Markus Elsing

Performance of the ATLAS (Silicon) Tracking Detectors

• on behalf of the ATLAS Collaboration

ATLAS Inner Detector

requirements to cover ATLAS physics program

- precision tracking at LHC luminosities with a hermitic silicon tracker covering over 5 units in eta
- Pixel Detector for precise primary vertex reconstruction and to provide excellent btagging
- reconstruct electrons and converted photons, including transition radiation in TRT for electron identification
- tracking of muons combined with toroid Muon Spectrometer
- enable tau reconstruction
- → V0, b- and c-hadron reconstruction, ...
- ➡ dE/dx from T.o.T. in Pixels and TRT
- → and: fast tracking for high level trigger

Expected Performance

excellent preparation before startup

- → more than 10 years of simulation and test beam
- ➡ cosmics data taking in 2008 and 2009
- ➡ payed off last year !

detailed simulation studies

- ➡ document expected performance
- ➡ few of the known critical items:
 - material effects limit efficiency and resolution at low pt
 - good (local) alignment for b-tagging
 - momentum scale and alignment "weak modes"
- ➡ focus for commissioning of tracking and vertexing

Basis is excellent Work on Detectors !

Markus Elsing

Pattern Recognition

staged track reconstruction

- ➡ inside-out: Pixel seeded + extending outwards
- ➡ outside-in: seeded on TRT segments
- study performance at different levels in reconstruction process
 seeding / candidate fitting / ambiguity

• ensure "robustness"

- ➡ allow for dead/noise modules
- ➡ error scaling to reflect calibration + alignment
- very good performance even with early data
 - → example: results from summer 2010...

Material Studies

- crucial input to understand tracking performance
- early studies
 - \rightarrow K⁰s / J/ ψ mass signals
 - ➡ efficiency to extend Pixel seeds into SCT
 - ➡ impact parameter resolution vs pt

• tomography with γ conversions

- ➡ allows very precise estimate of material
- ➡ calibrate e.g. on "known" beam pipe
- ➡ measure difference in data/MC, e.g. PP0

Pixel PP0 region Markus Elsing

Hadronic Interactions

- 2nd method for a precise tomography of detector material
 - ➡ good vtx resolution allows to study fine details

material uncertainty in simulation

- → better than ~5% in central region
- ➡ at the level of ~10% in most of the endcaps

Markus Elsing

➡ study of systematics ongoing

Detector Alignment

alignment strategy

- → starting point is detailed survey
- \rightarrow alignment stream with high-pt tracks
- → define different levels of granularity level 1 (e.g.SCT barrel) to level 3 (module)
- \rightarrow global- χ^2 and local alignment

also allow for

- → Pixel model deformations (survey)
- Pixel stave bowin Module
- → TRT wire alignment
- ➡ movements of the detector
- ...

 \rightarrow

$$K_{\pm} \equiv \frac{1}{R_{\pm}} = 0.12 \pm 0.08 \text{ m}^{-1}$$

$$\alpha = -0.5 \pm 0.8 \text{ mrad}$$

schematics of module bow

apparent twist between TRT 4-plane wheels

Field Tilt ? Weak Modes ?

• field tilt visible in K^{0}_{s} mass bias vs φ

- ➡ shifts mass in opposite directions in both endcaps
- ➡ corrected by 0.55 *mrad* field rotation around y axis

"weak modes" are global deformations

- → leave fit- χ^2 nearly unchanged
- ➡ affect momentum scale, e.g. Z-mass resolution
- several techniques to control weak modes
 - TRT to constrain Silicon alignment
 - electron E/p using calorimeter
 - muon momentum in Inner Detector vs Muon Spectrometer

0

-1

Alignment Performance

approaching design resolutions

→ error scaling to allow for residual misalignments in fit

Residual [mm]

×10³

90

80E

70E

60E

50E

40E

30E

20E

10E

Hits on tracks / 4 µm

Primary Vertexing

• iterative vertex finder, adaptive fitter

- ➡ reconstruct primary and pileup vertices
- beam spot routinely determined
 - ➡ input to vertexing

measure primary vertex resolution

➡ split vertex technique on data

many applications

- primary vertex
 counting (luminosity)
- Jet-Vertex-Fraction to reject pileup jets
- jet energy scale correction

Markus Elsing

b-Tagging

robust taggers

- → inclusive secondary vertex tagger (SV0)
- ➡ impact parameter significance (JetProb)

performance well studied

- → efficiency e.g using "muon p_t -rel", "D* μ ", "tt" ...
- ➡ mistags e.g. using "vtx mass", "neg. tags" ...

 used in analysis up to now

towards using likelihood based taggers

- optimal combination of IP and vertex information
- interplay between tracking performance, properties of jets and fragmentation in different event topologies

Markus Elsing

... Physics ...

Markus Elsing 920 GeV ee invariant mass candidate (2011) 13

first top event in ATLAS with nice b vertices (2010)

Heavy Ion Tracking

high multiplicity tracking

- adapt seed finding
 (z vertex constraint to save CPU)
- ➡ tighten hit requirement to control fakes in central events (similar to sLHC setup)

excellent tracking performance

➡ as well good testing ground for high in-time pileup

Outlook: IBL Tracking

• performance studies in G4

- \Rightarrow smaller beam pipe (R_{min} = 25 mm)
- ➡ reconstruction: 4th Pixel layer
- → IBL material adjusted to 1.5% X0
- → smaller z pitch (250 um)

installation next shutdown

- → ready for 14 TeV running
- → peak luminosities of 2*10³⁴ cm⁻²s⁻¹
- ➡ 25-50 pileup events

Tracking Performance with no Pileup

• expected results

- → smaller radius
- → small z pitch
- → less material between first and 2nd layer
- → track length ~ same

improvements

- \rightarrow better d₀ resolution
- \rightarrow better z_0 resolution
- \Rightarrow θ and ϕ improved at low-pT
- → momentum resolution ~ unchanged

• as expected !

b-Tagging with IBL

• pileup selection with IBL

- ⇒ \geq 10 IBL+Pixel+SCT hits, \leq 1 pixel hole
- benefit from additional layer
- leaves room for eventual inefficiencies in b-layer (tracking robustness)

state of the art b-tagging

- → "IP3D" $\sim d_0 \oplus z_0$ impact significance likelihood
- ➡ "IP3D+SV1" ~ adding secondary vertex information

• good performance with IBL and pileup

➡ as good or better as for current ATLAS without pileup

more on IBL in Heinz's talk...

Summary

 stringent requirements on Inner Detector track reconstruction to cover ATLAS physics program

- excellent performance reached !
 - → years of preparation based on simulation and test beam
 - commissioning with cosmics and early beam
 - detailed studies of detector, tracking, material, alignment, ...
- Heavy lon running as well gave good insightes into tracking at high occupancy
- tracking studies with IBL demonstrate performance of the detector with a 4 layer Pixel system at Phase 1 luminosities

