the track ?
How to handle such tracks in b-tagging code ?

Pixel Misalignment
Effect of misalignment on b-tagging

 ttH/tt events, random smearing

Misalignment is not random !
Module is a solid object, track
 correlations are given by geometry
Misalignment is between modules !

Misalignment has 2 effects
Resolution effect, linear with uncertainty
Effect on pattern recognition may be
 non-linear due to instabilities

Need to introduce misalignment in simlation/reconstruction + repeat study
DC3 should have misalignmed Pixel modules - next slide
Effect is ~ correct for a given event, but alignment package would easily correct it back

Proposal: implement “Pixel shaking” scheme
New misalignment parameters for each event (a la DELPHI)
Misalignment correctly reproduces residual alignment uncertainties on real data
Can be implemented within existing GeoModel modifying alignment transformations

Pixel residual misalignment in DC3
Final misalignment

phi Z R tilt slope

Modules 5 µm 15 µm 15 µm 0.02 deg 0.01 deg

Barrel/disk 3 µm 10 µm 10 µm 0.01 deg 0.005 deg

 All pixel 3 µm 10 µm 10 µm 0.01 deg 0.005 deg

• A little more optimistic than Pixel or ID TDR (7 µm, 20 µm, 20 µm)
• Pessemistic to respect to the requirements for W-mass measurement with 15
MeV (1 µm, 10 µm)

Vertexing in Reconstruction
Common vertexing use-cases for Reconstruction and b-tagging:

Primary vertex finding
V0, conversion and hadronic interactions

Currently primary vertexing is using the Billoir tools
Some work ongoing on V0, conversions and interactions for new tracking,
but far from ready + complete

Both, the reconstruction algorithms and the tools need further development
Lack of complete vertexing suite in ATLAS
See CMS studies using e.g. Gaussian Sum or Annealing techniques

Outlook and Discussion

