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overview
• processor landscape

• ARMs to GPGPUs

• i/o

• goldilocks no more

• golden rules

• tools for the future

• projects and ideas for 
tracking
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Outline

• Introduction: the Challenge 
!

•The present Detectors and Reconstruction Strategies 
!

•Preparing for Run-2 in current Long Shutdown (LS-1) 
!

•What is coming next ? 
!

•Tracking on Many Core Processors 
!

•Tracking and Detector Upgrades 
!

•New Ideas for Track Reconstruction ? 
!

•Conclusions ...
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Introduction: the Challenge
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Experience with Pileup during Run-1

•pileup in 2012 exceeded design 
➡ average pileup up to 35 (1.5 × design) 
➡ due 50 nsec operation 
!

•good stability of performance 
➡ thanks to several algorithmic improvements 

• for pileup levels seen so far 
➡ test with high pileup runs look promising 

• known limitations when going much further 
!

•ATLAS / CMS upgrade goals 
➡ upgrade both, hardware and software 
➡ restore (and if possible, improve on)          

physics performance at increasing pileup 
• and stay within computing resources 

➡ includes major upgrades of the tracking 
detectors in view of the pileup at HL-LHC
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CMS event with 78 pileup
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LHC schedule 

Run1 Run2 Run…  Run3 

Phase-0 Phase-I Phase-II 

LHC schedule  approved by CERN management and LHC experiments 
spokespersons and technical coordinators  (December 2013) 

30 fb-1 

300 fb-1 

3000 fb-1 

Fix interconnects and  
overcome energy limitation 

Injector upgrade for high 
intensity, low emittance 
bunches, collimation, 
cryogenics 

HL-LHC: Major 
intervention on 1.2 
km of LHC 

The present CERN Mid Term Plan 
approved by CERN Council covers 
up to 2018. Need to further 
elaborate physics capabilities; 
experiments and machine to 
demonstrate feasibility.  

LHC upgrade in Monday  
F. Bordry’s talk 

C.Gemme, LHCP
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Tracking at HL-LHC ?

• track reconstruction 
➡ combinatorics grows with pileup 
➡ naturally resource driver (CPU/memory) 
!

• the million dollar question: 
➡ how to reconstruct LH-LHC events within resources ? (pileup ~ 140-200) 
!

• this is not a new question ! 
➡ we knew that tracking at the LHC is going to be a problem 

• hence: we aim at improving over something that is highly optimised 
➡ processor technologies are changing as well 

• need to rethink some of the design decisions we did 
• will require vectorisation and multi-threading 
• improve data locality (avoid cache misses), etc.
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many integrated 
cores

• Intel’s MIC (aka Intel Xeon Phi) is in its first generation

• 61 x86_64 cores @ ~1GHz

• 16GB of memory

• Coprocessor architecture

• Cache coherent, but no out of order execution

• 512 bit registers (8 double or 16 float)

• Memory per core: 256MB

• Maximum performance needs 4 threads per core: 64MB 
per thread
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ATLAS: 	

CPU vs pileup

LHC@25	  ns

LHC@50	  ns

Intel Xenon Phi

ATLAS HL-LHC event in new tracker
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The present Detectors and 
Reconstruction Strategies
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ATLAS Inner Detector

•barrel track passes: 
➡ ~36 TRT 4mm straws 
➡ 4x2 Si strips on stereo 

modules12cm x 80 mm, 
285mm thick 

➡ 3 pixel layers, 250mm 
thick

•optimised for 24 pileup events
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Introduction: NewTracking in ATLAS
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New  Tracking

pre-precessing 
➡ Pixel+SCT clustering 
➡ TRT drift circle formation 
➡ space points formation
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Introduction: NewTracking in ATLAS
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New  Tracking

pre-precessing 
➡ Pixel+SCT clustering 
➡ TRT drift circle formation 
➡ space points formation

combinatorial  
track finder 
➡ iterative : 

1. Pixel seeds 
2. Pixel+SCT seeds 
3. SCT seeds 

➡ restricted to roads 
➡ bookkeeping to avoid  

duplicate candidates

ambiguity solution 
➡ precise least square fit 

with full geometry 
➡ selection of best silicon 

tracks using: 
1. hit content, holes 
2. number of shared hits 
3. fit quality...

extension into TRT 
➡ progressive finder 
➡ refit of track and selection
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New  Tracking
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TRT segment finder 
➡ on remaining drift circles 
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ambiguity solution 
➡ precise fit and selection 
➡ TRT seeded tracks

standalone TRT 
➡ unused TRT segments
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New  Tracking

pre-precessing 
➡ Pixel+SCT clustering 
➡ TRT drift circle formation 
➡ space points formation

combinatorial  
track finder 
➡ iterative : 

1. Pixel seeds 
2. Pixel+SCT seeds 
3. SCT seeds 

➡ restricted to roads 
➡ bookkeeping to avoid  

duplicate candidates

ambiguity solution 
➡ precise least square fit 

with full geometry 
➡ selection of best silicon 

tracks using: 
1. hit content, holes 
2. number of shared hits 
3. fit quality...

extension into TRT 
➡ progressive finder 
➡ refit of track and selection

TRT segment finder 
➡ on remaining drift circles 
➡ uses Hough transform

TRT seeded finder 
➡ from TRT into SCT+Pixels 
➡ combinatorial finder

ambiguity solution 
➡ precise fit and selection 
➡ TRT seeded tracks

standalone TRT 
➡ unused TRT segments

vertexing 
➡ primary vertexing 
➡ conversion and V0 search

since 2012: 
➡ brem. recovery seeded 

from list of selected EM 
clusters
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CMS Tracker
• largest silicon tracker ever built 
➡ Pixels: 66M channels, 100x150 μm2 Pixel 
➡ Si-Strip detector: ~23m3, 210m2 of Si area,                                                

10.7M channels
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The world largest Silicon Tracker

3

TIB
Inner Barrel
4 layers TID

Inner Disks
3+3 disks

TEC Endcap
9+9 disks

Tracker 
Support 
Tube

TOB
Outer Barrel
6 layers

L~5.4m
∅~2.4m

PXL
Pixel Detector
3 layers, 2+2 disks

Pixel Detector
66M channels

100x150 μm2 pixel
LHC radiation resistant

Si-Strip detector
~23m3; ~200m2 of Si area;

~9x106 channels;
LHC radiation resistant
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Iterative tracking

8

The CMS tracking relies on iterations (steps) of the tracking procedure; 
each step works on the remaining not-yet-associated hits and is optimized 
with respect to the seeding topology and to the final quality cuts.

