Tests des Standardmodells bei LEP

Markus Elsing CERN

Dresden 23/03/00

Inhalt

→ Präzisionsmessungen auf der Z-Resonanz

Resultate zu SM-Prozessen bei LEP-2

Fermion-Paarproduktion oberhalb des Z

• Produktion von neutralen Bosonpaaren

Eigenschaften des W-Bosons

Interpretation der Daten im Rahmen des Standardmodells und Einschränkungen an die Masse des Higgs-Bosons

Die meisten Resultate sind vorläufig ! (Winter 2000)

Z-Resonanzparameter und Lepton-Asymmetrien

LEP kombiniert : (5 Parameter-Fit)

Parameter	Mittelwert
m _Z (GeV)	91.1871±0.0021
Γ _Z (GeV)	2.4944±0.0024
$\sigma_{\rm h}^0({\rm nb})$	41.544 ±0.037
RI	20.768±0.024
A ^{0, I} FB	0.01701±0.00095

→ <u>abgeleitete Größen :</u>

 $\alpha_{\rm s}$ aus $\sigma_{\rm ll}^0$

Anzahl der leichten Neutrino-Familien $N_v = 2.9835 \pm 0.0083$ (~2 σ)

 $\alpha_{s} = 0.1187 \pm 0.0030 \pm 0.0026(m_{H})$ (aus einer rein leptonischen Größe !!!)

Markus Elsing

Auf dem Weg zum endgültigen Parametersatz

→ 3 von 4 Ergebnissen publiziert, OPAL (leider noch) vorläufig

<u>Unsicherheit der Mittelung auf</u>
 <u>Parameter-Niveau :</u>
 < 10% des kombinierten Fehlers

Verbesserungen in der Theorie : (neu berücksichtigt seit Winter 99)

A.Arbuzov, S.Jadach et al., G.Degrassi et al., B.Kniehl, J.Kühn et al., G.Montagna et al.

sekundäre Fermion-Paarproduktion $\Rightarrow +0.5 \text{ MeV für } m_z \text{ und } \Gamma_z \text{ fehlt noch}$ A.Arbuzov

Abschätzung der verbleibenden Unsicherheiten : (G.Quast et al.)

Unsicherheit der QED-Korrektur

 $\Delta m_{Z} = \pm 0.3 \text{ MeV}$ $\Delta \Gamma_{Z} = \pm 0.2 \text{ MeV}$ $\Delta \sigma_{had}^{0} / \sigma_{had}^{0} = \pm 0.2 \text{ x } 10^{-3}$

- $\begin{array}{c} \bullet \ \ddot{\mathbf{U}} bereinstimmung \ \mathbf{ZFITTER}/\mathbf{TOPAZ0} \\ \mathbf{nur} \ \Delta \mathbf{R}_1 \ \sim \mathbf{0.004} \qquad (\sim 0.2\sigma) \end{array}$
- Unsicherheit der SM-Parameter $\Delta m_Z = 0.23 \text{ MeV} \times \log_{10}(M_H/\text{GeV})$

rel. Unsicherheit der Luminosität 0.54-0.61 x 10⁻³

endgültige Zahlen ~ Sommer 2000

→ τ-Polarisation aus Energie- und Zerfallswinkelverteilung

 \rightarrow unabhängige Messung von A_e und A_τ

$$\mathsf{P}_{\tau}(\cos\theta) = \frac{\mathsf{A}_{\tau}(1+\cos^2\theta)+2\mathsf{A}_{e}\cos\theta}{1+\cos^2\theta+2\mathsf{A}_{\tau}\mathsf{A}_{e}\cos\theta}$$

kombinierte LEP-Ergebnisse :

arkus Elsing

$$A_e = 0.1483 \pm 0.0051$$

 $A_\tau = 0.1425 \pm 0.0044$

 \Rightarrow A₁ = 0.1450 ± 0.0033

unverändert seit Tampere '99

Messung von A $_{\rm LR}$ bei SLC

0.16

0.17

Preliminary

	LEP	SLD	LEP+SLD	
	$(A_{\perp} = 0.1471 \pm 0.0026)$		$(A_{\perp} = 0.1493 \pm 0.0015)$	SM
Ab	0.896±0.024	0.911 ± 0.025	0.892 ± 0.016	0.93
Ac	0.625 ± 0.035	0.630 ± 0.026	0.624 ± 0.021	0.66

