Markus Elsing

Perspectives on ATLAS Tracking and the Upgrade

on behalf of the ATLAS Collaboration

ATLAS Inner Detector

requirements to cover ATLAS physics program

- precision tracking at LHC luminosities with a hermitic silicon tracker covering over 5 units in eta
- Pixel Detector for precise primary vertex reconstruction and to provide excellent btagging
- reconstruct electrons and converted photons, including transition radiation in TRT for electron identification
- tracking of muons combined with toroid Muon Spectrometer
- enable tau reconstruction
- → V0, b- and c-hadron reconstruction, ...
- → and: fast tracking for high level trigger

how to reach those goals ?

give feeling on complexity of those tasks
 ... focus on offline side of things

Expected Performance

excellent preparation before startup

- more than 10 years of simulation and test beam
- cosmics data taking in 2008 and 2009
- ➡ payed off last year !

detailed simulation studies

- document expected performance
- → few of the known critical items:
 - material effects limit efficiency and resolution at low pt
 - good (local) alignment for b-tagging
 - momentum scale and alignment "weak modes"

tracking optimization before startup

- robust design of tracking software
 - common tracking and vertexing project
- several redesign phases to optimize both:
 - physics

Track Reconstruction

- staged track reconstruction
 - ➡ inside-out: Pixel seeded + extending outwards
 - ➡ outside-in: seeded on TRT segments
- monitor and optimize performance at different levels in reconstruction
 - → seeding / candidate fitting / ambiguity / TRT ex.
- ensure "robustness"
 - → allow for dead/noise modules
 - ➡ error scaling to reflect calibration + alignment
- very good performance even with early data
 - → example: results from summer 2010...

Material Studies

- crucial input to understand tracking performance
- early studies
 - \rightarrow K⁰s / J/ ψ mass signals
 - ➡ efficiency to extend Pixel seeds into SCT
 - ➡ impact parameter resolution vs pt

• tomography with γ conversions

- ➡ allows very precise estimate of material
- ➡ calibrate e.g. on "known" beam pipe
- ➡ measure difference in data/MC, e.g. PP0

Pixel PP0 region Markus Elsing

Detector Alignment

alignment strategy

- ➡ starting point is detailed survey
- ➡ alignment stream with high-pt tracks
- define different levels of granularity level 1 (e.g.SCT barrel) to level 3 (module)
- \rightarrow global- χ^2 and local alignment

also allow for

- ➡ Pixel model deformations (survey)
- ➡ Pixel stave bowing
- ➡ TRT wire alignment
- ➡ movements of the detector
- ➡ weak modes ...

• to approach design resolutions

Primary Vertexing

• iterative vertex finder, adaptive fitter

- ➡ reconstruct primary and pileup vertices
- measure primary vertex resolution
 - ➡ split vertex technique on data

beam spot routinely determined

➡ input to vertexing

primary vertex counting

- ➡ luminosity monitor
- event by event pileup corrections (jets)

b-Tagging

conservative taggers

- → inclusive secondary vertex tagger (SV0)
- → impact parameter significance (JetProb)

performance well studied

- \Rightarrow efficiency e.g using "pt-rel", "D*µ", "tt" ...
- ➡ mistags e.g. using "vtx mass", "neg. tags" ...

 used in analysis up to now

• towards using likelihood based taggers

- optimal combination of IP and vertex information
- interplay between tracking performance, properties of jets and fragmentation in different event topologies

to do Physics ...

