

Tracking and B-Tagging

Markus Elsing

Status of new Inner Detector reconstruction

- Overview of b-tagging tools
- •Comments on B-tagging, Pixel software and tracking

Status of Track Reconstruction

Common Tracking EDM, DD and Tools

Basis for test beam, cosmics and newTracking reconstruction code

Muons joining the game

• Lot of activities for release 11 and afterwards

- > Full tracking geometry in 11.2.0 for first time (Rome initial)
- Migration of standalone packages into new framework progressing
 - Igor has been moving a lot of code from xKalman into Tracking/
 - > Waiting for Alan to do so as well (Intersector/iPatFitter first to go)

Several new techniques are being studied now

- > STEP propagation (propagation in dense material)
- TrackingGeometry for material corrections
- Gaussian Sum Filter (electrons)
- Deterministic Annealing Filter (high lumi TRT reconstruction)

Recent developments on Vertexing

- "Classical" Billoir code is available (chi2-fit)
- > New effort on Kalman Filter vertex fitting, robust fitting
- > B-tagging and b-physics still use fortran based codes migration needed

New Tracking - High Level Design

New Tracking in release 11.x.y

Event Filter version and offline version of each Algorithm, but same tools
Track finding strategy similar to xKalman or iPatRec (inside-out)
All tools have abstract interfaces, use new EDM, tracking tools, etc.

First Prototype is operational

Pattern strategy starts from Space Points in Pixels and SCT with an extension into TRT (inside-out tracking)

Similar to xKalman and iPatRec

•First prototype consists of 4 algorithms:

SiSPSeededTrackFinderInDetAmbiguitySolver

- track candidate finding in Pixel and SCT
- select good track candidates, full track fit and resolve ambiguities

TRT_TrackExtensionInDetExtensionProcessor

- extend resolve tracks into TRT
- refit of extensions and replace original

Prototype covers 3 use-cases

≻Offline, Event Filter and Test Beam

Basic Functionality in place

>Many opportunities to contribute still (see later)

Space Point Seeded Track Finder

Ambiguity Processor

- •Task: resolve track candidates from different input track collections and do final track fit
- "Simple" strategy:
 - Reject double candidates first
 - ≻Score all tracks
 - Number of clusters, holes, χ^2 , ...
 - Take best, mark PRDs as used
 - ≻Try next best track,
 - ▶if all PRDs are still un-used, take it, mark PRDs as used
 - otherwise drop used PRDs, new score and add new track to candidates
- Takes into account ganged pixels !
 InDetAmbiguitySolver uses InDet and Tracking Tools
 - All have abstract interfaces !!!

TRT Track Extension

Algorithm to extend Silicon tracks into TRT

- Runs after ambiguity
- ➢Build up road in TRT each Si-track
- Associate Drift Circles in TRT
- ≻Resolve L-R
- Output is association list

Same design principles like for the SPSeededTrackFinder

- Abstract interfaces, EDM, tracking...
- Igor implemented both based in xKalman code
 - (one finds a lot of tools with "_xk" in cvs)

Open design principle - see later

Extension Processor

•Strategy: 100 Pattern Recognition provides set TrackFitter of track extensions (into TRT) Tracking \triangleright Refit track + extension Algo Score new and original track InDetExtension > If new track is better, replace original Processor InDet Uses same scoring function, fitter, Tool TrackScoring ... as ambiguity solver Tool Tracking •Comment: Tool Several outliers found in TRT TrackSummary Tool material interactions for electrons... Tracking Changed TrkTrack to record those ▶ save TR info, input to kink reconstruction in future, ... Same problem seen in xKalman and iPatRec Legacy converters have been changed to mark the outliers correctly

Tests of newTracking

Efficiencies, Fakes...

Using new InDetR	ecStatistics pacl	kage		
 Total multiplicity j 	per event (P>1 C	GeV):		
	xl	kalman	iPatRec	
new	Tracking			
	63	8.0	59.7	61.3
Primary track efficiency	ciency / fake rate	e :		
-	xł	kalman	iPatRec	
new	Tracking			
Barrel	96% / 4%	96% /	2%	92% / 3%
Transistion	91% / 3%	94% /	2%	91% / 4%
Forward	91% / <mark>3%</mark>	94% /	3%	87% / 3%
•Number of hits per	r track Pixel/SC	T/TRT :		
	xk	alman	iPatRec	
new	Tracking			
Barrel	1.9/ <mark>8.2</mark> /26.2	2.0/8.0)/29.5	2.0/8.1/31.3
Transistion	1.9/ <mark>8.1/</mark> 25.1	2.0/7.9)/28.6	2.0/8.1/28.4
Forward	2.0/8.6/17.3	2.0/8.2	2/19.1	2.0/8.6/18.6
Work needed on tu	ning newTracki	ng - still oft	en "best gi	less"

Timing in recent nightly

•Big effort made to speed up Data Preparation for 11.0.0

 \geq More than a factor 4 in timing gain compared to 10.0.0

>Mostly StoreGate, HistoryService, IdentifiableContainer (core framework...)

