

Tracking at the LHC (Part 2)

LHC Tracking Detectors

Introduction: LHC and Experiments

Introduction: LHC and Experiments

Introduction: LHC and Experiments

Outline of Part 2

- give an overview of the LHC detectors
 - → inner tracking and as well some words on the muon systems

• tracking detectors

➡ discuss constraints, roles and design choices

• a bit of detector technologies and their applications

- ➡ semiconductor trackers
- → drift tube detectors

ATLAS

- from the outside, all one sees are muon chambers
 - tracking of muons in toroid field

- ➡ most particles are absorbed
 - in the **calorimeters**, which
 - measure their energy
- not subject of these lectures

ATLAS

- from the outside, all one sees are muon chambers
 - ➡ tracking of muons in toroid field

- → most particles are absorbed
 - in the **calorimeters**, which measure their energy
- → not subject of these lectures

• let' have a brief look at the muon systems ➡ ATLAS and CMS

ATLAS Muon Spectrometer

• a huge system

- → 4 different technologies (MDT,CSC,RPC,TGC)
- → large area (10.000 m²)
- ➡ many channels (1 M)

toroid field configuration

→ large magnetic field variations in toroid

hree o

four drifttube lavers

Drift_tub

➡ field 4 Tesla near coils

optical alignment system

MDT station

CMS Muon System

Muon Drift Tubes

- magnetic field return in iron yoke of solenoid
- ➡ combine with precise p_T measurement in Tracker
- Cathode Strip
 Chambers
 in the endcaps
- Resistive Plate
 Chambers

Expected Momentum Resolution

comparable performance

- ➡ CMS benefits from good Inner Tracker resolution
- → in ATLAS Muon Spectrometer dominates at high p_T
- \Rightarrow ATLAS has slightly larger η coverage

CMS

 in the following will concentrate on the central trackers

Pixel Tracker ECAL HCAL Muons Solenoid coil

Total weight 12500 t, Overall diameter 15 m, Overall length 21.6 m, Magnetic field 4 Tesla

CMS

 in the following will concentrate on the central trackers

Pixel Tracker ECAL HCAL Muons Solenoid coil

Total weight 12500 t, Overall diameter 15 m, Overall length 21.6 m, Magnetic field 4 Tesla

...like for sure they did as well

Constraints on Tracking Detectors

high occupancy, high radiation dose, high data rate

- → at full design luminosity more than **20 interactions** per p-p bunch crossing
 - more than a **1000 charged particles** in tracker, every 25ns.
- even higher multiplicity in central Pb-Pb collisions
 - with >10000 charged particles in trackers
- design for 10¹⁵ neq (neutron equivalent) for innermost layers (10 year lifetime)

• tension...

- minimize material for most precise measurements and to minimize interactions before the calorimeter
- → increasing **sensor granularity** to reduce occupancy
 - increase number of electronics channels and heat load
 - more material

technology choices

- → silicon detectors, usually pixels for vertexing, and strips for tracking
 - good spatial resolution, high granularity, fast signal response
 - thin detector gives a large signal
- → can be complemented by **gas detectors** further away from vertex

Additional Roles of Tracker at LHC

• tracker also contribute to particle identification (PID)

- → use dedicated detectors to distinguish different particle types
 - Transition Radiation detectors also contribute to tracking
 - Ring Imaging Cherenkov detectors
 - time of flight

match tracks with showers in the calorimeter

→ identify electrons from characteristic shower shape

match central tracks with muon chamber segments

→ muon chamber information improves muon momentum measurement

Overall Design Choices

ATLAS and CMS are general purpose detectors

→ central tracker covers $|\eta| < 2.5$ (polar angle expressed as pseudorapidity: $\eta = -\ln \tan(\Theta/2)$)

• ALICE - optimized for heavy ions, high occupancy

→ tracker restricted to $|\eta| < 0.9$, plus forward muons

• all three are symmetric about the interaction point

- solenoid magnet providing uniform magnetic field parallel to the beam direction
- → ATLAS Muon Spectrometer is in field of 3 toroid magnets

• LHCb - beauty-hadron production in forward direction

- despite the different geometry, design is driven by the same principles to give optimal performance
- tracker is not in a magnetic field, tracks are measured before and after a dipole magnet

