
Tracking for High Pileup
Markus Elsing	

Seminar at University Wuppertal, July 3rd, 2014

ATLAS HL-LHC event in new tracker

overview
• processor landscape

• ARMs to GPGPUs

• i/o

• goldilocks no more

• golden rules

• tools for the future

• projects and ideas for
tracking

2

Markus Elsing

Outline

• Introduction: the Challenge
!

•The present Detectors and Reconstruction Strategies
!

•Preparing for Run-2 in current Long Shutdown (LS-1)
!

•What is coming next ?
!

•Tracking on Many Core Processors
!

•Tracking and Detector Upgrades
!

•New Ideas for Track Reconstruction ?
!

•Conclusions ...

2

Markus Elsing 3

Introduction: the Challenge

Markus Elsing

Experience with Pileup during Run-1

•pileup in 2012 exceeded design
➡ average pileup up to 35 (1.5 × design)
➡ due 50 nsec operation
!

•good stability of performance
➡ thanks to several algorithmic improvements

• for pileup levels seen so far
➡ test with high pileup runs look promising

• known limitations when going much further
!

•ATLAS / CMS upgrade goals
➡ upgrade both, hardware and software
➡ restore (and if possible, improve on)

physics performance at increasing pileup
• and stay within computing resources

➡ includes major upgrades of the tracking
detectors in view of the pileup at HL-LHC

4

CMS event with 78 pileup

Month in 2010 Month in 2011 Month in 2012
Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct

P
ea

k
in

te
ra

ct
io

ns
 p

er
 c

ro
ss

in
g

0
5

10
15
20
25
30
35
40
45
50

 = 7 TeVs = 7 TeVs = 8 TeVs
ATLAS
Online Luminosity

LHC design

Markus Elsing 5

LHC schedule

Run1 Run2 Run… Run3

Phase-0 Phase-I Phase-II

LHC schedule approved by CERN management and LHC experiments
spokespersons and technical coordinators (December 2013)

30 fb-1

300 fb-1

3000 fb-1

Fix interconnects and
overcome energy limitation

Injector upgrade for high
intensity, low emittance
bunches, collimation,
cryogenics

HL-LHC: Major
intervention on 1.2
km of LHC

The present CERN Mid Term Plan
approved by CERN Council covers
up to 2018. Need to further
elaborate physics capabilities;
experiments and machine to
demonstrate feasibility.

LHC upgrade in Monday
F. Bordry’s talk

C.Gemme, LHCP

Markus Elsing 5

LHC schedule

Run1 Run2 Run… Run3

Phase-0 Phase-I Phase-II

LHC schedule approved by CERN management and LHC experiments
spokespersons and technical coordinators (December 2013)

30 fb-1

300 fb-1

3000 fb-1

Fix interconnects and
overcome energy limitation

Injector upgrade for high
intensity, low emittance
bunches, collimation,
cryogenics

HL-LHC: Major
intervention on 1.2
km of LHC

The present CERN Mid Term Plan
approved by CERN Council covers
up to 2018. Need to further
elaborate physics capabilities;
experiments and machine to
demonstrate feasibility.

LHC upgrade in Monday
F. Bordry’s talk

C.Gemme, LHCP

<μ> = 10-30
<μ> ≥ 40

<μ> = 140

Markus Elsing

Tracking at HL-LHC ?

• track reconstruction
➡ combinatorics grows with pileup
➡ naturally resource driver (CPU/memory)
!

• the million dollar question:
➡ how to reconstruct LH-LHC events within resources ? (pileup ~ 140-200)
!

• this is not a new question !
➡ we knew that tracking at the LHC is going to be a problem

• hence: we aim at improving over something that is highly optimised
➡ processor technologies are changing as well

• need to rethink some of the design decisions we did
• will require vectorisation and multi-threading
• improve data locality (avoid cache misses), etc.

6

many integrated
cores

• Intel’s MIC (aka Intel Xeon Phi) is in its first generation

• 61 x86_64 cores @ ~1GHz

• 16GB of memory

• Coprocessor architecture

• Cache coherent, but no out of order execution

• 512 bit registers (8 double or 16 float)

• Memory per core: 256MB

• Maximum performance needs 4 threads per core: 64MB
per thread

7

ATLAS: 	

CPU vs pileup

LHC@25	 ns

LHC@50	 ns

Intel Xenon Phi

ATLAS HL-LHC event in new tracker

Markus Elsing 7

The present Detectors and
Reconstruction Strategies

Markus Elsing 8

ATLAS Inner Detector

•barrel track passes:
➡ ~36 TRT 4mm straws
➡ 4x2 Si strips on stereo

modules12cm x 80 mm,
285mm thick

➡ 3 pixel layers, 250mm
thick

•optimised for 24 pileup events

Markus Elsing

Introduction: NewTracking in ATLAS

9

New Tracking

pre-precessing
➡ Pixel+SCT clustering
➡ TRT drift circle formation
➡ space points formation

Markus Elsing

Introduction: NewTracking in ATLAS

9

New Tracking

pre-precessing
➡ Pixel+SCT clustering
➡ TRT drift circle formation
➡ space points formation

combinatorial
track finder
➡ iterative :

1. Pixel seeds
2. Pixel+SCT seeds
3. SCT seeds

➡ restricted to roads
➡ bookkeeping to avoid

duplicate candidates

ambiguity solution
➡ precise least square fit

with full geometry
➡ selection of best silicon

tracks using:
1. hit content, holes
2. number of shared hits
3. fit quality...

extension into TRT
➡ progressive finder
➡ refit of track and selection

Markus Elsing

Introduction: NewTracking in ATLAS

9

New Tracking

pre-precessing
➡ Pixel+SCT clustering
➡ TRT drift circle formation
➡ space points formation

combinatorial
track finder
➡ iterative :

1. Pixel seeds
2. Pixel+SCT seeds
3. SCT seeds

➡ restricted to roads
➡ bookkeeping to avoid

duplicate candidates

ambiguity solution
➡ precise least square fit

with full geometry
➡ selection of best silicon

tracks using:
1. hit content, holes
2. number of shared hits
3. fit quality...

extension into TRT
➡ progressive finder
➡ refit of track and selection

TRT segment finder
➡ on remaining drift circles
➡ uses Hough transform

TRT seeded finder
➡ from TRT into SCT+Pixels
➡ combinatorial finder

ambiguity solution
➡ precise fit and selection
➡ TRT seeded tracks

standalone TRT
➡ unused TRT segments

Markus Elsing

Introduction: NewTracking in ATLAS

9

New Tracking

pre-precessing
➡ Pixel+SCT clustering
➡ TRT drift circle formation
➡ space points formation

combinatorial
track finder
➡ iterative :

1. Pixel seeds
2. Pixel+SCT seeds
3. SCT seeds

➡ restricted to roads
➡ bookkeeping to avoid

duplicate candidates

ambiguity solution
➡ precise least square fit

with full geometry
➡ selection of best silicon

tracks using:
1. hit content, holes
2. number of shared hits
3. fit quality...

extension into TRT
➡ progressive finder
➡ refit of track and selection

TRT segment finder
➡ on remaining drift circles
➡ uses Hough transform

TRT seeded finder
➡ from TRT into SCT+Pixels
➡ combinatorial finder

ambiguity solution
➡ precise fit and selection
➡ TRT seeded tracks

standalone TRT
➡ unused TRT segments

vertexing
➡ primary vertexing
➡ conversion and V0 search

Markus Elsing

Introduction: NewTracking in ATLAS

9

New Tracking

pre-precessing
➡ Pixel+SCT clustering
➡ TRT drift circle formation
➡ space points formation

combinatorial
track finder
➡ iterative :

1. Pixel seeds
2. Pixel+SCT seeds
3. SCT seeds

➡ restricted to roads
➡ bookkeeping to avoid

duplicate candidates

ambiguity solution
➡ precise least square fit

with full geometry
➡ selection of best silicon

tracks using:
1. hit content, holes
2. number of shared hits
3. fit quality...

extension into TRT
➡ progressive finder
➡ refit of track and selection

TRT segment finder
➡ on remaining drift circles
➡ uses Hough transform

TRT seeded finder
➡ from TRT into SCT+Pixels
➡ combinatorial finder

ambiguity solution
➡ precise fit and selection
➡ TRT seeded tracks

standalone TRT
➡ unused TRT segments

vertexing
➡ primary vertexing
➡ conversion and V0 search

since 2012:
➡ brem. recovery seeded

from list of selected EM
clusters

Markus Elsing

CMS Tracker
• largest silicon tracker ever built
➡ Pixels: 66M channels, 100x150 μm2 Pixel
➡ Si-Strip detector: ~23m3, 210m2 of Si area,

10.7M channels

10

The world largest Silicon Tracker

3

TIB
Inner Barrel
4 layers TID

Inner Disks
3+3 disks

TEC Endcap
9+9 disks

Tracker
Support
Tube

TOB
Outer Barrel
6 layers

L~5.4m
∅~2.4m

PXL
Pixel Detector
3 layers, 2+2 disks

Pixel Detector
66M channels

100x150 μm2 pixel
LHC radiation resistant

Si-Strip detector
~23m3; ~200m2 of Si area;

~9x106 channels;
LHC radiation resistant

Markus Elsing 11

Iterative tracking

8

The CMS tracking relies on iterations (steps) of the tracking procedure;
each step works on the remaining not-yet-associated hits and is optimized
with respect to the seeding topology and to the final quality cuts.

Iterative tracking. A factor 2.5 of improvement in the CPU time has been obtained by
optimizing the iterative tracking, as detailed in table 2 to be compared with table 1 that
summarizes the baseline configuration of CMSSW 4.2.x. As can be seen, the net e↵ect
is an increase of the e↵ective PT threshold for track reconstruction together with tighter
constraint on impact parameter. This configuration results into a reduced e�ciency for PT

lower than 300MeV/c but an e�ciency for PT greater than 0.9GeV/c larger by ⇠ 1% with
a ⇠ 8% reduction of the fake rate.

Reconstruction of photon conversions. Reconstruction of photon conversion in the tracker
volume is heavily a↵ected by the higher PT threshold and by the tighter impact parameter
cuts since conversion tracks are typically soft and displaced. To recover this loss, a
dedicated seeding has been deployed [6] and the photon conversion reconstruction has been
further optimized resulting in a factor 12 improvement of the CPU time for conversion
reconstruction.