Iterative tracking. A factor 2.5 of improvement in the CPU time has been obtained by
optimizing the iterative tracking, as detailed in table 2 to be compared with table 1 that
summarizes the baseline configuration of CMSSW 4.2.x. As can be seen, the net e↵ect
is an increase of the e↵ective PT threshold for track reconstruction together with tighter
constraint on impact parameter. This configuration results into a reduced e�ciency for PT

lower than 300MeV/c but an e�ciency for PT greater than 0.9GeV/c larger by ⇠ 1% with
a ⇠ 8% reduction of the fake rate.

Reconstruction of photon conversions. Reconstruction of photon conversion in the tracker
volume is heavily a↵ected by the higher PT threshold and by the tighter impact parameter
cuts since conversion tracks are typically soft and displaced. To recover this loss, a
dedicated seeding has been deployed [6] and the photon conversion reconstruction has been
further optimized resulting in a factor 12 improvement of the CPU time for conversion
reconstruction.

Reconstruction of primary vertices. The reconstruction of primary vertices in the event
has been optimized by integrating into the same module all the di↵erent reconstruction
methods; the removal of the overhead due to the module split we had beforehand was
enough to gain a factor two in CPU time in this specific context.

Reconstruction of nuclear interactions. Similarly to photon conversions, also nuclear
interactions are reconstructed for tracker material studies and to correctly estimate

Table 1. Relevant parameters of the six iterative tracking steps in CMSSW 4.2.x, i.e. before
the reconstruction improvement campaign described in this paper; � represents the beam spot
size along the z axis and d0 and z0 are the transverse (i.e. in the xy plane) and longitudinal
impact parameters, respectively.

#step seed type seed subdetectors P

min
T [ GeV/c] d0 cut z0 cut

0 triplet pixel 0.8 0.2 cm 3.0�
1 pair pixel/TEC 0.6 0.05 cm 0.6 cm
2 triplet pixel 0.075 0.2 cm 3.3�
3 triplet pixel/TIB/TID/TEC 0.25-0.35 2.0 cm 10.0 cm
4 pair TIB/TID/TEC 0.5 2.0 cm 12.0 cm
5 pair TOB/TEC 0.6 6.0 cm 30.0 cm

Table 2. Relevant parameters of the seven tracking iterative steps in CMSSW 4.4.x, after the
first phase of the improvement campaign in fall 2011; in bold the parameters changed with
respect to the corresponding steps in CMSSW 4.2.x (see table 1); step #1 is brand new with
respect to CMSSW 4.2.x; see table 1 caption for symbol definitions.

#step seed type seed subdetectors P

min
T [ GeV/c] d0 cut z0 cut

0 triplet pixel 0.6 0.03 cm 4.0�
1 triplet pixel 0.2 0.03 cm 4.0�
2 pair pixel 0.6 0.01 cm 0.09 cm
3 triplet pixel 0.2 1.0 cm 4.0�
4 triplet pixel/TIB/TID/TEC 0.35-0.5 2.0 cm 10.0 cm
5 pair TIB/TID/TEC 0.6 2.0 cm 10.0 cm
6 pair TOB/TEC 0.6 2.0 cm 30.0 cm

Iterative tracking in 2011 (CMSSW 42x)

Sguazzoni et al.,	


GSI Tracking Workshop 2012 

28.11.2012 GSguazzoni CMS reconstruction overview and plans 

Spring 2012 campaign: from CMSSW44x to 52x (2)
Offline vertexing based on a deterministic annealing algorithm improved: 
loops autovectorized (new compiler), exponential functions replaced with 
fast autovectorizable inlined double precision versions; some configuration 
parameters optimized. 3x gain in CPU time with no change in performances
Cluster-shape based seed filtering extended to almost all seeding step. 1.5x  
improvement in CPU time. Fake rate is reduced by ∼ 20%.
Iterative tracking Tiny optimization plus upgrade of the final track cleaning 
and selection criteria. No efficiency change for prompts tracks with PT>0.9 
GeV/c, but fake rate ∼35% down.

16

Table 3. Relevant parameters of the seven tracking iterative steps in CMSSW 5.2.x, after
the second phase of the improvement campaign in 2012; in bold the parameters changed with
respect to the corresponding steps of CMSSW 4.4.x in table 2; see table 1 caption for symbol
definitions.

#step seed type seed subdetectors P

min
T [ GeV/c] d0 cut z0 cut

0 triplet pixel 0.6 0.02 cm 4.0�
1 triplet pixel 0.2 0.02 cm 4.0�
2 pair pixel 0.6 0.015 cm 0.09 cm
3 triplet pixel 0.3 1.5 cm 2.5�
4 triplet pixel/TIB/TID/TEC 0.5-0.6 1.5 cm 10.0 cm
5 pair TIB/TID/TEC 0.6 2.0 cm 10.0 cm
6 pair TOB/TEC 0.6 2.0 cm 30.0 cm

track cleaning and selection criteria. Eventually the e�ciency for prompts tracks with PT

larger than 0.9GeV/c is not a↵ected but the fake rate is reduced by about ⇠ 35%.

The overall result obtained with the “spring 2012” campaign improvements implemented in
CMSSW 5.2.x is shown in figure 9 where the dependence of RSS memory as a function of running
time is plotted in CMSSW 4.4.x and CMSSW 5.2.x for a reconstruction job of 100 real data
events from the 2011 special run with high PU. The substantial reduction both in memory load
as well as in total running time is clearly evident.

The CMSSW 5.2.x releases have been fully validated and have been accepted for production
since changes in performaces are minor with respect to physics outcome.

4. A glimpse into the future
The challenge for the CMS reconstruction cannot be considered over with the deployment of
the software for 2012 data taking, currently ongoing. After the first long shutdown, foreseen for
almost two years in 2013 and 2014, LHC will increase center-of-mass energy and instantaneous
luminosity as well. This will require a major reengineering of the entire reconstruction software
and of the tracking.

Figure 9. RSS memory as
a function of running time in
CMSSW 4.4.x and CMSSW 5.2.x
for a reconstruction job of 100 real
data events from the 2011 special
run with high PU.

Iterative tracking in 2012 (CMSSW 52x) / In bold the changes with respect to 44x
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Number of Pileup Interactions
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Expected Performance vs Pileup (2008)

•affects on tracking in current detector 
➡ pileup affects physics performance if reconstruction unchanged 

• adjusting track selection allows to mitigate effects 
➡ studied extensively even pre-data taking (see plots) 
!