Timing of newTracking compared with xKalman/iPatRec ?

(10 events tth-bb, nightly 11.2.0, lxbuild015)

- > DataPreparation
- ▶iPatRec

≻xKalman

>SiSPSeededTrackFinder ~ 97 ms

- >InDetAmbiguitySolver $\sim 42 \text{ ms}$
- >TRT TrackExtension $\sim 45 \text{ ms}$
- ➢InDetExtensionProcessor
- **≻**Truth
- >PostProcessing

- ~ 599 ms (Pixel 48, SCT 172, TRT 344, SP 35)
- \sim 466 ms (excluding truth, stat, legacy-cnv)

TOTALS: 357 ms (DKF)

- $\sim 608 \text{ ms}$ (excluding legacy-cnv)

- $\sim 173 \text{ ms}$
 - ~ 479 ms (PRD 473, SP 2, Trk 4, ...)
 - ~ 180 ms (VX 12, PC 118, Stat 50)

•Timing overheads: POOL, EDM (set methods...), Truth (!)

•Overall Inner Detector software is factors faster than LAr (!!!!)

> We have done our homework, use good timing to add more functionality

Complete Functionality: recently

Ongoing work on new python configuration scripts

- > Need to make full use of modular reconstruction
- Hence, replace fitter everywhere in a transparent way

Statistics package produces summary table at end of job + RTT input ntuple

Plus plenty of other activities on validation...

Shared hits, holes on track search

> Help from the b-tagging people, both code and validation

Usage of Beam Spot from ConDB

> Used in track finding and in primary vertex reconstruction

Changes in KalmanFilter and Extrapolation

> Speed, storage of outlier, memory management

Completing Tracking Geometry for Material corrections
 First full version in 11.2.0, to be validated

Complete Functionality: Brem.-Recovery

Complete Functionality: TRT seeded rec.

•Several use-cases for TRT seeded reconstruction

- Dedicated tracking for secondary particles
 Fallback option for primary track finding
 Test beam and comics reconstruction
 TRT segments for calibration/alignment
- ≻Level-2 TRT track trigger

•Igor is advanced with code

- ➢ First do the secondaries
- ➤Will need to reshuffle post processing

Complete Functionality: V0, conversions

•Use tracks from TRT seeded tracking

Develop 2 new packages ongoing

- ≻V0 reconstruction
- ➤Conversion finder

•Existing code for both is in CVS

Different level of sophistication
New packages being worked on
Strong link with e/gamma and b-physics

•Complementary:

work ongoing for late conversions in TRT

Complete Functionality: high lumi TRT

Possible way to improve reconstruction in TRT for high lumi

Deterministic Annealing Filter

- High occupancy in TRT
 DAF freezes out TRT tracks from clouds of points
 thermodynamic picture of
- thermodynamic pictur track finding

DAF available in common tracking area

- Alternative TRT_TrackExtensionTool in CVS
 - record all DriftCircles near track
- DAF as fitter in ExtensionProcessor
 - ▶Just a JobOption change

Tracking Milestones and Plans

Release 11.0.4 - newTracking used for test productions
Release 11.3.0 - newTracking is default in RecExCommon
Release 12.0.0:

>newTracking "inside-out" is production quality for Offline+Event Filter

► Using fully functional TrackingGeometry

▶newTracking works for Cosmics reconstruction, alongside CTB_Tracking

≻Prototypes:

- TRT-seeded tracking for V0, conversions, secondaries
- V0, kink and conversion finding
- package to use electron refitting (GSF/Kalman)
- DAF extension into TRT

Intersector and iPatFitter in /Tracking

•Release 13.0.0:

>newTracking with 2nd pass TRT-seeded track finding is default

➢V0, conversion and electron refitting packages fully operational

➢iPatRec track finding tools in /InnerDetector for testing

•Release 14.0.0:

➢Final decision on track finding strategies for first beam

B-Tagging Overview

B-Tagging Framework on AOD

•Goal was to develop a flexible b-tagging framework

- Easy inclusion of new tagging routines
- Flexible usage, combination of different taggers
- B-tagging EDM is part of AOD, poses design requirements

•Framework was starting point for b-tagging developments in ATHENA

- In absence of any b-tagging in ATHENA Fredrik and Andi started to write some simple taggers to get going on AOD analysis
- Later migration of Marseille tagging package to ATHENA and inclusion in tagging framework
- Since then developments progressed in parallel

•See next talk for performance comparisons, results, etc.