Reconstruction of primary vertices. The reconstruction of primary vertices in the event
has been optimized by integrating into the same module all the di↵erent reconstruction
methods; the removal of the overhead due to the module split we had beforehand was
enough to gain a factor two in CPU time in this specific context.

Reconstruction of nuclear interactions. Similarly to photon conversions, also nuclear
interactions are reconstructed for tracker material studies and to correctly estimate

Table 1. Relevant parameters of the six iterative tracking steps in CMSSW 4.2.x, i.e. before
the reconstruction improvement campaign described in this paper; � represents the beam spot
size along the z axis and d0 and z0 are the transverse (i.e. in the xy plane) and longitudinal
impact parameters, respectively.

#step seed type seed subdetectors P

min
T [GeV/c] d0 cut z0 cut

0 triplet pixel 0.8 0.2 cm 3.0�
1 pair pixel/TEC 0.6 0.05 cm 0.6 cm
2 triplet pixel 0.075 0.2 cm 3.3�
3 triplet pixel/TIB/TID/TEC 0.25-0.35 2.0 cm 10.0 cm
4 pair TIB/TID/TEC 0.5 2.0 cm 12.0 cm
5 pair TOB/TEC 0.6 6.0 cm 30.0 cm

Table 2. Relevant parameters of the seven tracking iterative steps in CMSSW 4.4.x, after the
first phase of the improvement campaign in fall 2011; in bold the parameters changed with
respect to the corresponding steps in CMSSW 4.2.x (see table 1); step #1 is brand new with
respect to CMSSW 4.2.x; see table 1 caption for symbol definitions.

#step seed type seed subdetectors P

min
T [GeV/c] d0 cut z0 cut

0 triplet pixel 0.6 0.03 cm 4.0�
1 triplet pixel 0.2 0.03 cm 4.0�
2 pair pixel 0.6 0.01 cm 0.09 cm
3 triplet pixel 0.2 1.0 cm 4.0�
4 triplet pixel/TIB/TID/TEC 0.35-0.5 2.0 cm 10.0 cm
5 pair TIB/TID/TEC 0.6 2.0 cm 10.0 cm
6 pair TOB/TEC 0.6 2.0 cm 30.0 cm

Iterative tracking in 2011 (CMSSW 42x)

Sguazzoni et al.,	

GSI Tracking Workshop 2012

28.11.2012 GSguazzoni CMS reconstruction overview and plans

Spring 2012 campaign: from CMSSW44x to 52x (2)
Offline vertexing based on a deterministic annealing algorithm improved:
loops autovectorized (new compiler), exponential functions replaced with
fast autovectorizable inlined double precision versions; some configuration
parameters optimized. 3x gain in CPU time with no change in performances
Cluster-shape based seed filtering extended to almost all seeding step. 1.5x
improvement in CPU time. Fake rate is reduced by ∼ 20%.
Iterative tracking Tiny optimization plus upgrade of the final track cleaning
and selection criteria. No efficiency change for prompts tracks with PT>0.9
GeV/c, but fake rate ∼35% down.

16

Table 3. Relevant parameters of the seven tracking iterative steps in CMSSW 5.2.x, after
the second phase of the improvement campaign in 2012; in bold the parameters changed with
respect to the corresponding steps of CMSSW 4.4.x in table 2; see table 1 caption for symbol
definitions.

#step seed type seed subdetectors P

min
T [GeV/c] d0 cut z0 cut

0 triplet pixel 0.6 0.02 cm 4.0�
1 triplet pixel 0.2 0.02 cm 4.0�
2 pair pixel 0.6 0.015 cm 0.09 cm
3 triplet pixel 0.3 1.5 cm 2.5�
4 triplet pixel/TIB/TID/TEC 0.5-0.6 1.5 cm 10.0 cm
5 pair TIB/TID/TEC 0.6 2.0 cm 10.0 cm
6 pair TOB/TEC 0.6 2.0 cm 30.0 cm

track cleaning and selection criteria. Eventually the e�ciency for prompts tracks with PT

larger than 0.9GeV/c is not a↵ected but the fake rate is reduced by about ⇠ 35%.

The overall result obtained with the “spring 2012” campaign improvements implemented in
CMSSW 5.2.x is shown in figure 9 where the dependence of RSS memory as a function of running
time is plotted in CMSSW 4.4.x and CMSSW 5.2.x for a reconstruction job of 100 real data
events from the 2011 special run with high PU. The substantial reduction both in memory load
as well as in total running time is clearly evident.

The CMSSW 5.2.x releases have been fully validated and have been accepted for production
since changes in performaces are minor with respect to physics outcome.

4. A glimpse into the future
The challenge for the CMS reconstruction cannot be considered over with the deployment of
the software for 2012 data taking, currently ongoing. After the first long shutdown, foreseen for
almost two years in 2013 and 2014, LHC will increase center-of-mass energy and instantaneous
luminosity as well. This will require a major reengineering of the entire reconstruction software
and of the tracking.

Figure 9. RSS memory as
a function of running time in
CMSSW 4.4.x and CMSSW 5.2.x
for a reconstruction job of 100 real
data events from the 2011 special
run with high PU.

Iterative tracking in 2012 (CMSSW 52x) / In bold the changes with respect to 44x

Markus Elsing

Number of Pileup Interactions

0 20 40 60 80 100

)>
3

0
(d

m/
0

N
u
m

b
e
r

o
f
T

ra
c
k
s
 w

it
h
 d

0

2

4

6

8

10

12

Dijet 100 GeV,>=7 Clus.

Dijet 100 GeV,>=9 Clus., no Pix Holes

Dijet 500 GeV,>=7 Clus.

Dijet 500 GeV,>=9 Clus., no Pix Holes

ATLAS

Expected Performance vs Pileup (2008)

•affects on tracking in current detector
➡ pileup affects physics performance if reconstruction unchanged

• adjusting track selection allows to mitigate effects
➡ studied extensively even pre-data taking (see plots)
!

•current tracker ok until ~100 pileup
➡ no effects on efficiencies or resolutions
➡ control fakes and fake impact offsets with tracking cuts
➡ not shown: TRT occupancy effect

• loss of momentum resolution due to reduced efficiency
for precision hits

12Number of Pileup Interactions
0 20 40 60 80 100

) (
m

m
)

0
(d

m
Av

er
ag

e

0
0.02

0.04

0.06

0.08

0.1
0.12

0.14
0.16

0.18

0.2
|<1.0d|

|<1.5d1.0<|
|<2.5d1.5<|

ATLAS

Number of Pileup Interactions

0 20 40 60 80 100

N
u
m

b
e
r

o
f
T

ra
c
k
s
 a

n
d
 P

a
rt

ic
le

s

100

200

300

400

500

600

700

800

Truth Particles

>= 7 Clus.

>= 9 Clus., no Pix Holes

ATLAS

Number of Pileup Interactions

0 20 40 60 80 100

T
ra

c
k
in

g
 E

ff
ic

ie
n
c
y

0.6

0.7

0.8

0.9

1

1.1
Dijet 100 GeV,>=7 Clus.

Dijet 100 GeV,>=9 Clus., no Pix Holes

Dijet 500 GeV,>=7 Clus.

Dijet 500 GeV,>=9 Clus., no Pix Holes

ATLAS

impact parameter resolution

impact parameter offsets

fakes vs tracks selection

stability of tracking efficiency

Markus Elsing

Run-1 Experience with Pileup
•tracking performance as expected
➡ using more robust tracking cuts controls fakes
➡ CPU increasing rapidly with μ
!

•primary vertexing
➡ visible effects of vertex merging at high μ
➡ ΣpT based vertex tagging less and less optimal (see MC)
!

• tracking as a tool for pileup control
➡ jet reconstruction (JVF and variants of it)
➡ ATLAS is developing particle flow

13

Number of Vertices
0 5 10 15 20 25 30 35

<N
um

be
r o

f T
ra

ck
s>

0

100

200

300

400

500

600

700

800

900

Data 2011, Default
Simulation, Default
Data 2011, Robust
Simulation, Robust

Data 2011, Default
Simulation, Default
Data 2011, Robust
Simulation, Robust

ATLAS Preliminary
> = 26µ=7 TeV, <s

µ

0 5 10 15 20 25 30

R
ec

on
st

ru
ct

io
n

Ti
m

e
[s

/e
ve

nt
]

0

2

4

6

8

10 2011 ID Reconstruction

 2012 ID Reconstruction

 2011 ID Reconstruction

 2012 ID Reconstruction

ATLAS Preliminary
Simulation

Number of interactions per bunch crossing
5 10 15 20 25 30 35 40

<N
um

be
r o

f V
er

tic
es

>

0
2
4
6
8

10
12
14
16
18 ATLAS Preliminary

25 ns
50 ns

CPU time vs pileup

tracks in data / MC,
 different cuts

vertexing in 8 TeV,
25/50 nsec runs

2011

2012

lin
ea

r

 threshold [GeV]
T

p
20 30 40 50

〉 η
 P

ile
up

 je
t m

ult
ipl

ici
ty

pe
r u

nit

〈

-610

-510

-410

-310

-210

-110

1

10

|<2.4η|
|<2.4, JVT > 0.6η|
|<2.4, JVF > 0.5η|

|<3.2η2.4<|
|<4.5η3.2<|

ATLAS Simulation Preliminary
µµ→Sherpa Z

=8 TeVs LCW+JES R=0.4, tAnti-k
 = 23〉 truth

Vtx N〈

vertex tagging for
pileup jet rejection

PVN
0 5 10 15 20 25 30

 [G
eV

]
〉

m
is

s
T

 E〈

0
5

10
15
20
25
30
35
40
45
50

Before pile-up correction
Pile-up correction STVF
Pile-up suppression Extrapolated Jet Area
Pile-up suppression Extrapolated Jet Area Filtered
Pile-up suppression Jet Area Filtered

µµ →Z
-1Ldt=20 fb∫Data 2012

 = 8 TeVs
>20 GeV

T
0 jets p

ATLAS Preliminary

vertexing assisted
missing ET

JVF

Markus Elsing 14

Preparing for Run-2 in current
Long Shutdown (LS-1)

Markus Elsing

Computing Constraints for Run-2

•unlike Run-1, our computing resources will be limited !
➡ assumption is we stay with a constant computing budget
➡ interplay of technology advancement, market price and needed replacements