•current tracker ok until ~100 pileup 
➡ no effects on efficiencies or resolutions 
➡ control fakes and fake impact offsets with tracking cuts 
➡ not shown: TRT occupancy effect 

• loss of momentum resolution due to reduced efficiency          
for precision hits
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Run-1 Experience with Pileup
•tracking performance as expected 
➡ using more robust tracking cuts controls fakes 
➡ CPU increasing rapidly with μ 
!

•primary vertexing 
➡ visible effects of vertex merging at high μ 
➡ ΣpT based vertex tagging less and less optimal (see MC) 
!

• tracking as a tool for pileup control 
➡ jet reconstruction (JVF and variants of it) 
➡ ATLAS is developing particle flow

13

Number of Vertices
0 5 10 15 20 25 30 35

<N
um

be
r o

f T
ra

ck
s>

0

100

200

300

400

500

600

700

800

900

Data 2011, Default
Simulation, Default
Data 2011, Robust
Simulation, Robust

Data 2011, Default
Simulation, Default
Data 2011, Robust
Simulation, Robust

ATLAS Preliminary
> = 26µ=7 TeV, <s

µ

0 5 10 15 20 25 30

R
ec

on
st

ru
ct

io
n 

Ti
m

e 
[s

/e
ve

nt
]

0

2

4

6

8

10  2011 ID Reconstruction

 2012 ID Reconstruction

 2011 ID Reconstruction

 2012 ID Reconstruction

ATLAS Preliminary
Simulation

Number of interactions per bunch crossing
5 10 15 20 25 30 35 40

<N
um

be
r o

f V
er

tic
es

>

0
2
4
6
8

10
12
14
16
18 ATLAS Preliminary

25 ns
50 ns

CPU time vs pileup

tracks in data / MC, 
 different cuts

vertexing in 8 TeV, 
25/50 nsec runs

2011

2012

lin
ea

r

 threshold [GeV]
T

p
20 30 40 50

〉 η
 P

ile
up

 je
t m

ult
ipl

ici
ty 

pe
r u

nit
 

〈

-610

-510

-410

-310

-210

-110

1

10

|<2.4η|
|<2.4, JVT > 0.6η|
|<2.4, JVF > 0.5η|

|<3.2η2.4<|
|<4.5η3.2<|

ATLAS Simulation Preliminary
µµ→Sherpa Z

=8 TeVs LCW+JES R=0.4, tAnti-k
 = 23〉 truth

Vtx N〈

vertex tagging for 
pileup jet rejection

PVN
0 5 10 15 20 25 30

 [G
eV

]
〉 

m
is

s
T

 E〈

0
5

10
15
20
25
30
35
40
45
50

Before pile-up correction
Pile-up correction STVF
Pile-up suppression Extrapolated Jet Area
Pile-up suppression Extrapolated Jet Area Filtered
Pile-up suppression Jet Area Filtered

µµ →Z 
-1Ldt=20 fb∫Data 2012 

 = 8 TeVs
>20 GeV

T
0 jets p

ATLAS Preliminary

vertexing assisted 
missing ET

JVF



Markus Elsing 14

Preparing for Run-2 in current 
Long Shutdown (LS-1)
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Computing Constraints for Run-2

•unlike Run-1, our computing resources will be limited ! 
➡ assumption is we stay with a constant computing budget 
➡ interplay of technology advancement, market price and needed replacements
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•motivation for LS1 software upgrades 
➡ ensure Tier-0 can process 1kHz trigger rate, required to keep single lepton triggers 
➡ optimise disk usage (see new Analysis Model) 
➡ "soften" disk and CPU limits on Monte Carlo statistics 

• focus here on preparation of tracking for 40 pileup
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more complicated example

● for more
complex
example
Eigen still
performs
best

● based on
these and
similar tests
ATLAS decided to use Eigen3 in track 
reconstruction – Geometry still uses CLHEP

 LS1 Tracking Developments in ATLAS

•focus was to work on technology and 
strategy to improve CURRENT algorithms 
➡ technology: 

• simplify EDM design to be less OO (“hip” 10 years ago) 
• Eigen migration - faster vector+matrix algebra 
• vectorised trigonometric functions (VDT, intel math lib) 
• F90 to C++ for the b-field  (CPU hot spot) 

➡ strategy: 
• work on iterative track finding strategy 
• modified track seeding to explore 4th Pixel layer 
!

•as well... 
➡ xAOD: a new analysis EDM 
!

•hence, mix of SIMD and algorithm tuning 
➡ further speedups probably requires “new” thinking

16

speedup	  
CLHEP	  vs	  

vectorised	  libs
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Tuning the Seeding Strategy

•the track finding algorithm

17

A Salzburger / Artemis School on Calibration and performance of ATLAS detectors / ID reconstruction - part I /  16-09-2008  

Track Reconstruction steps #classical$

! first (global) pattern recognition, 

finding hits associated to one track

! track fit (estimation of track 

parameters and errors): {x,C}

! more difficult with noise and hits from

secondary particles

! possibility of fake reconstruction

! in modern track reconstruction, this 

classical picture does not work 

anymore
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➡ find seed from combination of 3 hits 
• search using hough transform
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Track Reconstruction steps #classical$

! first (global) pattern recognition, 

finding hits associated to one track

! track fit (estimation of track 

parameters and errors): {x,C}

! more difficult with noise and hits from

secondary particles

! possibility of fake reconstruction

! in modern track reconstruction, this 

classical picture does not work 

anymore

➡ find seed from combination of 3 hits 
• search using hough transform

➡ build road along the likely trajectory
➡ run combinatorial Kalman Filter for a seed 

• full exploration of all possible candidates 
• update trajectory with hits at each layer 
• take material effects into account 
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Tuning the Seeding Strategy

•the track finding algorithm
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Track Reconstruction steps #classical$

! first (global) pattern recognition, 

finding hits associated to one track

! track fit (estimation of track 

parameters and errors): {x,C}

! more difficult with noise and hits from

secondary particles

! possibility of fake reconstruction

! in modern track reconstruction, this 

classical picture does not work 

anymore

➡ find seed from combination of 3 hits 
• search using hough transform

➡ build road along the likely trajectory
➡ run combinatorial Kalman Filter for a seed 

• full exploration of all possible candidates 
• update trajectory with hits at each layer 
• take material effects into account 

• iterative seeding approach (Run-1) 
➡ seeds are worked on in an ordered list 

• start with 3 Pixels, 2 Pixel+Strip, 3 Strips 
➡ bookkeeping layer: 

• hits from good candidates removed 
• build next seed ONLY from left over hits 

➡ sequential seed finding to avoid combinatorial explosion 
• unlike in the animation, tracks are found for one-after-the-other 
• hence, the ordering matters !!!    (especially sorting in pT bins)
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•optimal seeding strategy depends on level of pileup 
➡ efficiency of a seed to give a good track candidate: 
!
!
!
!
• hence start with SSS at 40 pileup ! 