Luminosity and Computing Resources

• see slide from David Rousseau (Wednesday session):

- ➡ resource needs scale fast
- ➡ tracking is a resource driver

• tracking principles:

- ➡ combinatorial problem
- ➡ naive scaling
 - ▶ like ~n!
- ➡ clever tracking strategies
 - dampen it to $\sim n^2$ or $\sim n^3$

Pileup

natural tension between

- → desire to maximize physics
- requirement to stay within available resources

Reconstruction Strategy vs Time

2009 / early 2010	commissioning Min.Bias	pt > 50 MeV open cuts, robust settings min. 5 clusters
2010 stable running < ~4 events pileup	low lumi physics program (soft QCD, b-physics,), b-tagging	pt > 100 MeV min. 7 clusters
Heavy Ion 2010	high occupancy, soft QCD	pt > 500 MeV z-vertex seeding, min. 9 clusters
2011 pp running ~8 events pileup	focus more on high-pt physics (top,W/Z,), b-tagging	pt > 400 MeV, harder cuts in seeding min. 7 clusters
Phase I upgrade, including IBL 24-50 events pileup	high-pt physics, study new physics (I hope), b-tagging	pt > 900 MeV, harder tracking cuts, min. 9 clusters
SLHC up to 100-200 events pileup	replace Inner Detector to cover very high luminosity physics program	further evolve strategy R-o-I or z-vertex seeding, reco. per trigger type, GPUs

- → requirements on tracking evolves with physics ATLAS program
- → different luminosity regimes require different working points

Heavy Ion Tracking

high multiplicity tracking

- adapt seed finding
 (z vertex constraint to save CPU)
- ➡ tighten hit requirement to control fakes in central events (similar to SLHC setup)

excellent tracking performance

➡ as well good testing ground for high in-time pileup

Tracking at High Luminosity (pp)

occupancy

- Pixel and SCT scales linearly
- TRT good hit occupancy vs efficiency

tracking in pileup

- ➡ efficiency, most resolutions same
- momentum resolution slowly deteriorates with TRT occupancy
- rate of fake tracks and rate of significant impact parameters increases fast

pileup track selection

- suppresses fakes at expense of some efficiency
- requiring 9 out of 11 hits robust ?
 cut on "no Pixel holes" ...

Phase 1 (IBL) Tracking

• performance studies in G4

- \Rightarrow smaller beam pipe (R_{min} = 25 mm)
- ➡ reconstruction: 4th Pixel layer
- → IBL material adjusted to 1.5% X0
- ➡ smaller z pitch (400 um)

installation next shutdown

- → ready for 14 TeV running
- → peak luminosities of 2*10³⁴ cm⁻²s⁻¹
- ➡ 25-50 pileup events

Tracking Performance with no Pileup

expected results

- ➡ smaller radius
- ➡ small z pitch
- less material between first and 2nd layer
- ➡ track length ~ same

• improvements

- ➡ better d₀ resolution
- ➡ better z₀ resolution
- θ and φ improved at low-pT
- momentum resolution
 unchanged

• as expected !

Tracking and Vertexing with Phase 1 Pileup

pileup selection with IBL

- ⇒ \geq 10 IBL+Pixel+SCT hits, \leq 1 pixel hole
- ➡ benefit from additional layer
- leaves room for eventual inefficiencies in b-layer (tracking robustness)

vertexing with IBL

- ➡ pileup effects visible
- gains in resolution and vertex tail fraction as well with pileup
- ➡ signal vertex efficiency better
- pileup selection better overall

b-Tagging with IBL

- state of the art b-tagging
 - → "IP3D" ~ $d_0 \oplus z_0$ impact significance likelihood
 - ➡ "IP3D+SV1" ~ adding secondary vertex information

• pileup affects b-tagging in many ways

- ➡ additional jets and fake jets from in/out of time pileup
 - restrict to truth jets to get comparable results
 - real data: can use e.g. Jet-Vertex-Fraction
- ➡ close-by pileup vertices
 - additional b-tag tracks
 - lead to significant z₀ offsets affecting IP3D

• good performance with IBL and pileup

➡ as good or better as for current ATLAS without pileup

Summary

 stringent requirements on Inner Detector track reconstruction to cover ATLAS physics program

➡ excellent performance of current detector and software chain

- complexity will increase with rapid rise in luminosity
 need to adapt tracking strategies to evolving physics program and available resources
- tracking in Heavy lon events is excellent testing ground for high luminosity
- studies for tracking at high luminosity are quite mature up to Phase I (IBL)

 SLHC will require a new Inner Detector and probably R&D on novel tracking strategies