15

•motivation for LS1 software upgrades
➡ ensure Tier-0 can process 1kHz trigger rate, required to keep single lepton triggers
➡ optimise disk usage (see new Analysis Model)
➡ "soften" disk and CPU limits on Monte Carlo statistics

• focus here on preparation of tracking for 40 pileup

0"

50"

100"

150"

200"

250"

300"

2012" 2013" 2014" 2015" 2016" 2017"

kH
S0
6&

Evolu,on&of&ATLAS&Tier50&
CPU&Requirements&in&Run52&

Tier.0"CPU"

Tier.0"CPU"(flat"budget)"

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

2012" 2013" 2014" 2015" 2016" 2017"

kH
S0
6&

Evolu,on&of&ATLAS&Tier51+2&
CPU&Requirements&in&Run52&

Tier/1+2"CPU"

Tier/1+2"CPU"(flat"budget)"

0.0#

20.0#

40.0#

60.0#

80.0#

100.0#

120.0#

140.0#

160.0#

180.0#

200.0#

2012# 2013# 2014# 2015# 2016# 2017#
PB

#

Evolu)on#of#ATLAS#
Disk#Requirements#in#Run:2#

total#Disk#

total#Disk#(flat#budget)#

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

2012" 2013" 2014" 2015" 2016" 2017"

PB
#

Evolu)on#of#ATLAS#
Tape#Requirements#in#Run:2#

total"Tape"(flat"budget)"

total"Tape"

TAPE	

factor 3 till 2017DISK	

factor 2 till 2017

CPU	

factor 2.3 till 2017

Tier-0 CPU	

factor 2.5 till 2017

Borut Kersevan, Richard Mount et al.

Markus Elsing

Rolf Seuster Intelvisit Hillsboro January 2014 39

more complicated example

● for more
complex
example
Eigen still
performs
best

● based on
these and
similar tests
ATLAS decided to use Eigen3 in track
reconstruction – Geometry still uses CLHEP

 LS1 Tracking Developments in ATLAS

•focus was to work on technology and
strategy to improve CURRENT algorithms
➡ technology:

• simplify EDM design to be less OO (“hip” 10 years ago)
• Eigen migration - faster vector+matrix algebra
• vectorised trigonometric functions (VDT, intel math lib)
• F90 to C++ for the b-field (CPU hot spot)

➡ strategy:
• work on iterative track finding strategy
• modified track seeding to explore 4th Pixel layer
!

•as well...
➡ xAOD: a new analysis EDM
!

•hence, mix of SIMD and algorithm tuning
➡ further speedups probably requires “new” thinking

16

speedup	
CLHEP	 vs	

vectorised	 libs

Markus Elsing

Tuning the Seeding Strategy

•the track finding algorithm

17

A Salzburger / Artemis School on Calibration and performance of ATLAS detectors / ID reconstruction - part I / 16-09-2008

Track Reconstruction steps #classical$

! first (global) pattern recognition,

finding hits associated to one track

! track fit (estimation of track

parameters and errors): {x,C}

! more difficult with noise and hits from

secondary particles

! possibility of fake reconstruction

! in modern track reconstruction, this

classical picture does not work

anymore

Markus Elsing

Tuning the Seeding Strategy

•the track finding algorithm

17

A Salzburger / Artemis School on Calibration and performance of ATLAS detectors / ID reconstruction - part I / 16-09-2008

Track Reconstruction steps #classical$

! first (global) pattern recognition,

finding hits associated to one track

! track fit (estimation of track

parameters and errors): {x,C}

! more difficult with noise and hits from

secondary particles

! possibility of fake reconstruction

! in modern track reconstruction, this

classical picture does not work

anymore

➡ find seed from combination of 3 hits
• search using hough transform

Markus Elsing

Tuning the Seeding Strategy

•the track finding algorithm

17

A Salzburger / Artemis School on Calibration and performance of ATLAS detectors / ID reconstruction - part I / 16-09-2008

Track Reconstruction steps #classical$

! first (global) pattern recognition,

finding hits associated to one track

! track fit (estimation of track

parameters and errors): {x,C}

! more difficult with noise and hits from

secondary particles

! possibility of fake reconstruction

! in modern track reconstruction, this

classical picture does not work

anymore

A Salzburger / Artemis School on Calibration and performance of ATLAS detectors / ID reconstruction - part I / 16-09-2008

Track Reconstruction steps #classical$

! first (global) pattern recognition,

finding hits associated to one track

! track fit (estimation of track

parameters and errors): {x,C}

! more difficult with noise and hits from

secondary particles

! possibility of fake reconstruction

! in modern track reconstruction, this

classical picture does not work

anymore

➡ find seed from combination of 3 hits
• search using hough transform

➡ build road along the likely trajectory

Markus Elsing

Tuning the Seeding Strategy

•the track finding algorithm

17

A Salzburger / Artemis School on Calibration and performance of ATLAS detectors / ID reconstruction - part I / 16-09-2008

Track Reconstruction steps #classical$

! first (global) pattern recognition,

finding hits associated to one track

! track fit (estimation of track

parameters and errors): {x,C}

! more difficult with noise and hits from

secondary particles

! possibility of fake reconstruction

! in modern track reconstruction, this

classical picture does not work

anymore

A Salzburger / Artemis School on Calibration and performance of ATLAS detectors / ID reconstruction - part I / 16-09-2008

Track Reconstruction steps #classical$

! first (global) pattern recognition,

finding hits associated to one track

! track fit (estimation of track

parameters and errors): {x,C}

! more difficult with noise and hits from

secondary particles

! possibility of fake reconstruction

! in modern track reconstruction, this

classical picture does not work

anymore

A Salzburger / Artemis School on Calibration and performance of ATLAS detectors / ID reconstruction - part I / 16-09-2008

Track Reconstruction steps #classical$

! first (global) pattern recognition,

finding hits associated to one track

! track fit (estimation of track

parameters and errors): {x,C}

! more difficult with noise and hits from

secondary particles

! possibility of fake reconstruction

! in modern track reconstruction, this

classical picture does not work

anymore

➡ find seed from combination of 3 hits
• search using hough transform

➡ build road along the likely trajectory
➡ run combinatorial Kalman Filter for a seed

• full exploration of all possible candidates
• update trajectory with hits at each layer
• take material effects into account

Markus Elsing

Tuning the Seeding Strategy

•the track finding algorithm

17

A Salzburger / Artemis School on Calibration and performance of ATLAS detectors / ID reconstruction - part I / 16-09-2008

Track Reconstruction steps #classical$

! first (global) pattern recognition,

finding hits associated to one track

! track fit (estimation of track

parameters and errors): {x,C}

! more difficult with noise and hits from

secondary particles

! possibility of fake reconstruction

! in modern track reconstruction, this

classical picture does not work

anymore

A Salzburger / Artemis School on Calibration and performance of ATLAS detectors / ID reconstruction - part I / 16-09-2008

Track Reconstruction steps #classical$

! first (global) pattern recognition,

finding hits associated to one track

! track fit (estimation of track

parameters and errors): {x,C}

! more difficult with noise and hits from

secondary particles

! possibility of fake reconstruction

! in modern track reconstruction, this

classical picture does not work

anymore

A Salzburger / Artemis School on Calibration and performance of ATLAS detectors / ID reconstruction - part I / 16-09-2008

Track Reconstruction steps #classical$

! first (global) pattern recognition,

finding hits associated to one track

! track fit (estimation of track

parameters and errors): {x,C}

! more difficult with noise and hits from

secondary particles

! possibility of fake reconstruction

! in modern track reconstruction, this

classical picture does not work

anymore

➡ find seed from combination of 3 hits
• search using hough transform

➡ build road along the likely trajectory
➡ run combinatorial Kalman Filter for a seed

• full exploration of all possible candidates
• update trajectory with hits at each layer
• take material effects into account

• iterative seeding approach (Run-1)
➡ seeds are worked on in an ordered list

• start with 3 Pixels, 2 Pixel+Strip, 3 Strips
➡ bookkeeping layer:

• hits from good candidates removed
• build next seed ONLY from left over hits

➡ sequential seed finding to avoid combinatorial explosion
• unlike in the animation, tracks are found for one-after-the-other
• hence, the ordering matters !!! (especially sorting in pT bins)

Markus Elsing

•optimal seeding strategy depends on level of pileup
➡ efficiency of a seed to give a good track candidate:
!
!
!
!
• hence start with SSS at 40 pileup !

➡ further increase seed efficiency using 4th hit
!
!
!
!
• takes benefit from new Insertable B-Layer (IBL)
!

•final Run-2 seeding strategy
➡ start with SSS+1
➡ z(vertex) scan with found candidates

• restrict seeding to z(first vertex) until z(last vertex)
➡ continue with PPP+1, PPS+1, PSS+1

18

Tuning the Seeding Strategy

pileup PPP PPS PSS SSS
0 57% 26% 29% 66%
40 17% 6% 5% 35%

pileup PPP+1 PPS+1 PSS+1 SSS+1
0 79% 53% 52% 86%
40 39% 8% 16% 70%

Insertable B-Layer

A Salzburger / Artemis School on Calibration and performance of ATLAS detectors / ID reconstruction - part I / 16-09-2008

Track Reconstruction steps #classical$

! first (global) pattern recognition,

finding hits associated to one track

! track fit (estimation of track

parameters and errors): {x,C}

! more difficult with noise and hits from

secondary particles

! possibility of fake reconstruction

! in modern track reconstruction, this

classical picture does not work

anymore

4th hit seed
confirmation

seeding efficiency CPU
"Run-1" 94.0% 9.5 sec
"Run-2" 94.2% 4.7 sec

40 pileup @ 25 nsec

Igor Gavrilenko, CPU on local machine

Markus Elsing

Overall CPU Improvements
• tracking dominates in CPU vs pileup
➡ Run-1 behaviour shown at the beginning

• "combinatorial explosion" in hit combinations
!

• result of LS1 tracking upgrade project
➡ touched more than 1000 packages !
➡ technical and strategy improvements for 40 pileup
!