➡ further increase seed efficiency using 4th hit 
!
!
!
!
• takes benefit from new Insertable B-Layer (IBL) 
!

•final Run-2 seeding strategy 
➡ start with SSS+1 
➡ z(vertex) scan with found candidates 

• restrict seeding to z(first vertex) until z(last vertex) 
➡ continue with PPP+1, PPS+1, PSS+1

18

Tuning the Seeding Strategy

pileup PPP PPS PSS SSS
0 57% 26% 29% 66%
40 17% 6% 5% 35%

pileup PPP+1 PPS+1 PSS+1 SSS+1
0 79% 53% 52% 86%
40 39% 8% 16% 70%

Insertable B-Layer
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Track Reconstruction steps #classical$

! first (global) pattern recognition, 

finding hits associated to one track

! track fit (estimation of track 

parameters and errors): {x,C}

! more difficult with noise and hits from

secondary particles

! possibility of fake reconstruction

! in modern track reconstruction, this 

classical picture does not work 

anymore

4th hit seed 
confirmation

seeding efficiency CPU
"Run-1" 94.0% 9.5 sec
"Run-2" 94.2% 4.7 sec

40 pileup @ 25 nsec

Igor Gavrilenko, CPU on local machine
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Overall CPU Improvements
• tracking dominates in CPU vs pileup 
➡ Run-1 behaviour shown at the beginning 

• "combinatorial explosion" in hit combinations 
!

• result of LS1 tracking upgrade project 
➡ touched more than 1000 packages ! 
➡ technical and strategy improvements for 40 pileup 
!

•on track for Tier-0 @ 1kHz: 
➡ CPU time on 14 TeV, ttbar, μ=40: 

• 17.2.7.9-32bit is the references (Tier-0)                                                                            
• 19.0.2 fully optimised for DC-14 / 8 TeV 
• setup for DC-14 / 13 TeV @ 40 pileup                                                                            

will be in 19.1.0 
!
➡ 250 HS06/event within reach                                                                                

(CPU budget for 1 kHz @ Tier-0)
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LHC@25	  ns

LHC@50	  ns

ATLAS 
CPU vs pileup

Rocco Mandrysch

Release
17.2.7.9, 32bit 17.2.7.9, 64bit 18.9.50 19.0.2
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Event loop Inner Detector

cut-level 13 in 19.1.0!
A.Morley et al.
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• tracking tuning for 13 TeV 
➡ release 19.0.X uses ID cut-level 10  

• includes Eigen, new seeding, ... 
➡ ID cut-level 13 for release 19.1.X 

• η-dependent TRT cuts 
• tuned silicon tracking cuts 
• back-tracking in EM RoIs                                                                                 

(output tailored for e/gamma) 
➡ physics performance at μ=40 ? 

• better purity for primary tracks 
• e/gamma unchanged 

➡ RecExCommon with ID cut-level 13 
• <270 HS06 on 2012 high-μ run

20

Further CPU Improvements for 13 TeV

ATLAS	

speed of different 
reconstruction 

algorithms

silicon pattern

25% of RecExCommon

stream ESD

back-tracking

ambiguity	

solution

TRT	

extension

Anthony Morley et al., 2012 high-μ run

1kHz budget
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What is coming next ?
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information with 500 < pT < 600 GeV, as a function of the distance DR to the centre of the jet.
This distance is calculated from the angular separation as DR =

p
Dh2

+Df 2. In the jet core, the
average number of shared measurements is reduced by a factor of three. The simulation accurately
describes the rate of shared measurements and the reduction obtained with the application of the
neural network.
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Figure 10. The average number of shared measurements in the B-layer on tracks associated to anti–kT
jets with 500 < pT < 600 GeV for data and simulation, reconstructed with the CCA and NN clustering
algorithms. This is shown as a function of the distance of the track from the centre of the jet. The ratio of the
average number of shared measurements in data and simulation is shown for both the NN (solid line) and
the CCA (dashed line) clustering algorithms.

The NN clustering algorithm runs approximately six times slower than the CCA clustering
algorithm. However, in comparison to the full event reconstruction, the NN splitting, the re–
evaluation of the splitting during the track fitting and the increased combinations from additional
track candidates increase the per–event execution time by at most 5 percent. This was estimated
using the highest pile–up conditions experienced during normal physics data taking in 2012.

5. Conclusion

A new method using a set of neural networks to identify and split clusters created by multiple
charged particles in the ATLAS silicon pixel detector is presented. The algorithm results in a factor
of three reduction of the numbers of measurements assigned to multiple tracks, in particular in the
core of highly energetic jets.

An additional set of neural networks was trained to estimate cluster positions and uncertain-
ties. The superior, non–linear behaviour of the neural network results in a significant improvement
of the impact parameter resolution even for isolated tracks. Good agreement in neural network

– 16 –

Further optimise current Tracking

•algorithmic improvements being worked on 
➡ use only curvilinear frame inside extrapolator 

• saves local/global transformations 
➡ cache track extrapolation to calorimeter  

• extensively in combined reconstruction 
➡ faster track fit based on reference Kalman filter 

• linearise track fit w.r.t. reference trajectory (1 extrapolation) 
!

•explore ideas for tracking in jets 
➡ hit density in jet cores lead to cluster merging 

• reason for Neural Network (NN) cluster splitting 
➡ pattern usually finds track candidates 

• large number of shared hits still remain 
➡ task of ambiguity processing is to reject fakes 

• tracks with many shared hits looks like a fake 
➡ room for improvements ?

GPUs in
ATLAS
tracking

Sebastian
Fleischmann

Introduction

Kalman Filter
on GPU
GPU
comparison
MTF

GPU in
Athena

Summary

Backup

p. 3

Introduction
Kalman Filter in track reconstruction

I Default Kalman filter implementation in
ATLAS: Extended KF

I Measurement updates alternate with
extrapolations

layer k+1

layer k

layer k-1

I Alternative: KF with reference trajectory
I Reference extrapolated through whole

volume
I Fitter runs only on differences between

measurements and reference trajectory
I Initial parameters for reference

trajectory must not be too far away
from final fit (esp. passed material)

I More stable in case of outliers
I Allows for separating extrapolation from

actual fit (and measurement
assignments): Ideal for offloading to
accelerator devices

S.Fleischmann et al.

!

!