Overall Design Choices

layout of the tracking detectors

→ follow the typical geometry of fix target and collider experiments

Semiconductor Trackers

doping of silicon crystal semiconductors:

p–n junction

- p doping adds electro-phile atoms
- *n* doping adds electro-phobe atoms

p–*n* junction

- in the junction zone, electron-hole pairs recombine creating depletion
- the potential barrier in the junction counter-weighs the doping potential

reverse bias *p*–*n* junction

- the reversed bias voltage increases the potential barrier in the depletion zone, enhancing its resistance
- minimal current across the junction

The *p*–*n* Junction as a Tracking Detector

The *p*–*n* Junction as a Tracking Detector

- thin ($\sim \mu m$), highly doped p^+ ($\sim 10^{19} \text{ cm}^{-3}$) layer on lightly doped n ($\sim 10^{12} \text{ cm}^{-3}$) substrate
- high mobility of charge carriers in Si allows fast charge collection (~5 ns for electron)
- high Si density & low electron-hole creation potential (3.6 eV compared to ~36 eV for gaseous ionization) allows use of very thin detectors with reasonable signal

The *p*–*n* Junction as a Tracking Detector

- thin ($\sim \mu m$), highly doped p^+ ($\sim 10^{19} \text{ cm}^{-3}$) layer on lightly doped n ($\sim 10^{12} \text{ cm}^{-3}$) substrate
- high mobility of charge carriers in Si allows fast charge collection (~5 ns for electron)
- high Si density & low electron-hole creation potential (3.6 eV compared to ~36 eV for gaseous ionization) allows use of very thin detectors with reasonable signal

The ALANA ALI /

Did you notice ? Classical electromagnetism at play!

the sensors are tilted relative to the pointing axis: SCT (11°) and Pixel (-20°) (*)

• the charges traveling through the Si substrate are deviated by 2T B field (Hall effect)

 $^{(\star)}$ The actual Pixel and SCT Lorentz angles are 4° and 12° (no irradiation), and with opposite signs. The tilts chosen are due to technical reasons.

the sensors are tilted relative to the pointing axis: SCT (11°) and Pixel (-20°) (*)

• the charges traveling through the Si substrate are deviated by 2T B field (Hall effect)

 $^{(\star)}$ The actual Pixel and SCT Lorentz angles are 4° and 12° (no irradiation), and with opposite signs. The tilts chosen are due to technical reasons.

the sensors are tilted relative to the pointing axis: SCT (11°) and Pixel (-20°) (*)

• the charges traveling through the Si substrate are deviated by 2T B field (Hall effect)

 $^{(\star)}$ The actual Pixel and SCT Lorentz angles are 4° and 12° (no irradiation), and with opposite signs. The tilts chosen are due to technical reasons.

the sensors are tilted relative to the pointing axis: SCT (11°) and Pixel (-20°) (*)

• the charges traveling through the Si substrate are deviated by 2T B field (Hall effect)

■ $\alpha_L = f(V_{depl}) \rightarrow$ as bias voltage increases to cope with irradiation, α_L decreases

CMS Tracker

largest silicon tracker ever built

- → **Pixels:** 66M channels, 100x150 μ m² Pixel
- Si-Strip detector: ~23m³, 210m² of Si area, 10.7M channels

classical detection technique for charged particles based on gas ionization and drift time measurement

classical detection technique for charged particles based on gas ionization and drift time measurement

TRT: Kapton tubes, $\emptyset = 4 \text{ mm}$ **MDT:** Aluminium tubes, $\emptyset = 30 \text{ mm}$

- drift tubes used in muon systems and ATLAS TRT
- primary electrons drift towards thin anode wire
- charge amplification during drift (~10⁴) in high *E*-field in vicinity of wire: *E*(*r*) ~ *U*₀ / *r*
- signal rises with number of primary e's (dE/dx)
 [signal dominated by ions]
- macroscopic drift time: $v_D/c \sim 10^{-4} \rightarrow \sim 30$ ns/mm
- determine v_D from difference between signal peaking time and expected particle passage
- spatial resolution of O(100 μm)

classical detection technique for charged particles based on gas ionization and drift time measurement

TRT: Kapton tubes, $\emptyset = 4 \text{ mm}$ **MDT:** Aluminium tubes, $\emptyset = 30 \text{ mm}$