•on track for Tier-0 @ 1kHz:
➡ CPU time on 14 TeV, ttbar, μ=40:

• 17.2.7.9-32bit is the references (Tier-0)
• 19.0.2 fully optimised for DC-14 / 8 TeV
• setup for DC-14 / 13 TeV @ 40 pileup

will be in 19.1.0
!
➡ 250 HS06/event within reach

(CPU budget for 1 kHz @ Tier-0)

19

LHC@25	 ns

LHC@50	 ns

ATLAS
CPU vs pileup

Rocco Mandrysch

Release
17.2.7.9, 32bit 17.2.7.9, 64bit 18.9.50 19.0.2

C
PU

 ti
m

e
pe

r E
ve

nt
 [s

]

20
25
30
35
40
45
50
55
60
65
70

CPU time per Event vs. release
ATLAS Preliminary

= 14 TeVs
=40µ

25ns
tMC t

ATLAS Work in progress

Event loop Inner Detector

cut-level 13 in 19.1.0!
A.Morley et al.

1 sec ~ 10.72 HS06

ATLAS
RAW to ESD

resource request

no IBL

Markus Elsing

• tracking tuning for 13 TeV
➡ release 19.0.X uses ID cut-level 10

• includes Eigen, new seeding, ...
➡ ID cut-level 13 for release 19.1.X

• η-dependent TRT cuts
• tuned silicon tracking cuts
• back-tracking in EM RoIs

(output tailored for e/gamma)
➡ physics performance at μ=40 ?

• better purity for primary tracks
• e/gamma unchanged

➡ RecExCommon with ID cut-level 13
• <270 HS06 on 2012 high-μ run

20

Further CPU Improvements for 13 TeV

ATLAS	

speed of different 
reconstruction

algorithms

silicon pattern

25% of RecExCommon

stream ESD

back-tracking

ambiguity	

solution

TRT	

extension

Anthony Morley et al., 2012 high-μ run

1kHz budget

Markus Elsing 21

What is coming next ?

Markus Elsing 22

information with 500 < pT < 600 GeV, as a function of the distance DR to the centre of the jet.
This distance is calculated from the angular separation as DR =

p
Dh2

+Df 2. In the jet core, the
average number of shared measurements is reduced by a factor of three. The simulation accurately
describes the rate of shared measurements and the reduction obtained with the application of the
neural network.

<
S

h
a
re

d
 B

-l
a
ye

r
M

e
a
su

re
m

e
n
ts

>

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 ATLAS =7 TeVs

Data, NN Clustering

MC, NN Clustering

Data, CCA Clustering

MC, CCA Clustering

R(track, jet)∆

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

D
a
ta

/M
C

0.8

1

1.2 NN

CCA

Figure 10. The average number of shared measurements in the B-layer on tracks associated to anti–kT
jets with 500 < pT < 600 GeV for data and simulation, reconstructed with the CCA and NN clustering
algorithms. This is shown as a function of the distance of the track from the centre of the jet. The ratio of the
average number of shared measurements in data and simulation is shown for both the NN (solid line) and
the CCA (dashed line) clustering algorithms.

The NN clustering algorithm runs approximately six times slower than the CCA clustering
algorithm. However, in comparison to the full event reconstruction, the NN splitting, the re–
evaluation of the splitting during the track fitting and the increased combinations from additional
track candidates increase the per–event execution time by at most 5 percent. This was estimated
using the highest pile–up conditions experienced during normal physics data taking in 2012.

5. Conclusion

A new method using a set of neural networks to identify and split clusters created by multiple
charged particles in the ATLAS silicon pixel detector is presented. The algorithm results in a factor
of three reduction of the numbers of measurements assigned to multiple tracks, in particular in the
core of highly energetic jets.

An additional set of neural networks was trained to estimate cluster positions and uncertain-
ties. The superior, non–linear behaviour of the neural network results in a significant improvement
of the impact parameter resolution even for isolated tracks. Good agreement in neural network

– 16 –

Further optimise current Tracking

•algorithmic improvements being worked on
➡ use only curvilinear frame inside extrapolator

• saves local/global transformations
➡ cache track extrapolation to calorimeter

• extensively in combined reconstruction
➡ faster track fit based on reference Kalman filter

• linearise track fit w.r.t. reference trajectory (1 extrapolation)
!

•explore ideas for tracking in jets
➡ hit density in jet cores lead to cluster merging

• reason for Neural Network (NN) cluster splitting
➡ pattern usually finds track candidates

• large number of shared hits still remain
➡ task of ambiguity processing is to reject fakes

• tracks with many shared hits looks like a fake
➡ room for improvements ?

GPUs in
ATLAS
tracking

Sebastian
Fleischmann

Introduction

Kalman Filter
on GPU
GPU
comparison
MTF

GPU in
Athena

Summary

Backup

p. 3

Introduction
Kalman Filter in track reconstruction

I Default Kalman filter implementation in
ATLAS: Extended KF

I Measurement updates alternate with
extrapolations

layer k+1

layer k

layer k-1

I Alternative: KF with reference trajectory
I Reference extrapolated through whole

volume
I Fitter runs only on differences between

measurements and reference trajectory
I Initial parameters for reference

trajectory must not be too far away
from final fit (esp. passed material)

I More stable in case of outliers
I Allows for separating extrapolation from

actual fit (and measurement
assignments): Ideal for offloading to
accelerator devices

S.Fleischmann et al.

!

!

• OUR GOAL: reduce the number of shared hits per track before entering the ambiguity solving stage →
Improve Double Track Resolution (beware of fakes though!)!

• An algorithm has already been designed for this: NN cluster splitting:!

• Runs before pattern reco!

• Splits clusters based on probability of a cluster being created by 1 or >1 particles!

• probability of 2 & 3 particle hypothesis, location, error

Track Reconstruction - Early Steps

4

!

!

• OUR GOAL: reduce the number of shared hits per track before entering the ambiguity solving stage →
Improve Double Track Resolution (beware of fakes though!)!

• An algorithm has already been designed for this: NN cluster splitting:!

• Runs before pattern reco!

• Splits clusters based on probability of a cluster being created by 1 or >1 particles!

• probability of 2 & 3 particle hypothesis, location, error

Track Reconstruction - Early Steps

4

overlapping
tracks

cluster merging

reference
kalman filter

shared hits in jet cores
with and without NN

Markus Elsing

Tracking in dense Environments (TIDE)

• try to improve in high-pT jet RoI
➡ TIDE working group

• more elaborate ambiguity processing to
recover tracks

• especially relevant for high-pT
➡ aim to improve as well tau reconstruction

• tracking inefficiencies limit for
identification and particle flow (3 prongs)

➡ truth tracking shows there is potential
!

•several strategies
➡ improve selection and NN cluster splitting

• aim is to keep more of the tracks with
currently many merged/shared clusters

➡ alternative algorithm: Multi Track Fitter (MTF)
• robust (adaptive) version of Kalman filter
• variant to estimate N tracks simultaneously

can be use to resolve ambiguities (?)

23

July 10, 2013 – 16 : 27 DRAFT 10

7 Truth Tracking214

In order to study tracking performance, a “truth tracking” tool has been developed. The truth tracking215

concept represents the ideal pattern recognition in the presence of material interactions. To do so, hits216

created by one single particle in the simulation are grouped together to form track candidates. These are -217

after passing the main requirements also applied in the pattern recognition - further fitted by the standard218

track fitter. Thus, inefficiencies and resolution effects due to material interactions are properly modelled219

by the truth tracking. Since multiple links from crated hits to particles are allowed in the ATLAS truth220

strategies, even finding partly or overlapping tracks in dense environments is possible.221

Comparison with Monte Carlo samples reconstructed with truth tracking identifies the cases where222

the usual tracking algorithm fails. For example, tracks should be preferentially lost in the core of high223

pT jets, as studied in this note.224

Figure 11 shows that both number of tracks and
∑

p track
T only differ in the core of the jet (∆(Rtrk,Jet)<∼225

0.05). This dependence once again points to merged tracks as the most likely to be lost in reconstruction.226

Figure 12 shows the mean number of pixel hits found by the truth tracking increases by ∼ 3%. Figure 12227

shows that the number of shared hits increased by ∼ 1%. Further plots are shown in E.228

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

〉
tr

a
ck

s
N〈

0.5

1

1.5

2

2.5

ATLAS Internal
<1.2jetη R=0.4, EM+JES jets, 0<tAnti-k

histo:nominal, points:truth tracking

 = 8 TeVs,
-1

 L dt = 20.3 fb∫
< 160 GeV

jet

T
110 GeV < p

< 400 GeV
jet

T
310 GeV < p

< 1200 GeV
jet

T
1000 GeV < p

track,jetR∆
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

T
ru

th
/N

o
m

in
a
l

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

〉
 (

G
e

V
)

tr
a
ck

T
 p

Σ〈

20

40

60

80

100

120

140

160

ATLAS Internal
<1.2jetη R=0.4, EM+JES jets, 0<tAnti-k

histo:nominal, points:truth tracking

 = 8 TeVs,
-1

 L dt = 20.3 fb∫
< 160 GeV

jet

T
110 GeV < p

< 400 GeV
jet

T
310 GeV < p

< 1200 GeV
jet

T
1000 GeV < p

track,jetR∆
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

T
ru

th
/N

o
m

in
a
l

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

Figure 11: (a) Mean number of tracks per bin and (b) Mean value of
∑

p track
T per bin as a function of

∆(Rtrk,Jet), the distance between the track and the jet, for bins in p
jet
T for nominal and truth tracking.

Jets are reconstructed with the anti-kt(R = 0.4) algorithm and calibrated using the EM+JES calibration

scheme.

8 Conclusions229

Comparisons of the 2012 data and the simulation for tracks inside jets indicate the the simulation repro-230

duces the distributions of hits, shared hits and holes fairly well. Samples generated with Pythia8 and231

Herwig++ equally match data. Monte Carlo based studies indicate that the fake rate remains low for all232

p
jet
T

when we neglect pile-up. Above p
jet
T
∼ 500 GeV, stiff tracks near the core of the jet are preferen-233

tially lost, leading to an overall loss of about 20% in
∑

p track
T by 1 TeV, again neglecting pile-up. Inner234

detector hit quantities show little pile-up sensitivity, except for a ∼ 8% increase in TRT hits. The recent235

pixel cluster splitting neural network only affects the core of high pT jets, finding slightly more number236

of tracks. Studies with truth tracking samples confirm that merged tracks in the core of high pT jets are237

prefentially lost.238

19Katharine Leney

Tracking in Jets
• JZ6W samples produced with truth-seeded tracking, and nominal reconstruction
• Full set of JZNW slices on their way (release problems, but hope to resolve quickly).

• Significant increase in # tracks and ΣpT
tracks when using truth-seeded tracking.