• OUR GOAL: reduce the number of shared hits per track before entering the ambiguity solving stage → 
Improve Double Track Resolution (beware of fakes though!)!

• An algorithm has already been designed for this: NN cluster splitting:!

• Runs before pattern reco!

• Splits clusters based on probability of a cluster being created by 1 or >1 particles!

• probability of 2 & 3 particle hypothesis, location, error

Track Reconstruction - Early Steps

4

!

!

• OUR GOAL: reduce the number of shared hits per track before entering the ambiguity solving stage → 
Improve Double Track Resolution (beware of fakes though!)!

• An algorithm has already been designed for this: NN cluster splitting:!

• Runs before pattern reco!

• Splits clusters based on probability of a cluster being created by 1 or >1 particles!

• probability of 2 & 3 particle hypothesis, location, error

Track Reconstruction - Early Steps

4

overlapping 
tracks

cluster merging

reference 
kalman filter

shared hits in jet cores 
with and without NN
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Tracking in dense Environments (TIDE)

• try to improve in high-pT jet RoI 
➡ TIDE working group 

• more elaborate ambiguity processing to 
recover tracks 

• especially relevant for high-pT 
➡ aim to improve as well tau reconstruction 

• tracking inefficiencies limit for 
identification and particle flow (3 prongs) 

➡ truth tracking shows there is potential 
!

•several strategies 
➡ improve selection and NN cluster splitting 

• aim is to keep more of the tracks with 
currently many merged/shared clusters 

➡ alternative algorithm: Multi Track Fitter (MTF) 
• robust (adaptive) version of Kalman filter 
• variant to estimate N tracks simultaneously  

can be use to resolve ambiguities (?)

23
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7 Truth Tracking214

In order to study tracking performance, a “truth tracking” tool has been developed. The truth tracking215

concept represents the ideal pattern recognition in the presence of material interactions. To do so, hits216

created by one single particle in the simulation are grouped together to form track candidates. These are -217

after passing the main requirements also applied in the pattern recognition - further fitted by the standard218

track fitter. Thus, inefficiencies and resolution effects due to material interactions are properly modelled219

by the truth tracking. Since multiple links from crated hits to particles are allowed in the ATLAS truth220

strategies, even finding partly or overlapping tracks in dense environments is possible.221

Comparison with Monte Carlo samples reconstructed with truth tracking identifies the cases where222

the usual tracking algorithm fails. For example, tracks should be preferentially lost in the core of high223

pT jets, as studied in this note.224

Figure 11 shows that both number of tracks and
∑

p track
T only differ in the core of the jet (∆(Rtrk,Jet)<∼225

0.05). This dependence once again points to merged tracks as the most likely to be lost in reconstruction.226

Figure 12 shows the mean number of pixel hits found by the truth tracking increases by ∼ 3%. Figure 12227

shows that the number of shared hits increased by ∼ 1%. Further plots are shown in E.228
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Figure 11: (a) Mean number of tracks per bin and (b) Mean value of
∑

p track
T per bin as a function of

∆(Rtrk,Jet), the distance between the track and the jet, for bins in p
jet
T for nominal and truth tracking.

Jets are reconstructed with the anti-kt(R = 0.4) algorithm and calibrated using the EM+JES calibration

scheme.

8 Conclusions229

Comparisons of the 2012 data and the simulation for tracks inside jets indicate the the simulation repro-230

duces the distributions of hits, shared hits and holes fairly well. Samples generated with Pythia8 and231

Herwig++ equally match data. Monte Carlo based studies indicate that the fake rate remains low for all232

p
jet
T

when we neglect pile-up. Above p
jet
T
∼ 500 GeV, stiff tracks near the core of the jet are preferen-233

tially lost, leading to an overall loss of about 20% in
∑

p track
T by 1 TeV, again neglecting pile-up. Inner234

detector hit quantities show little pile-up sensitivity, except for a ∼ 8% increase in TRT hits. The recent235

pixel cluster splitting neural network only affects the core of high pT jets, finding slightly more number236

of tracks. Studies with truth tracking samples confirm that merged tracks in the core of high pT jets are237

prefentially lost.238

19Katharine Leney

Tracking in Jets
•  JZ6W samples produced with truth-seeded tracking, and nominal reconstruction
•  Full set of JZNW slices on their way (release problems, but hope to resolve quickly).

•  Significant increase in # tracks and ΣpT
tracks when using truth-seeded tracking.

29th October 2013

Tracking in Dense 
Environments

Jackie Brosamer, Gabriel Facini, Katharine Leney, 
Anthony Morley, Frank Paige, Andi Salzburger, Marjorie Shapiro

29th October 2013
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Processor Technology

•Moore's law is still alive 
➡ number of transistors doubles every 2 years 
➡ lots of transistors looking for something to do: 

• vector registers 
• out of order execution 
• multiple cores 
• hyper threading 

➡ increase theoretical performance of processors 
• hard to achieve this performance with HEP applications ! 
!

• taking benefit from vector registers (SIMD) 
➡ Eigen and libimf used since release 19 

• internally vectorises computations, ~20% speedup seen 
• tracking code not yet optimised to exploit SIMD features 

➡ studies on hand-vectorising hot-spots like Runge-Kutta 
• needs experts to write SSE and AVX code 

➡ auto-vectorising using advanced compiler options 
• studies are ongoing, gains seen so far not too impressive

24

Processor Landscape
• Moore’s law - alive and well: 2 

years → 2 x transistors!

• There is now a lot of transistors 
looking for something do do:!

• Vector registers!

• Out of order execution!

• Multiple Cores!

• Hyperthreading!

• All of these techniques increase 
the theoretical performance of a 
processor!

• But hard to achieve this 
performance (or close to it) with 
HEP applications

4
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Transistors
Clock
Power
Performance
Performance/W

Moore’s law

Clock speed 
(free lunch)

Moore's law

STEP 3
PROFIT!