Z-Kopplungen an Strange-Quarks

 \rightarrow identifiziere e⁺e⁻ \rightarrow s \overline{s} durch schnelle K[±], K⁰_s oder Λ^0 in hadr. Ereignissen

Messungen des effektiven Mischungswinkels

$Z \rightarrow b\overline{d}, b\overline{s}$ Flavour-ändernde neutrale Ströhme (FCNC)

→ 1999 wieder hervorragendes Jahr für LEP

 \rightarrow total ~ 500 pb⁻¹ oberhalb WW-Schwelle pro Experiment

arkus Elsing

\rightarrow effektive Schwerpunktsenergie ~ \sqrt{s}

Markus Elsing

LEP 2 kombinierte Wirkungsquerschnitte und Vorw.-Rückw.-Asymmetrien

S-Matrix-Fits

91.20

(202 GeV)

→ redefiniere Planck-Masse als :

 $\mathbf{M}_{\mathbf{Pl}}^2 \sim \mathbf{R}^{\mathbf{n}} \mathbf{M}_{\mathbf{D}}^{\mathbf{n+2}}$

M_D∼ neue Planck-Skala ~ O(TeV) R ~ Radius der extra Dim. ~ O(mm)

$$\frac{d\sigma}{d\cos\theta} = A(\cos\theta) + B(\cos\theta) \left[\frac{\lambda}{M_s^4}\right] + C(\cos\theta) \left[\frac{\lambda}{M_s^4}\right]^2$$

Fit an ee $\rightarrow \mu\mu$ und ee $\rightarrow \tau\tau$

- → typische Limits (202 GeV) :
 - M_s > 0.755 (0.598) TeV
 - @ 95% CL, λ=+1 (-1)

weitere Limits an M_{s} (~ eff. String-Skala) aus ee \rightarrow ee und "single- γ ", $\gamma\gamma$,ZZ,WW

DELPHI PRELIMINARY

 $\implies \text{schwere Quarks in } e^+e^- \rightarrow Z \rightarrow q\overline{q}$

 \rightarrow Hochenergiedaten ~ $\sqrt{s'} > 0.85 \sqrt{s}$

Mittelwerte aller LEP-Experimente : [¬]

Wirkungsquerschnitt e e $\rightarrow v \overline{v} \gamma$

140 m_{ii}/GeV

120

QED-Test in e e $\rightarrow \gamma \gamma (\gamma)$

* gleiche Kopplungen für e*eγ und eeγ

ZZ-Wirkungsquerschnitt

Markus Elsing

arkus Elsing

relevante Diagramme (CC03) :

→ alle Endzustände bei LEP beobachtbar

→ Datensätze pro Experiment : 161 GeV - 189 GeV ≈ 3600 Ereignisse 192 GeV - 202 GeV ≈ 3800 Ereignisse

W Leptonic Branching Ratios

10

'11

Br(W \rightarrow Iv) [%]

Markus Elsing

12

SM: 10.8 %

→ hadronisches Verzweigungsverhältnis : BR(W → had) = 1 - 3 x BR(W → lv)

Annahme: Lepton-Universalität

→ Interpretation ~ CKM-Matrix :

$$\frac{\mathsf{BR}_{had}}{1-\mathsf{BR}_{had}} = \sum_{i=u,c} |V_{ij}^2| \left(1+\frac{\alpha_s}{\pi}\right)$$

verwende PDG-Werte für v_{ii} ≠ v_{cs}

direkte Messung : $|v_{cs}| = 0.993 \pm 0.016$ (PDG'98 : $|v_{cs}| = 1.04 \pm 0.16$)
CKM-Unitarität nicht verwendet !