29th October 2013

Tracking in Dense
Environments

Jackie Brosamer, Gabriel Facini, Katharine Leney,
Anthony Morley, Frank Paige, Andi Salzburger, Marjorie Shapiro

29th October 2013

07)

0� 1HXPDQQ

,QWURGXFWLRQ

0XOWL7UDFN)LWWHU

7UDFNLQJ
3HUIRUPDQFH

0XOWL 7UDFN)LWWHU
LPSDFW RQ MHW
WDJJLQJ

6XPPDU\

%DFNXS
2SWLPLVDWLRQ
SRVVLELOLWLHV� WLPLQJ
0DWFKHG E WUDFNV

7UDFNLQJ HIILFLHQF\ LQ MHWV YV ∆5�MHW� WUDFN�

�

������

0 0.01 0.02 0.03 0.04 0.05 0.06

ef
fic

ie
nc

y

0.770
0.775
0.780
0.785
0.790
0.795
0.800
0.805
0.810
0.815
0.820

BTagQuality

deltaR(jet, track)
0 0.01 0.02 0.03 0.04 0.05 0.06

, e
ffi

ci
en

cy
G

XF
M

TF

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

GXF

MTF

)LJXUH � 7UDFN UHFRQVWUXFWLRQ HIILFLHQF\ YV ∆5�MHW� WUDFN�� E�WDJJLQJ
TXDOLW\

)RU VPDOO ∆5
WKH 07)
JDLQV
FRPSDUHG WR
*;)

�� � ��

M
.N

eu
m

an
n,

 S
.F

le
is

ch
m

an
n

truth vs tracking

classical ambiguity vs MTF

Markus Elsing

Processor Technology

•Moore's law is still alive
➡ number of transistors doubles every 2 years
➡ lots of transistors looking for something to do:

• vector registers
• out of order execution
• multiple cores
• hyper threading

➡ increase theoretical performance of processors
• hard to achieve this performance with HEP applications !
!

• taking benefit from vector registers (SIMD)
➡ Eigen and libimf used since release 19

• internally vectorises computations, ~20% speedup seen
• tracking code not yet optimised to exploit SIMD features

➡ studies on hand-vectorising hot-spots like Runge-Kutta
• needs experts to write SSE and AVX code

➡ auto-vectorising using advanced compiler options
• studies are ongoing, gains seen so far not too impressive

24

Processor Landscape
• Moore’s law - alive and well: 2

years → 2 x transistors!

• There is now a lot of transistors
looking for something do do:!

• Vector registers!

• Out of order execution!

• Multiple Cores!

• Hyperthreading!

• All of these techniques increase
the theoretical performance of a
processor!

• But hard to achieve this
performance (or close to it) with
HEP applications

4

1980 1990 2000 2010

1e
+0

0
1e

+0
2

1e
+0

4
1e

+0
6

Processor scaling trends

dates

R
el

at
ive

 s
ca

lin
g

●

●

●

●●

●

●●
●●

●
●●

●●

●●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●●●●●●●
●●●●

●

●●
●

●●
●
●
●
●●●●●●●●●●●●

●●●●
●●●

●
●

●●●●●●●
●
●●

●
●

●

●●●●●●●●●●
●

●
●

●
●
●●●
●●
● ●

●●●
●

●
●

●●

●

●

●

● ●

●

●

●●

●

●
●●●●●●●
●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●

●●●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●● ●●●

●●●●●●●
●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●

●
●

●●
●●●●●●●●
●●

●
●●●●●●●●●●●●●●●●●●
●●●●●●●
● ●●●●

●●●●●●

●●●●

●●
●●●

●

●

●●
●

●●

●●

●

●●

●
●●

●

●
●●

●●●●●●

●●●●●
●

●●●●
●●●●●●

●●● ●
●
●● ●●●●●●●●●

●●●●●

●

●

●●
●

●

●●●

●●●●●●●●

●
●
●●
●●●●●●

●●

●

●

●

●

●

●

●●●●●
●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●
●●●●●●
●●

●●
●●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

● ● ●

●

●

●

●●●

●

●

●●●●

●
●

●●●●●
●●●●
●●●
●●●●●●●●●●●● ●

●●●●●

●●●●●
●●

●●
●●●●●●●●●●

●●●●

●●

●

●●●

●●

●

●
●●●● ●●●●

●● ●●●●●

●●●●●●●●●●●●●●●●●●● ●●● ●●●
●●
●●●

●
● ●● ●●●●●●●

●●●
●●

●●●●●

●●

●●●●●●●

●

●●

●●●●
●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●
●

●●●
●●

●

●
●

●●●

●●
● ●● ●

●

●●●● ●
●● ●

●●●●

●
●●

●●●●●●●

●●●●●● ●
●●●

●
●●●

●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●
●●

●

● ●●●●●●●●

●

●
●
●●

●●●

●

●●●●
●●●●●●●●●●●

●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●
●

●●●●●●●●●●●●

●●●●●●●●●●
●●

●●●●●●●●●●
●●●
●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●●●●
●●●●●●

●●●●●●●●●● ●●

●
●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●
●●●

●
●
●●
●●●

●●●●
●●●

●●●
● ●●

●
●●●
●●●

●●●●●●●●

●
●
●
●

●

●

●
●

●●
●
● ●●●●●●●● ●● ●

●●●●●●
●●●●●●●●

● ●●●●● ●●●●●●●●●●●●●●●●●●●
●●●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

● ●●

●●●
● ●●●

●
●●

●●

●

●●
●●

●●

●●●●●
●●●●●●●●

●●●●●●●

●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●

●●●●●●●●
●
●●●●●●

●●

●●●●●●
●

●
●●

●●●●●●●●
●●

●

●●

● ●

●

●

●

●

●

●

●
●●

●●

●

●

●
●
●●

●●

●

●

●●●●

●●

●●●●

●

●●●
●●●●

●●

●

●●

●●

●●●●●●●●●

●●●●●●●●

● ●

●

●

●

●

●●
●

●
● ●● ●

●●

●●
●●

●
●

●

●

●

●
●
●●

●
●●●●

●●●●

●●

●●●●●●●●●●●●

●●●●
●●●

●●●●●●● ●●

●●●●●●●●●● ●
●●●●●
●●●

●

●●●●

●

●●

●●

●
●
●●●●●●●

●●●●
● ●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●

●●
●

●

●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●● ●●●

●●

●

●●

●

●

●●
●●
●●●

●●●●●●●●●●●●●●
●●●●●●●●
●
●●●●●●

●
●●

●●●●●●
●●
●●

●

●●●●●●●●
●●●●
●●●●
●●●●●●●●

●
● ●●●●

●●
●●●●

●●●
●

●●
●●●

●

●
●
●●
●●

●●

●●

●

●●

●
●
●

●
●
●●●●
●●●●●
●

●●●●
●
●●●●●

●●●
●●
●

●●●
●●●●●●

●●●
●
●

●

●
●●

●

●●●

●●●●●●●●

●●
●
●
●●●●●

●●●●●

●
●
●●

●●

●●●●●●●●●●●●●●●●

●

●
●●
●
●

●●●●●
●●●●●
●
●
●●

●
●

●
●
●
●

●

●

●

●●

●●●
●

●

●●●●●
●●●●
●●●
●●●●●●●●●●●●

●
●●●●● ●●●●●

●●
●
●
●
●
●●
●●●●
● ●

●
●●

●

●●●

●
●
●●●●

●
●●●
●●

●●
●●●

●

●●●●●●●●●●●●●●●●●● ●●●
●●●

●●
●
●●

●●
●

●

●●●
●●

●●

●●

●

●●

●
●
●
●● ●●
●
●

●●●

●●

●●

●●●● ●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●

●●●

●

●●●

●
●● ●

●

●

●●●
●

●●

●●
●

●

●

●●
●
●●●

●●●●
●
●

●
●●

●●●

●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●
●●●●
●●●●●●●●

●●

●

●●

●●

●

●●

●●
●●●

●

●●
●●
●

●

●●●●●●●●

●
●
●

●
●●● ●●●●●●●●●●●
●●●●●

●●●●●●●●●
● ●●●●

●●●

●
●
●●
●●●●●

●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●

●●●●●●
●●
●●●●

●
●●●●
●●●●●
●●

●●●●●●
●●●●●●

●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●
●●●●●●●●●●●●●●●●
●●
●●●●●●●●
●●●●●●●
●●
●●

●
●●
●
●
●
●●
●
●
●
●
●●●

●●
●●
●●●●●
●

●●

●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●
●●●

●●●●

●●
●●●

●
●●●
●
●●

●

●●
●
● ●●●●●●●
●

●
●

●●
●●●●
●●●●●
●●
●

●●●●
● ●●●●
●
●●●●●

●●●
●●
●
●●●

●
●
●
●
● ●●● ●●

●
●

●
●
●

●
●
●●●
●●

●●●

●
●●●●●●●●●

●

●
●
●

●

●

●

●
●
●●

●

●

●●●
●●
●

●

●

●●

●●
●

●
●
●

●●
●
●
●●●●
●
●●
●
●
●
●
●●●●

●

●●●●
●●
●
●
●
●
●
●
●

●●●●

●●●
●

●● ●

●

●
●
●●
●●

●
●
●●●●●

●
●●
●
●●
●

●●

●●●●●●

●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●

●
●

●
●●
●
●
●

●

●
●

●

●
●

●

●
●
●●

●

●

●
●

●●●
●●●

●
●

●

●

●●●●●●

●

●●
●

●
●
●

●● ●

●

●●

●●

●

●●●●
●
●

●●
●●

●●●

●●●●

●●

●

●●

●●

●●●●●●●
●●

●
●
●
●
●●●●

●

●● ●

●
●

●●
● ●●

●●

●
●

●

●

●
●●
●●

●
●●●●

●●●●

●●

●●●●●●●●●●●●

●●●●
●●● ●●●●●●● ●●

●●●●●●●●●● ●

●●●●●

●

●

●
●●●

●
●

●

●●

●●

●
●
●●●●●●●

●●●●
●

●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●

●●
●

●

●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●
●●
●●●●●●

●●●●

●
●●●●●●●●
●●●●
●●●●
●

●●●●

●●
●●●●

●

●●
●●●

●

●●

●●

●

●●●●●

●●●
●●●
●●●●●●

●●●
●
●

●●●

●●●●●●●● ●●
●
●
●●●●●

●●●●●

●
●
●●

●●

●●●●●●●●●●●●●●●●

●

●

●●

●●●
●

●

●●●●●
●●●●
●●●
●●●●●●●●●●●●

●
●●●●● ●●●●●

●●
●
●
●
●
●●
●●●●
● ●

●
●●

●

●●●

●
●
●●●●

●
●●●
●●

●●
●●●

●

●●●●●●●●●●●●●●●●●●

●●●
●●●

●●
●
●●

●●
●

●

●●●
●●

●●

●●

●

●●

●
●
●
●●

●●

●
●

●●●

●●

●●

●●●● ●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●

●

●●

●

●

●●●

●
●● ●

●

●

●●●
●

●●

●●
●

●

●

●●
●
●●●

●●●●
●
●

●
●●

●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●
●●●●
●●●●●●●● ●●

●

●●

●●

●
●●

●●
●●●

●

●●
●●
●

●

●●●●●●●●
●
●
●

●
●●● ●●●●●●●●●●●
●●●●●

●●●●●●●●●
●

●●●●
●●●

●
●
●●
●●●●●

●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●

●
●●●●
●●●●●
●●

●●●●●●
●●●●●●

●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●
●●●●●●●●●●●●●●●●
●●
●●●●●●●●
●●●●
●●●
●●