• Tested on a Sandy Bridge-EP CPU

• SSE version: 2.4x faster

• AVX version: 1.5x faster

‣ slower than SSE because of 
costly cross lane permutations

‣ not as mature as SSE

‣ AVX2 (Haswell) will change 
that

0

1

2

3

BASE SSE AVX

9

STEP 2
VECTORIZE

for(int i = 0; i < 42; i+=7){
    __m256d dR = _mm256_loadu_pd(&P[i]);
    
    __m256d dA = _mm256_loadu_pd(&P[i + 3]);
    __m256d dA_201 = CROSS_SHUFFLE_201(dA);
    __m256d dA_120 = CROSS_SHUFFLE_120(dA);
    
    __m256d d0 = _mm256_sub_pd(_mm256_mul_pd(H0_201, dA_120), _mm256_mul_pd(H0_120, dA_201));
    
    if(i==35){
        d0 = _mm256_add_pd(d0, V0_012);
    }
    
    __m256d d2 = _mm256_add_pd(d0, dA);
    __m256d d2_201 = CROSS_SHUFFLE_201(d2);
    __m256d d2_120 = CROSS_SHUFFLE_120(d2);
    
    __m256d d3 = _mm256_sub_pd(_mm256_add_pd(dA, _mm256_mul_pd(d2_120, H1_201)), _mm256_mul_pd(d2_201, H1_120));
    __m256d d3_201 = CROSS_SHUFFLE_201(d3);
    __m256d d3_120 = CROSS_SHUFFLE_120(d3);
    
    if(i==35){
        d3 = _mm256_add_pd(d3, _mm256_sub_pd(V3_012, A_012));
    }
    
    __m256d d4 = _mm256_sub_pd(_mm256_add_pd(dA, _mm256_mul_pd(d3_120, H1_201)), _mm256_mul_pd(d3_201, H1_120));
    
    if(i==35){
        d4 = _mm256_add_pd(d4, _mm256_sub_pd(V4_012, A_012));
    }
    
    __m256d d5 = _mm256_sub_pd(_mm256_add_pd(d4, d4), dA);
    __m256d d5_201 = CROSS_SHUFFLE_201(d5);
    __m256d d5_120 = CROSS_SHUFFLE_120(d5);
    
    __m256d d6 = _mm256_sub_pd(_mm256_mul_pd(d5_120, H2_201), _mm256_mul_pd(d5_201, H2_120));
    
    if(i==35){
        d6 = _mm256_add_pd(d6, V6_012);
    }
    
    _mm256_storeu_pd(&P[i], _mm256_add_pd(dR, _mm256_mul_pd(_mm256_add_pd(d2, _mm256_add_pd(d3, d4)), S3_012)));
    _mm256_storeu_pd(&P[i + 3], _mm256_mul_pd(C_012, _mm256_add_pd(d0, _mm256_add_pd(d3, _mm256_add_pd(d3, _mm256_add_pd(d5, d6))))));
}

8

factor	  >	  2

Runge-‐Kutta	  
vectorised	  code
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•Level-1 cache misses and data locality 
➡ ATLAS reconstruction has significant (2.2%) rate read/write cache misses 

• e.g., Runge-Kutta integration shows up high in cachegrind summary 
➡ studies show that this is very expensive 

• simple tests of sigmoid functions (for neural networks) with contiguous    
and random memory access: 
!
!

•xAOD and data locality 
➡ separates API and data itself 

• interface class "electron" 
• data in "electronAuxStore" 

➡ AuxStore looks like "RootTuple" 
• data organised in a structure of vector<simple types> 

➡ idea is to enforce contiguous memory usage behind the scene 
• as well, data pools will reduce malloc overhead 
• requires to migrate remaining reconstruction EDM to xAOD format     

(clusters, drift circles, space points, tracks) 
• will as well help data reformatting for massively parallel processing (GPUs)

25

Data Locality
Memory Locality and Latency
• Memory locality is extremely important!

• Vector loads and stores are vastly more efficient and cache misses cost 
hundreds of cycles!

• Put like things together!

• Structures of arrays not arrays of structures!

• Simple tests of sigmoid functions (for neural networks) with contiguous 
and random memory access

26

Function Contiguous Random Ratio

Logistical Fn 2400ms 9700ms ÷4

Fast sqrt Fn 560ms 7900ms ÷14

Ratio x4.3 x1.2

Improve because 
of SIMD

Losses because of 
lack of localityG.Stewart et al.
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Tracking on 
Many Core Processors
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Multi-Processing and Multi-Threading

•many core processors, including GPGPUs 
➡ e.g. NVidia Tesla, Intel Phi 

• we see them in HPC applications 
➡ not so clear if and when they replace our GRID nodes 
!

• lots of cores with little memory 
➡ need to parallelise application 

• same for ARM or ATOM processors with small memory 
➡ event-wise parallel processing (AthenaMP) 

• late process forking allows to share ~50% of memory 
➡ algorithm level multi-threading (Gaudi-Hive prototype) 

• concurrent processing supported by framework 
• tracking dominates, does not really "fit" Hive model              

(~85% of reconstruction are sequential algorithms) 
➡ ultimately, need multi-threading within algorithmic code

27

many integrated 
cores

• Intel’s MIC (aka Intel Xeon Phi) is in its first generation

• 61 x86_64 cores @ ~1GHz

• 16GB of memory

• Coprocessor architecture

• Cache coherent, but no out of order execution

• 512 bit registers (8 double or 16 float)

• Memory per core: 256MB

• Maximum performance needs 4 threads per core: 64MB 
per thread

7

Intel Xenon Phi

NVidia Tesla

Rolf Seuster Intelvisit Hillsboro January  2014 41

Other areas which need 
improvement, longer term

● implementing threading into our code would 
also help, but

– requires detailed programming knowledge

– can be error prone and hard to debug

– will take longer to implement (GaudiHive)
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Massively parallel Tracking

•ATLAS/CMS tracking strategy is for early rejection 
➡ iterative: avoid combinatorial overhead as much as possible ! 

• early rejection requires strategic candidate processing and hit removal 
➡ not a heavily parallel approach, it is a SEQUENTIAL approach ! 

• good scaling with pileup (factor 6-8 for 4 times pileup) - still catastrophic 
!

• implications for making it massively parallel ? 
➡ Armdahl’s law at work: 
!
!
• current strategy: small parallel part Par, while it is heavy on sequential Seq 

➡ hence: if we want to gain by a large N threads, we need to reduce Seq 
• compromise on early rejection, which means more combinatorial overhead 
• as a result, we will spend more CPU if we go parallel 

➡ makes sense if we use additional processing power that otherwise would 
not be usable (many core processors) or if latency is the main issue (trigger) 
• need to invest into R&D for novel parallel tracking strategies that reduce 

combinatorial overhead

28

Time|| = Para / N + Seq
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Tracking on GPUs

•active field of development across experiments 
➡ see series of GSI Tracking Workshops (link to workshop) 

• collaboration between ALICE and FAIR on GPU tracking 
• ALICE already using GPU aided tracking in their trigger (PbPb) 

➡ within ATLAS several prototyping activities 
• Level-2 GPU tracking (RAL) 
• offline tracking studies (Mainz, Wuppertal, ...) 