Br(W→hadrons) [%]

Universalität der Kopplungen
für
$$Q^2 = m_{\tau}^2$$
:
 $g_{\mu}/g_e = 1.0006 \pm 0.0023 \tau \rightarrow \mu\nu\nu/\tau \rightarrow e\nu\nu$

 $g_{\tau}^{'}/g_{\mu} = 0.9997 \pm 0.0024 \Gamma(\tau \to evv)/\Gamma(\mu \to evv)$

sensitiver als LEP 2-Test der W-Verzweigungsverhältnisse

allgemeiner Lorentz-inv. Ansatz : 2 x 7 Kopplungen für γWW- und ZWW-Vertices

- Annahmen :
 ~ reelle Kopplungen
 - ~ C-, P- und CP-Invarianz
 - ~ Ladung des W(=e)

- Abweichungen vom SM verändert :
- botale Wirkungsquerschnitte
- **Verteilung der W-Produktionswinkel**
- **W-P**olarisation

Wirkungsquerschnitt für "single-W"-Produktion

sensitiv auf $\Delta \kappa_{v}$

γ-Energien in "single-γ"-Ereignissen

sensitiv auf $\Delta \kappa_{\gamma}$ und λ_{γ}

→ WW-Zerfälle

sensitiv auf alle Kopplungen

diff. Wirkungsquerschnitt quadratisch in anomalen Kopplungen α_i :

$$\frac{d\sigma}{d\Omega} = S_0(\Omega) + \sum_i S_{1,i}(\Omega) \alpha_i + \sum_{ij} S_{2,ij}(\Omega) \alpha_i \alpha_j$$

mit:
$$\Omega = (\cos \theta_{W}, \cos \theta_{\pm}^{*}, \phi_{\pm}^{*})$$

lin. Approximation :
$$O_i(\Omega) = \frac{S_{1,i}(\Omega)}{S_0(\Omega)}$$

~optimale Observable

$$\begin{split} \Delta \kappa_{\gamma} &= 0.021 \begin{array}{c} ^{+0.063} \\ _{-0.060} \end{split} \\ \Delta g_{1}^{Z} &= -0.024 \begin{array}{c} ^{+0.025} \\ _{-0.024} \end{array} \\ \lambda_{\gamma} &= -0.016 \begin{array}{c} ^{+0.026} \\ _{-0.026} \end{array} \end{split}$$

🔶 konsistent mit SM

→ indirekte Messung von : µ_w ~ mag. Dipolmoment q_w ~ elek. Quadrupolmoment

$$\mu_{W} = \frac{e}{2m_{W}} (1 + \kappa_{\gamma} + \lambda_{\gamma})$$
$$q_{W} = -\frac{e}{m_{W}^{2}} (\kappa_{\gamma} - \lambda_{\gamma})$$

statische Eigenschaften des W

4 jet event

→ bestimme m_W aus rekonstruiertem invarianten Massenspektrum (auch sensitiv auf Γ_w)

→ experimentelle Auflösung 5-10 % kinematischer Fit ~ Energie-/Impulserhaltung, m_{W1} ≈ m_{W2} (5C)

 $W W \rightarrow q \overline{q} l v$ $I=e,\mu$ \Rightarrow fehlender v-Impuls ~ 2C-Fit $W W \rightarrow q \overline{q} \tau v$ \Rightarrow geringe Information aus hadr. Jets $W W \rightarrow q \overline{q} q \overline{q}$ \Rightarrow 5C-Fit , 4 Jets mit 3 Kombinationen

→ <u>Signale nach kinematischem Fit (189 GeV)</u> :