- drift tubes used in muon systems and ATLAS TRT
- primary electrons drift towards thin anode wire
- charge amplification during drift (~10⁴) in high *E*-field in vicinity of wire: *E*(*r*) ~ *U*₀ / *r*
- signal rises with number of primary e's (dE/dx)
 [signal dominated by ions]
- macroscopic drift time: $v_D/c \sim 10^{-4} \rightarrow \sim 30$ ns/mm
- determine v_D from difference between signal peaking time and expected particle passage
- spatial resolution of O(100 μm)

classical detection technique for charged particles based on gas ionization and drift time measurement

Combining Tracking with PID: the ATLAS TRT

e/π separation via transition radiation: polymer (PP) fibers/foils interleaved with drift tubes

Combining Tracking with PID: the ATLAS TRT

 \bullet *e*/ π separation via transition radiation: polymer (PP) fibers/foils interleaved with drift tubes

electrons radiate → higher signal PID info by counting high-threshold hits

Combining Tracking with PID: the ATLAS TRT

 \bullet *e*/ π separation via transition radiation: polymer (PP) fibers/foils interleaved with drift tubes

6.2m

Time Projection Chambers (TPC)

 \Rightarrow developed by D. Nygren in the 70's.

➡ long drift times (≈ 40 µs), thus rate limitations and very good gas quality required

→ ALICE data taking rate 1 kHz in pp
→ few 100 Hz in Pb Pb

ALICE Tracking

- ➡ ITS : 6 layers
 - 2 Pixels
 - 2 silicon drift detectors
 - 2 double sided strips
- ➡ Time Projection Chamber
 - large volume gas detector with central electrode
 - MWPC with cathode pad readout in end plates
 - very good two-track resolution
 - very low material in active region

- → Transition Radiation Detector
 - electron ID, and improves momentum resolution
 - outer radius 3.7m
- ➡ installed in L3 magnet
 - lower B field (0.5 T), larger R

<section-header>

Comparison of Barrel Tracker Layouts

P.Wells	ALICE	ATLAS	CMS
R inner	3.9 cm	5.0 cm	4.4 cm
R outer	3.7 m	1.1 m	1.1 m
Length	5 m	5.4 m	5.8 m
η range	0.9	2.5	2.5
B field	0.5 T	2 T	4 T
Total X ₀ near η=0	0.08 (ITS) + 0.035 (TPC) + 0.234 (TRD)	0.3	0.4
Power	6 kW (ITS)	70 kW	60 kW
rø resolution near outer radius	~ 800 μm TPC ~ 500 μm TRD	130 μm per TRT straw	35 μm per strip layer
p_T resolution at 1GeV and at 100 GeV	0.7% 3% (in pp)	1.3% 3.8%	0.7% 1.5%

- LHCb is a spectrometer designed for B-physics
 - → p_T resolution is 0.35% at 1 GeV, 0.55% at 100 GeV for good mass resolution

Summary of Pixel Barrel Layouts

P.Wells	ALICE	ATLAS	CMS
Radii (mm)	39 – 76	50.5 - 88.5 - 122.5	44 – 73 – 102
Pixel size <i>r</i> φ x z (μm²)	50 x 425	40 x 400	100 x 150
Thickness (µm)	200	250	285
Resolution <i>r</i> φ / <i>z</i> (μm)	12 / 100	10 / 115	~15-20
Channels (million)	9.8	80.4	66
Area (m ²)	0.2	1.8	1

• LHCb VELO

- forward geometry strip detector with 42 stations along, inner radius of 7 mm
- moves close to beam when conditions are stable

Summary of Pixel Barrel Layouts

P.Wells	ALICE	ATLAS	CMS
Radii (mm)	39 – 76	50.5 - 88.5 - 122.5	44 – 73 – 102
Pixel size <i>r</i> φ x z (μm²)	50 x 425	40 x 400	100 x 150
Thickness (µm)	200	250	285
Resolution <i>r</i> φ / <i>z</i> (μm)	12 / 100	10 / 115	~15-20
Channels (million)	9.8	80.4	66
Area (m ²)	0.2	1.8	1

• LHCb VELO

- forward geometry strip detector with 42 stations along, inner radius of 7 mm
- moves close to beam when conditions are stable

LHCb Tracking

CERN

Let's Summarize

- discussed physics of particles in material
- in this lecture I discussed tracking detectors
 - ➡ main design choices and constraints
 - ➡ silicon and drift tube detectors
 - → LHC tracking detector layouts
- next I will discuss track reconstruction