➡ as well, studies on GPU integration 
• client/servicer architecture APE (RAL) 
• using dOpenCL communication layer (Münster, Wuppertal) 
!

•within ATLAS Level-2 GPU tracking is most advanced 
➡ 2 years for complete re-write of Level-2 code for GPUs (D.Emeliyanov) 

• compact representations of geometry, b-field, cabling suitable for GPU 
• lightweight data structures for the on-GPU data model with conversion 

from/to Athena EDM 
• complete code re-factoring to get rid of “spaghetti” design, multiple 

loops, recursive calls

29

https://indico.gsi.de/conferenceDisplay.py?confId=1469
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Level-2 GPU Tracking Prototype

•complete tracking chain 
➡ from raw to tracks 
➡ similar to SiTrack tracking chain

30

GPU-based data preparation 

� Massively parallel bytestream decoding: 
y Parsing datawords into collections of hits 
y Identification of collection header, trailer, actual 

hits, and hit information decoding are done in 
parallel by GPU threads working on global output 
Structure-of-Arrays (SoA)  
 

06/06/2014 ATLAS Software & Computing Week @ CERN 4/14 

word word word word word word word word word 

head. hit hit hit trailer head. hit hit trailer 

thread 0 

thread 1 

thread 2 

uint32_t 

hit struct 

input 1D array  

output  SoA   
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Pixel clusterization on GPU 
� Two new algorithms for parallel execution: 
y for algorithm B fast AND operation for symmetrical 

Boolean matrices was developed 

06/06/2014 ATLAS Software & Computing Week @ CERN 5/14 

A.   The parallel iterative algorithm : 
 
 The algorithm uses a cellular automaton (CA) to 
iteratively combine hits into groups.  All hits are 
assigned initial tags (proposed cluster Ids) and 
then retagged by adjacent hits with a higher tag 
index until the CA stops evolving. 

B.   The algorithm with cluster size control: 
 
 

D. Emeliyanov J. Howard 

Given cluster size limit L the algorithm calculates 
the L-th power of the hit adjacency matrix A 
Element                   gives the number of walks of 
length L from hit i to hit j 
Basically, if                      the two hits belongs to 
the same cluster and the cluster diameter does 
not exceed L 
Matrix multiplication can be done very efficiently 
on GPUs. In addition, this algorithm benefits 
from all the matrix products being Boolean – bit-
wise AND is used instead of actual multiplication   
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Level-2 GPU Tracking Prototype

•complete tracking chain 
➡ from raw to tracks 
➡ similar to SiTrack tracking chain
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GPU-based data preparation 

� Massively parallel bytestream decoding: 
y Parsing datawords into collections of hits 
y Identification of collection header, trailer, actual 

hits, and hit information decoding are done in 
parallel by GPU threads working on global output 
Structure-of-Arrays (SoA)  
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GPU-based track finding 
� Algorithmic workflow 

inspired by SiTrack: 
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Level-2 GPU Tracking Prototype
!
!
!
!
!
!
!
!
!
!
!
!
!

➡ significant speedup compared to running same chain on CPU 
➡ CUDA vs openCL, development and maintenance cost ?
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Summary of the results 

� GPU-based code vs. 32-bit Athena (17.1.0) 
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RoI type Data prep. speed-up 
Tau 0.6x0.6 9 

B-phys, 1.5x1.5 12 

FullScan 26 

x1
2 

Track finding 

GPU sharing test 

� x12 speed-up was obtained for the full 
LVL2 ID tracking chain on large RoIs 

� “Client-server”  architecture  for  GPU  
sharing seems to be feasible  

sequential	

part on CPU
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Tracking and 
Detector Upgrades
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Hardware Solutions to Tracking ?

•using hardware tracking (FTK) ? 
➡ once installed, FTK will process every Level-1 trigger on data 

• will replace parts of Level-2 tracking 
• may be used to seed Event Filter tracking (Level-2 seeding being studied) 
• but: physics performance not matching offline 

➡ FTK simulation is SLOW on CPUs, factors >> 10 compared to offline 
• will not be able to process every MC event with FTK simulation 
• but: we could use time between fills to process MC in FTK at Point-1 
• or go crazy: build a 2nd FTK for processing MC 

➡ I would conclude: FTK not a drop-in solution to offline tracking problem 
!

•optimising hardware for tracking ? 
➡ definitely ! 

• ITK layout was optimised having robustness and tracking in mind 
• we could probably still do better, technology (CMOS) for all Pixels/Strixels 

➡ but: CMS is backing off from their L1 tracking dominated design 
• too restrictive in terms of physics performance, need to keep balance !
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The Fast Tracker (FTK)

•current ATLAS trigger chain 
➡ Level-1: hardware based (~50 kHz) 
➡ Level-2: software based with RoI access to                               

full granularity data (~5 kHz)              
➡ Event Filter: software trigger (~500 Hz) 
!

•FTK: hardware tracking (co-processor) 
➡ descendent of the CDF Silicon Vertex Trigger (SVT) 
➡ inputs from Pixel and SCT 

• data in parallel to normal read-out 
➡ two step reconstruction 

• associative memories for parallel pattern finding 
• linearised track "fit" implemented in FPGAs 

➡ provides track information to Level-2 in ~ 25 μs 
• slice installed for 2015, full coverage in 2016
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step 1

step 2

 tracking enters here 
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FTK Performance

•effects and expected performance 
➡ track efficiency is 90-95% w.r.t. offline (loose match) 

• reduced detector granularity for track finding 
• size of candidate pattern banks is limited (20GB) 
• fast "hit worrier" vs offline ambiguity processing 

➡ track resolution (tails) limited by FPGA technique 
• track fit is linear estimator, not a real χ2 track fit 
• not full resolution, no explicit material effects 
!

•FTK still very useful for trigger 
➡ full scan at entry to Level-2 

• pileup corrections for jet and missing ET 
• particle flow like tau tagging (RoI as well ok ?) 
• fast track confirmation of Level-1 triggers 

➡ can recover offline like track resolutions 
• refit FTK tracks with Level-2 track fit 
• b-jet trigger, taus...
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•CMS Inner Tracker 
➡ Strip tracker replacement 

• several layouts under consideration 
• short strips in Rϕ, macro-pixels in z 

➡ Level-1 track trigger with high pT stubs 
• correlate 2 sensors, threshold ~ 2 GeV 
• pattern in associative memory, FPGA fit 

➡ Pixels: extend η coverage to 4 (!) 
!
!