>Just some overview in the following from talks given in Paris

b-tagging EDM

- the b-tagging EDM is way more complex than the one for vertexing!
 - a varying amount of different taggers can be used
 - every tagger produces a likelihood/weight and lots of individual information
 - tag results of different tools have to be "recombinable" without retagging
 - bjet is an "AOD object" and therefore has to behave like one

b-tagging flow

JetTagging Sequence Diagram

Software status

A number of redundant taggers are available in AODs : basically two streams with similar taggers wrt the discriminating variables

	1 st stream	2 nd stream	
	(AOD and	(AOD only)	
IP (long. impact)		Lifetime1D	needs good primary
(trans. impact)	IP2D	Lifetime2D	the most robust
	IP3D	Lifetime3D	combination
Inclusive Secondary Vertex	SV1	SecVtxBU	more demanding
	SV2	SecVtxTD	for tracking

The Soft Electron Tag should be soon available (only the implementation in AOD is missing) ✓ All taggers are kept for performance studies and cross-checks

⇒ low performance taggers (Lifetime2D/IP2D) are usually rather robust (easier to understand and commission)

 \Rightarrow high performance ones (SV1/SV2) will require more time to control

⇒ taggers identical wrt discriminating variables (Lifetime2D ~ IP2D, Lifetime3D ~ IP3D) are kept for cross-checks and do differ in some point (refined track selection in IPxD, one 2D vs one 1D pdf for IP3D vs Lifetime3D, ...)

✓ For physics analysis, a combination is given :

 [●] "1st stream" taggers : (*JetTag)→weight() corresponding to SV1+IP3D
 The most powerful tagger

[●] "2nd stream" taggers : (*JetTag)→weightForTag("lhSig") corresponding to Lifetime1D+Lifetime2D(+SecVtxBU)

✓ Soft Electron Tagging :

use Soft Electron identification variables to build a probability for each track in a jet ⇒ the track with the highest probability is the "electron candidate"

 \Rightarrow light jet rejection vs *algorithm* efficiency :

@ 60% algorithm efficiency
 (i.e. 0.6*BR(b→eX) ~7.8% b-jet efficiency)

 $R_u = 151 \pm 11$ (WH events) 64±11 (ttH events, caveat : mislabel)

© Calibration functions, tagging efficiency and light jet rejection determination on data

The most important but least studied topics !

Experience from past or running experiments :

Tevatron ⇒ Space b-tagging cross calibrated from Soft Lepton tagging * select relatively easily pure b/c from electron/muon tag * correct for c contamination and for purely hadronic decays with MC

⇒ a Soft Muon Tag is urgently needed ! (should be easier than a Soft Electron Tag)

Use negative impact parameter (à la LEP) :

at zero order, ~ resolution effect, identical for b- and light-jets ⇒ build a tag using a measure of the compatibility of the tracks with the primary vertex

Tagging Algorithm Developments

Jean-Baptiste already mentioned several aspects...

Study of calibration for different physics analysis use-cases

Soft-Lepton tagging - some work ongoing

Need to contribute to soft electron/muon identification first (common tracking)
 Then turn it into a b-tagging algorithm

Alternative tagging algorithms

➤a la ALEPH/DELPHI using negative IP for auto-calibration

SLD inclusive vertex b-tagging, inclusive B vertex chain tagging

Trigger b-tagging studies

- Event Filter supposed to use offline code (seeded?)
- Currently Inner Detector only covers e/gamma-slice in Event Filter
- ► Level-2 code existing
- Little activity on full slice studies with realistic menus

Pixel Software, Tracking and B-Tagging

Tuning of Clustering

- Time-over-Threshold Clustering enabled since 11.0.0 in CTB and offline
- Cluster errors unchanged, still pitch/sqrt(12)
- ToT clustering studied mostly using
 - Standalone Test Beam data
 - Discussion ongoing how to calibrate individual pixels, if needed
- Cluster errors and position corrections should depend on eta/phi
 - Corrections at time of track fitting missing
- Simulation/Digitization does not reproduce Combined Test Beam data
 - ≻ Control over G4 parameters
 - Digitization model, parameters
 - ≻Noise…

General pattern in Inner Detector software

- Standalone Test Beam software well tuned
- Not migrated into ATHENA

Cluster sizes...