●
●●
●
●
●

●●
●
●
●
●
●●●

●●
●●
●●●●●
●

●●

●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●
●●●

●●●●

●●

●●●

●
●●●
●
●●

●

●●
●
● ●●●●●●●
●

●
●

●●
●●●●
●●●●●
●●
●

●●●●
● ●●●●
●
●●●●●

●●●
●●
●
●●●

●
●
●
●
● ●●● ●●

●
●

●
●
●

●
●
●●●
●●

●●●

●
●●●●●●●●●

●

●
●
●

●

●

●

●
●
●●

●

●

●●●
●●
●

●

●

●●

●●
●

●
●
●

●●
●
●
●●●●
●
●●
●
●
●
●
●●●●

●

●●●●
●●
●
●
●
●
●
●
●

●●●●

●●● ●

●● ●

●

●
●●
●
●
●

●

●
●

●

●
●

●

●
●
●●

●

●
●

●
●

●●

●

●

●

●

Transistors
Clock
Power
Performance
Performance/W

Moore’s law

Clock speed
(free lunch)

Moore's law

STEP 3
PROFIT!

• Tested on a Sandy Bridge-EP CPU

• SSE version: 2.4x faster

• AVX version: 1.5x faster

‣ slower than SSE because of
costly cross lane permutations

‣ not as mature as SSE

‣ AVX2 (Haswell) will change
that

0

1

2

3

BASE SSE AVX

9

STEP 2
VECTORIZE

for(int i = 0; i < 42; i+=7){
 __m256d dR = _mm256_loadu_pd(&P[i]);

 __m256d dA = _mm256_loadu_pd(&P[i + 3]);
 __m256d dA_201 = CROSS_SHUFFLE_201(dA);
 __m256d dA_120 = CROSS_SHUFFLE_120(dA);

 __m256d d0 = _mm256_sub_pd(_mm256_mul_pd(H0_201, dA_120), _mm256_mul_pd(H0_120, dA_201));

 if(i==35){
 d0 = _mm256_add_pd(d0, V0_012);
 }

 __m256d d2 = _mm256_add_pd(d0, dA);
 __m256d d2_201 = CROSS_SHUFFLE_201(d2);
 __m256d d2_120 = CROSS_SHUFFLE_120(d2);

 __m256d d3 = _mm256_sub_pd(_mm256_add_pd(dA, _mm256_mul_pd(d2_120, H1_201)), _mm256_mul_pd(d2_201, H1_120));
 __m256d d3_201 = CROSS_SHUFFLE_201(d3);
 __m256d d3_120 = CROSS_SHUFFLE_120(d3);

 if(i==35){
 d3 = _mm256_add_pd(d3, _mm256_sub_pd(V3_012, A_012));
 }

 __m256d d4 = _mm256_sub_pd(_mm256_add_pd(dA, _mm256_mul_pd(d3_120, H1_201)), _mm256_mul_pd(d3_201, H1_120));

 if(i==35){
 d4 = _mm256_add_pd(d4, _mm256_sub_pd(V4_012, A_012));
 }

 __m256d d5 = _mm256_sub_pd(_mm256_add_pd(d4, d4), dA);
 __m256d d5_201 = CROSS_SHUFFLE_201(d5);
 __m256d d5_120 = CROSS_SHUFFLE_120(d5);

 __m256d d6 = _mm256_sub_pd(_mm256_mul_pd(d5_120, H2_201), _mm256_mul_pd(d5_201, H2_120));

 if(i==35){
 d6 = _mm256_add_pd(d6, V6_012);
 }

 _mm256_storeu_pd(&P[i], _mm256_add_pd(dR, _mm256_mul_pd(_mm256_add_pd(d2, _mm256_add_pd(d3, d4)), S3_012)));
 _mm256_storeu_pd(&P[i + 3], _mm256_mul_pd(C_012, _mm256_add_pd(d0, _mm256_add_pd(d3, _mm256_add_pd(d3, _mm256_add_pd(d5, d6))))));
}

8

factor	 >	 2

Runge-‐Kutta	
vectorised	 code

Markus Elsing

•Level-1 cache misses and data locality
➡ ATLAS reconstruction has significant (2.2%) rate read/write cache misses

• e.g., Runge-Kutta integration shows up high in cachegrind summary
➡ studies show that this is very expensive

• simple tests of sigmoid functions (for neural networks) with contiguous
and random memory access:
!
!

•xAOD and data locality
➡ separates API and data itself

• interface class "electron"
• data in "electronAuxStore"

➡ AuxStore looks like "RootTuple"
• data organised in a structure of vector<simple types>

➡ idea is to enforce contiguous memory usage behind the scene
• as well, data pools will reduce malloc overhead
• requires to migrate remaining reconstruction EDM to xAOD format

(clusters, drift circles, space points, tracks)
• will as well help data reformatting for massively parallel processing (GPUs)

25

Data Locality
Memory Locality and Latency
• Memory locality is extremely important!

• Vector loads and stores are vastly more efficient and cache misses cost
hundreds of cycles!

• Put like things together!

• Structures of arrays not arrays of structures!

• Simple tests of sigmoid functions (for neural networks) with contiguous
and random memory access

26

Function Contiguous Random Ratio

Logistical Fn 2400ms 9700ms ÷4

Fast sqrt Fn 560ms 7900ms ÷14

Ratio x4.3 x1.2

Improve because
of SIMD

Losses because of
lack of localityG.Stewart et al.

Markus Elsing 26

Tracking on
Many Core Processors

Markus Elsing

Multi-Processing and Multi-Threading

•many core processors, including GPGPUs
➡ e.g. NVidia Tesla, Intel Phi

• we see them in HPC applications
➡ not so clear if and when they replace our GRID nodes
!

• lots of cores with little memory
➡ need to parallelise application

• same for ARM or ATOM processors with small memory
➡ event-wise parallel processing (AthenaMP)

• late process forking allows to share ~50% of memory
➡ algorithm level multi-threading (Gaudi-Hive prototype)

• concurrent processing supported by framework
• tracking dominates, does not really "fit" Hive model

(~85% of reconstruction are sequential algorithms)
➡ ultimately, need multi-threading within algorithmic code

27

many integrated
cores

• Intel’s MIC (aka Intel Xeon Phi) is in its first generation

• 61 x86_64 cores @ ~1GHz

• 16GB of memory

• Coprocessor architecture

• Cache coherent, but no out of order execution

• 512 bit registers (8 double or 16 float)

• Memory per core: 256MB

• Maximum performance needs 4 threads per core: 64MB
per thread

7

Intel Xenon Phi

NVidia Tesla

Rolf Seuster Intelvisit Hillsboro January 2014 41

Other areas which need
improvement, longer term

● implementing threading into our code would
also help, but

– requires detailed programming knowledge

– can be error prone and hard to debug

– will take longer to implement (GaudiHive)

Rolf Seuster Intelvisit Hillsboro January 2014 41

Other areas which need
improvement, longer term

● implementing threading into our code would
also help, but

– requires detailed programming knowledge

– can be error prone and hard to debug

– will take longer to implement (GaudiHive)

Rolf Seuster Intelvisit Hillsboro January 2014 41

Other areas which need
improvement, longer term

● implementing threading into our code would
also help, but

– requires detailed programming knowledge

– can be error prone and hard to debug

– will take longer to implement (GaudiHive)

Markus Elsing

Massively parallel Tracking

•ATLAS/CMS tracking strategy is for early rejection
➡ iterative: avoid combinatorial overhead as much as possible !

• early rejection requires strategic candidate processing and hit removal
➡ not a heavily parallel approach, it is a SEQUENTIAL approach !

• good scaling with pileup (factor 6-8 for 4 times pileup) - still catastrophic
!

• implications for making it massively parallel ?
➡ Armdahl’s law at work:
!
!
• current strategy: small parallel part Par, while it is heavy on sequential Seq

➡ hence: if we want to gain by a large N threads, we need to reduce Seq
• compromise on early rejection, which means more combinatorial overhead
• as a result, we will spend more CPU if we go parallel

➡ makes sense if we use additional processing power that otherwise would
not be usable (many core processors) or if latency is the main issue (trigger)
• need to invest into R&D for novel parallel tracking strategies that reduce

combinatorial overhead

28

Time|| = Para / N + Seq

Markus Elsing

Tracking on GPUs

•active field of development across experiments
➡ see series of GSI Tracking Workshops (link to workshop)

• collaboration between ALICE and FAIR on GPU tracking
• ALICE already using GPU aided tracking in their trigger (PbPb)

➡ within ATLAS several prototyping activities
• Level-2 GPU tracking (RAL)
• offline tracking studies (Mainz, Wuppertal, ...)

➡ as well, studies on GPU integration
• client/servicer architecture APE (RAL)
• using dOpenCL communication layer (Münster, Wuppertal)
!