•ATLAS Inner Tracker 
➡ baseline: all silicon tracker, 14 hits 

• robust tracking @140 PU for η<2.5 
➡ Strip tracker with short strips + stereo 
➡ Pixels cover η<2.7 (Muons) 

• inner Pixels replaceable, reduced pitch 
• alternative layouts (“Alpine”, conical) 

➡ Level-1 track trigger seeded by Level-0 
• FTK inspired,                                     

reduced latency 
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CMS Tracker Upgrade
layout and requirements

Layout
Current baseline

10 trigger hits  → η=2.5

● ×4 granularity in strip sensors
● +3 layers of MacroPixel sensors

– Unambiguous 3D coordinates 
helps track Xnding in high pile-up

● Up to 10 points available for track-trigger up to η=2.5

– Comparable to current tracker's coverage, but at L1
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New Ideas for Track 
Reconstruction ?
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Alternative Tracking Algorithms

•examples for algorithms in literature 
➡ conformal transforms: e.g. Hough transforms 

• scale ~ linear with pileup, need memory 
• used in track seeding and TRT segment finding 
• no successful application for full Pixels+SCT yet 

➡ still transforms: V-trees 
• scale ~ linear with pileup 
• used in IDSCAN for Level-2 tracking 
• intrinsically pointing, needs primary vertex 

➡ cellular automaton 
• used by some experiments, example Belle II 

(not their default tracking code !) 
• idea is to evolve 3 hit combinations into tracks 
• it’s a combinatorial algorithm that could be 

parallelised 
• Belle II example uses things like “high 

occupancy bypasses” in their algorithm flow ? 
!

•we probably need new ideas !
38

Introduction
Track finding
Track fitting

Vertex reconstruction
Conclusions and Outlook

Local methods
Global methods

Track finding: Global methods

Finding circles with the Hough transform
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Spotlight on 

• Developed in Vienna by Jakob (grad student of Rudi) 
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Truth Tracking from MC

•for very fast (ISF) simulation options 
➡ MC truth based hit filter to find tracks 
➡ replace pattern recognition in tracker 

• otherwise limiting CPU driver 
!

•good results achieved 
➡ real pattern is very efficient and very pure 

• modeling of hit association mostly ok 
➡ models main source of inefficiencies well 

• this is hadronic interactions in material 
➡ uses full fit, so resolution come out right 
➡ and it is fast (trivial) ! 
!

•still, corrections are needed 
➡ especially double track resolution 

• affects jet cores, taus, maybe 140 pileup (?) 
➡ corrections are topology dependent

39

Roland Jansky et al.‣ So far, no technical optimisation was done on the Truth Tracking
- this usually gains quite a bit when done thoroughly

Thursday, October 31, 2013 R. Jansky 14

Timing with pile-up

reconstruction time 
vs pileup

reconstruction tracks

truth tracks
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The ISF Idea for Tracking ?

• ISF mixes different simulations 
➡ spend more times on important event aspects 
➡ dramatically reduces effects of pileup 
!

• this idea is to do the same for tracking ! 
➡ hence elaborate tracking for regions of interest (RoI) 

• best performance for physics objects costs CPU 
➡ fast tracking for underlying event and pileup 

• good enough for primary vertexing and for particle 
flow / jet corrections 
!

•we do this successfully since 2012 (!) 
➡ calorimeter seeded brem. recovery for electrons 
➡ GSF later in e/gamma reconstruction 
!

•Run-2 will have seeded TRT BackTracking 
➡ only reconstruction high-pT photon conversion tracks

40

E.Ritsch, A.Salzburger

A.Salzburger
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The ISF Idea for Tracking ?

•how could this look like ? 
➡ event “background”: 

• extreme idea: FTK for data, truth tracking for MC + tuning ? 
• less extreme: faster tracking algorithms, compromising on performance 

➡ event “signal”: 
• current NewTracking for regions of interests (RoIs) 
• keep electron brem. recovery 
• back tracking for conversion recovery in EM RoIs 
!

• issues with this approach ? 
➡ analysis: similar complication to ISF mixed simulation 

• analysis will need to handle fast and full reconstruction objects in event 
➡ tracking: inside/outside RoI cone effects 

• ambiguity resolution of full tracking in RoI with fast tracking outside 
➡ pileup corrections for jets (including particle flow) and MET 

• requires full event reconstruction, compromise on tracking performance ? 
!

•as well opportunities for performance optimisation !
41

Region of Interest Simulation: Cones

Cones

detailed simulation around particle of interest
(eg. signal particle)

simulate particles inside cone with high
accuracy (eg. Geant4)

simulate particles outside cone with fast
simulator (eg. Fatras or FastCaloSim)

Elmar Ritsch (Univ. Innsbruck, CERN) ISF and Fast ID Simulation October 31, 2013 4 / 23
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Studies towards ISF Idea for Tracking

•"self-seeded" tracking strategy 
➡ variant of "Run-2" tracking setup 
➡ after SSS+1 candidate finding, do a z-vertex scan (like before) 
➡ new: find 8 vertices with largest multiplicity and ΣpT 

• restrict PPP+1, PPS+1, PSS+1 to those 8 vertices ! 
!

•significant CPU and performance gains at <μ>=140 
!
!
!
!
!
!

➡ "Run-2" setup uses extra CPU at 140 pileup to recover efficiency ! 
➡ "8 vertices" would even be better for 40 pileup, but this is ttbar 

• study physics performance implications before putting it into production 
➡ final HL-LHC setup will probably not be "self-seeded" by tracker only
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40 pileup 140 pileup

seeding efficiency CPU efficiency CPU

"Run-1" 94.0% 9.5 sec 59.2% 73 sec

"Run-2" 94.2% 4.7 sec 80.4% 89 sec

"8 vertices" 94.8% 2.7 sec 82.0% 43 sec

ttbar with pileup, 25 nsec

Igor Gavrilenko, CPU on local machine

"technical efficiency" 
defined as efficiency to 
find tracks from signal 
event with correct hits, 
based on truth
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Conclusions ...

•well, too early to conclude on tracking for high pileup 
➡ need R&D now, if we want something radically better for Phase-2 (HL-LHC) 
!

•software technology, SIMD, cache pinning... 
➡ LS-1 software upgrades have shown it helps 
➡ at the cost of making the software more difficult to write 
!

• tuning of algorithm strategy 
➡ as well, LS-1 upgrades demonstrated the potential 
!

•multi-threading and massively parallel tracking 
➡ in my view it remains to be seen which role GPUs may play 
➡ relevant when memory/core is becoming the main issue 

• will make software even more difficult to write 
➡ requires to change track reconstruction strategy to avoid Armdahl’s law 
!

•need new ideas on algorithms and tracking strategies 
➡ definitely
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