Id software meeting, 13/12/2005, CERN

Shared Hits in Pixels (and SCT)

Dense tracking environment in jets may lead to large/shared clusters

See studies in Physics/Detector TDR on this effect

Handling of such situations very different in tracking codes

- ▶iPatRec so called "wide" (==shared) and "narror" cluster width used in fit
- ▶xKalman allow for shared hit if quality criteria of track passed after fit
- ▶newTracking use ambiguity processor to decide on association

>All seem to give comparable results, optimal solution ?

Re-clustering of shared Pixel Clusters

•xKalman at time of Physics TDR (Fortran)

- >Try to re-cluster shared pixel clusters to improve
- Functionality missing in ATHENA

Basic idea:

- ➤(large) clusters may match 2 tracks in event
- >Try to split cluster using this knowledge in 2nd stage clustering
- ➢Reassign split clusters to tracks and refit them
- ➢Use b-tagging to study effects and tune re-clustering

•Side-remark:

- >DAF/MTF might be an option for very high Pt b-jets
- ≻Some studies (CMS) in literature

Ganged Pixel Ambiguities

 Simulation of so called Ganged Pixel ambiguities has been introduced to software about a year ago

- Ganged Pixel readout handled in Digitization and in Clustering
- Clusters are flagged for ganged Pixel hits
- Pointer to mirror ambiguity recorded in EDM

NewTracking first package trying to resolve explicitly these cases

> Relatively frequent in jets, may give rise to impact parameter offsets

• Observations:

- Sanged ambiguities in B-layer difficult (no interpolation from surrounding layers)
- Chance to get it wrong in B-layer therefore seems higher...
 - (NewTracking/iPatRec)

Need to properly study this effect and how to handle it in reconstruction

- > Make use of cluster size (mirror should mostly be 1 pixel cluster)?
- > Best strategy in reconstruction ? Or record both solutions for the track ?
- How to handle such tracks in b-tagging code ?

Pixel Misalignment

Effect of misalignment on b-tagging
 ttH/tt events, random smearing

Misalignment is not random !

- Module is a solid object, track correlations are given by geometry
- Misalignment is between modules !

Misalignment has 2 effects

- > Resolution effect, linear with uncertainty
- Effect on pattern recognition may be non-linear due to instabilities

Need to introduce misalignment in similation/reconstruction + repeat study

- DC3 should have misalignmed Pixel modules next slide
- > Effect is ~ correct for a given event, but alignment package would easily correct it back

Proposal: implement "Pixel shaking" scheme

- > New misalignment parameters for each event (a la DELPHI)
- > Misalignment correctly reproduces residual alignment uncertainties on real data
- > Can be implemented within existing GeoModel modifying alignment transformations

	phi	Z	R	tilt	slope
Modules	5 µm	15 μm	15 μm	0.02 deg	0.01 deg
Barrel/disk	3 μm	10 µm	10 µm	0.01 deg	0.005 deg
All pixel	3 μm	10 µm	10 µm	0.01 deg	0.005 deg

- A little more optimistic than Pixel or ID TDR (7 $\mu m,$ 20 $\mu m,$ 20 μm)
- Pessemistic to respect to the requirements for W-mass measurement with 15 MeV (1 $\mu m,$ 10 $\mu m)$

Vertexing in Reconstruction

•Common vertexing use-cases for Reconstruction and b-tagging:

- Primary vertex finding
- ➢V0, conversion and hadronic interactions
- •Currently primary vertexing is using the Billoir tools
- Some work ongoing on V0, conversions and interactions for new tracking, but far from ready + complete

Both, the reconstruction algorithms and the tools need further development

- Lack of complete vertexing suite in ATLAS
- See CMS studies using e.g. Gaussian Sum or Annealing techniques

b-jets; p^t = 30-50 GeV/c				
	x-Res (μm)	x-Pulls	z-Res (μm)	z-Pulls
Kalman Fitter	26	1.15	34	1.13
Trimming Fitter	24	0.98	32	0.99
Adaptive Fitter	22	0.95	30	0.97

Outlook and Discussion