•within ATLAS Level-2 GPU tracking is most advanced
➡ 2 years for complete re-write of Level-2 code for GPUs (D.Emeliyanov)

• compact representations of geometry, b-field, cabling suitable for GPU
• lightweight data structures for the on-GPU data model with conversion

from/to Athena EDM
• complete code re-factoring to get rid of “spaghetti” design, multiple

loops, recursive calls

29

https://indico.gsi.de/conferenceDisplay.py?confId=1469

Markus Elsing

Level-2 GPU Tracking Prototype

•complete tracking chain
➡ from raw to tracks
➡ similar to SiTrack tracking chain

30

GPU-based data preparation

� Massively parallel bytestream decoding:
y Parsing datawords into collections of hits
y Identification of collection header, trailer, actual

hits, and hit information decoding are done in
parallel by GPU threads working on global output
Structure-of-Arrays (SoA)

06/06/2014 ATLAS Software & Computing Week @ CERN 4/14

word word word word word word word word word

head. hit hit hit trailer head. hit hit trailer

thread 0

thread 1

thread 2

uint32_t

hit struct

input 1D array

output SoA

Markus Elsing

Level-2 GPU Tracking Prototype

•complete tracking chain
➡ from raw to tracks
➡ similar to SiTrack tracking chain

30

GPU-based data preparation

� Massively parallel bytestream decoding:
y Parsing datawords into collections of hits
y Identification of collection header, trailer, actual

hits, and hit information decoding are done in
parallel by GPU threads working on global output
Structure-of-Arrays (SoA)

06/06/2014 ATLAS Software & Computing Week @ CERN 4/14

word word word word word word word word word

head. hit hit hit trailer head. hit hit trailer

thread 0

thread 1

thread 2

uint32_t

hit struct

input 1D array

output SoA

Pixel clusterization on GPU
� Two new algorithms for parallel execution:
y for algorithm B fast AND operation for symmetrical

Boolean matrices was developed

06/06/2014 ATLAS Software & Computing Week @ CERN 5/14

A. The parallel iterative algorithm :

 The algorithm uses a cellular automaton (CA) to
iteratively combine hits into groups. All hits are
assigned initial tags (proposed cluster Ids) and
then retagged by adjacent hits with a higher tag
index until the CA stops evolving.

B. The algorithm with cluster size control:

D. Emeliyanov J. Howard

Given cluster size limit L the algorithm calculates
the L-th power of the hit adjacency matrix A
Element gives the number of walks of
length L from hit i to hit j
Basically, if the two hits belongs to
the same cluster and the cluster diameter does
not exceed L
Matrix multiplication can be done very efficiently
on GPUs. In addition, this algorithm benefits
from all the matrix products being Boolean – bit-
wise AND is used instead of actual multiplication

),(jiAL

0),(zjiAL

Markus Elsing

Level-2 GPU Tracking Prototype

•complete tracking chain
➡ from raw to tracks
➡ similar to SiTrack tracking chain

30

GPU-based data preparation

� Massively parallel bytestream decoding:
y Parsing datawords into collections of hits
y Identification of collection header, trailer, actual

hits, and hit information decoding are done in
parallel by GPU threads working on global output
Structure-of-Arrays (SoA)

06/06/2014 ATLAS Software & Computing Week @ CERN 4/14

word word word word word word word word word

head. hit hit hit trailer head. hit hit trailer

thread 0

thread 1

thread 2

uint32_t

hit struct

input 1D array

output SoA

Pixel clusterization on GPU
� Two new algorithms for parallel execution:
y for algorithm B fast AND operation for symmetrical

Boolean matrices was developed

06/06/2014 ATLAS Software & Computing Week @ CERN 5/14

A. The parallel iterative algorithm :

 The algorithm uses a cellular automaton (CA) to
iteratively combine hits into groups. All hits are
assigned initial tags (proposed cluster Ids) and
then retagged by adjacent hits with a higher tag
index until the CA stops evolving.

B. The algorithm with cluster size control:

D. Emeliyanov J. Howard

Given cluster size limit L the algorithm calculates
the L-th power of the hit adjacency matrix A
Element gives the number of walks of
length L from hit i to hit j
Basically, if the two hits belongs to
the same cluster and the cluster diameter does
not exceed L
Matrix multiplication can be done very efficiently
on GPUs. In addition, this algorithm benefits
from all the matrix products being Boolean – bit-
wise AND is used instead of actual multiplication

),(jiAL

0),(zjiAL

GPU-based track finding
� Algorithmic workflow

inspired by SiTrack:

06/06/2014 ATLAS Software & Computing Week @ CERN 6/14

til
e_

i

tile_j

Layer 1

Layer 2

16x16
thread

block

thread (i,j) space-
points

seeds

local buffer

global seed array

til
e_

i

Loop over layers

3x32
thread

block

thread (i,j)

space-
points

seeds

local buffer

1. GPU-based seed formation

2. Seed extension and triplet merging

local buffer

global seed array tile_j

triplets

global triplet array tile_j tile_j+1

1D thread block

global array of track candidates

Markus Elsing

Level-2 GPU Tracking Prototype
!
!
!
!
!
!
!
!
!
!
!
!
!

➡ significant speedup compared to running same chain on CPU
➡ CUDA vs openCL, development and maintenance cost ?

31

Summary of the results

� GPU-based code vs. 32-bit Athena (17.1.0)

06/06/2014 ATLAS Software & Computing Week @ CERN 7/14

RoI type Data prep. speed-up
Tau 0.6x0.6 9

B-phys, 1.5x1.5 12

FullScan 26

x1
2

Track finding

GPU sharing test

� x12 speed-up was obtained for the full
LVL2 ID tracking chain on large RoIs

� “Client-server” architecture for GPU
sharing seems to be feasible

sequential	

part on CPU

Markus Elsing 32

Tracking and
Detector Upgrades

Markus Elsing

Hardware Solutions to Tracking ?

•using hardware tracking (FTK) ?
➡ once installed, FTK will process every Level-1 trigger on data

• will replace parts of Level-2 tracking
• may be used to seed Event Filter tracking (Level-2 seeding being studied)
• but: physics performance not matching offline

➡ FTK simulation is SLOW on CPUs, factors >> 10 compared to offline
• will not be able to process every MC event with FTK simulation
• but: we could use time between fills to process MC in FTK at Point-1
• or go crazy: build a 2nd FTK for processing MC

➡ I would conclude: FTK not a drop-in solution to offline tracking problem
!

•optimising hardware for tracking ?
➡ definitely !

• ITK layout was optimised having robustness and tracking in mind
• we could probably still do better, technology (CMOS) for all Pixels/Strixels

➡ but: CMS is backing off from their L1 tracking dominated design
• too restrictive in terms of physics performance, need to keep balance !

33

Markus Elsing

The Fast Tracker (FTK)

•current ATLAS trigger chain
➡ Level-1: hardware based (~50 kHz)
➡ Level-2: software based with RoI access to

full granularity data (~5 kHz)
➡ Event Filter: software trigger (~500 Hz)
!

•FTK: hardware tracking (co-processor)
➡ descendent of the CDF Silicon Vertex Trigger (SVT)
➡ inputs from Pixel and SCT

• data in parallel to normal read-out
➡ two step reconstruction

• associative memories for parallel pattern finding
• linearised track "fit" implemented in FPGAs

➡ provides track information to Level-2 in ~ 25 μs
• slice installed for 2015, full coverage in 2016

34

step 1

step 2

 tracking enters here

Markus Elsing

FTK Performance

•effects and expected performance
➡ track efficiency is 90-95% w.r.t. offline (loose match)

• reduced detector granularity for track finding
• size of candidate pattern banks is limited (20GB)
• fast "hit worrier" vs offline ambiguity processing

➡ track resolution (tails) limited by FPGA technique
• track fit is linear estimator, not a real χ2 track fit
• not full resolution, no explicit material effects
!

•FTK still very useful for trigger
➡ full scan at entry to Level-2

• pileup corrections for jet and missing ET
• particle flow like tau tagging (RoI as well ok ?)
• fast track confirmation of Level-1 triggers

➡ can recover offline like track resolutions
• refit FTK tracks with Level-2 track fit
• b-jet trigger, taus...

35

TP
0 1 2 3 4 5 6 7 8 9 10

FT
K

Ef
fic

ie
nc

y

0.7

0.75

0.8

0.85

0.9

0.95

1
ATLASSimulation, no IBL

> = 46µ<
> = 69µ<

FTK efficiency w.r.t. offline

impact parameter FTK+refit vs offline

impact parameter FTK vs offline

Markus Elsing

•CMS Inner Tracker
➡ Strip tracker replacement

• several layouts under consideration
• short strips in Rϕ, macro-pixels in z

➡ Level-1 track trigger with high pT stubs
• correlate 2 sensors, threshold ~ 2 GeV
• pattern in associative memory, FPGA fit

➡ Pixels: extend η coverage to 4 (!)
!
!

•ATLAS Inner Tracker
➡ baseline: all silicon tracker, 14 hits

• robust tracking @140 PU for η<2.5
➡ Strip tracker with short strips + stereo
➡ Pixels cover η<2.7 (Muons)

• inner Pixels replaceable, reduced pitch
• alternative layouts (“Alpine”, conical)

➡ Level-1 track trigger seeded by Level-0
• FTK inspired,

reduced latency

27
Mersi ACES 2014–

CMS Tracker Upgrade
layout and requirements

Layout
Current baseline

10 trigger hits → η=2.5

● ×4 granularity in strip sensors
● +3 layers of MacroPixel sensors

– Unambiguous 3D coordinates
helps track Xnding in high pile-up

● Up to 10 points available for track-trigger up to η=2.5

– Comparable to current tracker's coverage, but at L1

!"##$$$$$$$$$$$$%"&'$

())$µ*$$$$$$$$$$$$$$$

$$$$$$$$$$$$$+))$µ*$

!"##$$$$$$$$$$$$%"&'$

+$**$

$$$$$$$$+))$µ*$x"

y"
z"

“stub”'

ATLAS and CMS Inner Tracker Upgrades

36

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

ID geometry from ITK.geom 20:22:34 07/06/12

z (m)

r (
m

)

eta = 0.0 eta = 1.0

eta = 2.0

eta = 2.7

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

ID geometry from ITK.geom 20:22:34 07/06/12

z (m)

r (
m

)

eta = 0.0 eta = 1.0

eta = 2.0

eta = 2.7

z(m)

r(m)

Inner Pixels
Outer Pixels

Strip Detector

beam pipe
IST

PST

ATLAS baseline layout

CMS baseline layout

Pixel	

Detector

RΦ Strips and z Marco Pixels

Strips

b-jet efficiency
0.5 0.6 0.7 0.8 0.9 1.0

Li
gh

t j
et

 re
je

ct
io

n

1

10

210

310
 pileup=140, ITk

 pileup=0, IBL

 pileup=50, IBL

t, IP3D+SV1t

ATLAS Simulation
ITk LoI Layout b-tagging

140 PU	

ITK

50 PU	

IBL

Markus Elsing

•CMS Inner Tracker
➡ Strip tracker replacement

• several layouts under consideration
• short strips in Rϕ, macro-pixels in z

➡ Level-1 track trigger with high pT stubs
• correlate 2 sensors, threshold ~ 2 GeV
• pattern in associative memory, FPGA fit

➡ Pixels: extend η coverage to 4 (!)
!
!

•ATLAS Inner Tracker
➡ baseline: all silicon tracker, 14 hits

• robust tracking @140 PU for η<2.5
➡ Strip tracker with short strips + stereo
➡ Pixels cover η<2.7 (Muons)

• inner Pixels replaceable, reduced pitch
• alternative layouts (“Alpine”, conical)

➡ Level-1 track trigger seeded by Level-0
• FTK inspired,

reduced latency

27
Mersi ACES 2014–

CMS Tracker Upgrade
layout and requirements

Layout
Current baseline

10 trigger hits → η=2.5

● ×4 granularity in strip sensors
● +3 layers of MacroPixel sensors

– Unambiguous 3D coordinates
helps track Xnding in high pile-up

● Up to 10 points available for track-trigger up to η=2.5

– Comparable to current tracker's coverage, but at L1

!"##$$$$$$$$$$$$%"&'$

())$µ*$$$$$$$$$$$$$$$

$$$$$$$$$$$$$+))$µ*$

!"##$$$$$$$$$$$$%"&'$

+$**$

$$$$$$$$+))$µ*$x"

y"
z"

“stub”'

ATLAS and CMS Inner Tracker Upgrades

36

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

ID geometry from ITK.geom 20:22:34 07/06/12

z (m)

r (
m

)

eta = 0.0 eta = 1.0

eta = 2.0

eta = 2.7

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

ID geometry from ITK.geom 20:22:34 07/06/12

z (m)

r (
m

)

eta = 0.0 eta = 1.0

eta = 2.0

eta = 2.7

z(m)

r(m)

Inner Pixels
Outer Pixels

Strip Detector

beam pipe
IST

PST

ATLAS baseline layout

CMS baseline layout
op

tim
is

ed
 fo

r
fa

st
	

(H
W

)
tr

ac
ki

ng

Pixel	

Detector

RΦ Strips and z Marco Pixels

Strips

b-jet efficiency
0.5 0.6 0.7 0.8 0.9 1.0

Li
gh

t j
et

 re
je

ct
io

n

1

10

210

310
 pileup=140, ITk

 pileup=0, IBL

 pileup=50, IBL

t, IP3D+SV1t

ATLAS Simulation
ITk LoI Layout b-tagging

140 PU	

ITK

50 PU	

IBL

Markus Elsing 37

New Ideas for Track
Reconstruction ?

Markus Elsing

Alternative Tracking Algorithms

•examples for algorithms in literature
➡ conformal transforms: e.g. Hough transforms

• scale ~ linear with pileup, need memory
• used in track seeding and TRT segment finding
• no successful application for full Pixels+SCT yet

➡ still transforms: V-trees
• scale ~ linear with pileup
• used in IDSCAN for Level-2 tracking
• intrinsically pointing, needs primary vertex

➡ cellular automaton
• used by some experiments, example Belle II

(not their default tracking code !)
• idea is to evolve 3 hit combinations into tracks
• it’s a combinatorial algorithm that could be

parallelised
• Belle II example uses things like “high

occupancy bypasses” in their algorithm flow ?
!

•we probably need new ideas !
38

Introduction
Track finding
Track fitting

Vertex reconstruction
Conclusions and Outlook

Local methods
Global methods

Track finding: Global methods

Finding circles with the Hough transform

−2 0 2 4 6
0

1

2

3

4

5

6

7

8

x

y

Image space

0 2 4 6 8
−1

0

1

2

3

4

5

6

7

u

v

Parameter space

ACAT 2010 R. Frühwirth Track and vertex reconstruction 20

Introduction
Track finding
Track fitting

Vertex reconstruction
Conclusions and Outlook

Local methods
Global methods

Track finding: Global methods

Finding circles with the Hough transform

−2 0 2 4 6
0

1

2

3

4

5

6

7

8

x

y

Image space

0 2 4 6 8
−1

0

1

2

3

4

5

6

7

u

v

Parameter space

ACAT 2010 R. Frühwirth Track and vertex reconstruction 20

Spotlight on

• Developed in Vienna by Jakob (grad student of Rudi)

VXD-Stand-Alone

slide
from

Belle II

Hough
transform

Markus Elsing

Truth Tracking from MC

•for very fast (ISF) simulation options
➡ MC truth based hit filter to find tracks
➡ replace pattern recognition in tracker

• otherwise limiting CPU driver
!

•good results achieved
➡ real pattern is very efficient and very pure

• modeling of hit association mostly ok
➡ models main source of inefficiencies well

• this is hadronic interactions in material
➡ uses full fit, so resolution come out right
➡ and it is fast (trivial) !
!

•still, corrections are needed
➡ especially double track resolution

• affects jet cores, taus, maybe 140 pileup (?)
➡ corrections are topology dependent

39

Roland Jansky et al.‣ So far, no technical optimisation was done on the Truth Tracking
- this usually gains quite a bit when done thoroughly

Thursday, October 31, 2013 R. Jansky 14

Timing with pile-up

reconstruction time
vs pileup

reconstruction tracks

truth tracks

Markus Elsing

dCluster
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

R
ec

on
st

ru
ct

io
n

Ef
fic

ie
nc

y

0.8

0.85

0.9

0.95

1

1.05

Reconstruction and track quality efficiency
-1 L dt = 4.7 fb0=7 TeV s2011 data

2011 MC
-1 L dt = 20.3 fb0=8 TeV s2012 data

2012 MC

<50 GeVT15<EATLAS
Preliminary

 [GeV]TCluster E
20 30 40 50 60 70 80

R
ec

on
st

ru
ct

io
n

Ef
fic

ie
nc

y

0.75

0.8

0.85

0.9

0.95

1

1.05

Reconstruction and track quality efficiency
-1 L dt = 4.7 fb0=7 TeV s2011 data

2011 MC
-1 L dt = 20.7 fb0=8 TeV s2012 data

2012 MC

ATLAS
Preliminary

<2.47°d °

The ISF Idea for Tracking ?

• ISF mixes different simulations
➡ spend more times on important event aspects
➡ dramatically reduces effects of pileup
!

• this idea is to do the same for tracking !
➡ hence elaborate tracking for regions of interest (RoI)

• best performance for physics objects costs CPU
➡ fast tracking for underlying event and pileup

• good enough for primary vertexing and for particle
flow / jet corrections
!

•we do this successfully since 2012 (!)
➡ calorimeter seeded brem. recovery for electrons
➡ GSF later in e/gamma reconstruction
!

•Run-2 will have seeded TRT BackTracking
➡ only reconstruction high-pT photon conversion tracks

40

E.Ritsch, A.Salzburger

A.Salzburger

Markus Elsing

The ISF Idea for Tracking ?

•how could this look like ?
➡ event “background”:

• extreme idea: FTK for data, truth tracking for MC + tuning ?
• less extreme: faster tracking algorithms, compromising on performance

➡ event “signal”:
• current NewTracking for regions of interests (RoIs)
• keep electron brem. recovery
• back tracking for conversion recovery in EM RoIs
!

• issues with this approach ?
➡ analysis: similar complication to ISF mixed simulation

• analysis will need to handle fast and full reconstruction objects in event
➡ tracking: inside/outside RoI cone effects

• ambiguity resolution of full tracking in RoI with fast tracking outside
➡ pileup corrections for jets (including particle flow) and MET

• requires full event reconstruction, compromise on tracking performance ?
!

•as well opportunities for performance optimisation !
41

Region of Interest Simulation: Cones

Cones

detailed simulation around particle of interest
(eg. signal particle)

simulate particles inside cone with high
accuracy (eg. Geant4)

simulate particles outside cone with fast
simulator (eg. Fatras or FastCaloSim)

Elmar Ritsch (Univ. Innsbruck, CERN) ISF and Fast ID Simulation October 31, 2013 4 / 23

Markus Elsing

Studies towards ISF Idea for Tracking

•"self-seeded" tracking strategy
➡ variant of "Run-2" tracking setup
➡ after SSS+1 candidate finding, do a z-vertex scan (like before)
➡ new: find 8 vertices with largest multiplicity and ΣpT

• restrict PPP+1, PPS+1, PSS+1 to those 8 vertices !
!

•significant CPU and performance gains at <μ>=140
!
!
!
!
!
!

➡ "Run-2" setup uses extra CPU at 140 pileup to recover efficiency !
➡ "8 vertices" would even be better for 40 pileup, but this is ttbar

• study physics performance implications before putting it into production
➡ final HL-LHC setup will probably not be "self-seeded" by tracker only

42

40 pileup 140 pileup

seeding efficiency CPU efficiency CPU

"Run-1" 94.0% 9.5 sec 59.2% 73 sec

"Run-2" 94.2% 4.7 sec 80.4% 89 sec

"8 vertices" 94.8% 2.7 sec 82.0% 43 sec

ttbar with pileup, 25 nsec

Igor Gavrilenko, CPU on local machine

"technical efficiency"
defined as efficiency to
find tracks from signal
event with correct hits,
based on truth

Markus Elsing

Conclusions ...

•well, too early to conclude on tracking for high pileup
➡ need R&D now, if we want something radically better for Phase-2 (HL-LHC)
!

•software technology, SIMD, cache pinning...
➡ LS-1 software upgrades have shown it helps
➡ at the cost of making the software more difficult to write
!

• tuning of algorithm strategy
➡ as well, LS-1 upgrades demonstrated the potential
!

•multi-threading and massively parallel tracking
➡ in my view it remains to be seen which role GPUs may play
➡ relevant when memory/core is becoming the main issue

• will make software even more difficult to write
➡ requires to change track reconstruction strategy to avoid Armdahl’s law
!

•need new ideas on algorithms and tracking strategies
➡ definitely

43