Seite 44

DELPHI

 $\Rightarrow \underline{\text{kombiniert}} : \underset{W}{\text{m}} = 80.401 \pm 0.027(\text{stat}) \pm 0.031(\text{sys}) \pm 0.018(\text{FSI}) \pm 0.017(\text{LEP})$

Endzustands-Wechselwirkungen bei WW \rightarrow 4 Jets

 $Q (GeV/c^2)$

→ Methode der NMR-Magnetfeld-Extrapolation :

resonante Depolarisation bei 40-60 GeV \Rightarrow Kalibration der NMR-Feldmessung

extrapoliere mittels NMR-Messungen und Modell zu Physik-Energien

Vergleiche mit Messungen des "Flux-Loop"-Systems

Source	Error [MeV]	
	1997	1998
Extrapolation from NMR–Polarisation:		
NMR rms/ \sqrt{N} at physics energy	10	8
Different E _{pol} Fills	5	4
Flux-loop test of extrapolation:		
NMR flux-loop difference at physics energy	20	15
Field not measured by flux loop	5	5
Optics difference	4	6
Corrector effects	3	4
IP specific corrections($\delta E_{CM}/2$):		
RF model	4	4
Total	25	20

1999 ähnliche Fehler

Fehler dominiert durch Unterschiede zwischen NMR und Flux-Loop

vollständige Installation während Shutdown 98/99 (bzw. Juli 99)

erste vorläufige Ergebnisse : (Chamonix-2000)
Datennahme nach August 1999

• Messung bei 40-60 GeV eichen mit resonanter Depolarisation (RDP) $\sigma(E_{Spek}-E_{RDP})= 8.0\pm 1.7 \text{ MeV}$ (erwartet 7.6 MeV)

relative Messung für 100 GeV E_{Spek} - E_{NMR} = 0.3±11.0 MeV

Genauigkeit von $\sigma_{\rm E}$ < 15 MeV scheint realistisch ~ $\sigma(m_{\rm w})$ < 12 MeV

vereinfachter Zusammenhang :

$$\mathbf{Q}_{s}^{2} = \left(\frac{\alpha_{c} \mathbf{h}}{2\pi E}\right) \sqrt{\left(\mathbf{e}^{2} \mathbf{V}_{RF}^{2} - \mathbf{U}_{0}^{2}\right)}$$

U₀~ Energieverlust, hängt von E ab

 \rightarrow messe Q_s und V_{RF}

- Abhängigkeiten können genau modelliert werden
- → Meßreihen in 1998 und 1999
- erste Ergebnisse stimmen mit NMR-Extrapolation überein
- → Genauigkeit ~ 20 MeV erreichbar

W-Zerfallsbreite

bestimme W-Zerfallsbreite durch Fit an Massenspektrum :

 $\Gamma_{\rm W} = 2.055 \pm 0.125 \, {\rm GeV}$

indirekte Messung über :

 $\frac{\sigma(p\bar{p} \rightarrow W + X) \text{ BR}(W \rightarrow Iv)}{\sigma(p\bar{p} \rightarrow Z + X) \text{ BR}(Z \rightarrow II)} = \left(\frac{\sigma_W}{\sigma_Z}\right)^{\text{SM}} \left(\frac{\Gamma_Z}{\Gamma_Z \rightarrow II}\right)^{\text{LEP}} \frac{\Gamma_{W \rightarrow Iv}^{\text{SM}}}{\Gamma_W}$ **CDF**: $\Gamma_{W} = 2.179 \pm 0.046 \text{ GeV}$ **D0**: $\Gamma_{W} = 2.107 \pm 0.054 \text{ GeV}$

arkus Elsing

Verhältnis der Wirkungsquerschnitte für neutrale und geladene Ströme ist sensitiv auf :

$$\sin^2\theta_W = 1 - m_W^2 / m_Z^2$$

Paschos-Wolfenstein-Variable :

$$\mathsf{R}^{-} = \frac{\sigma_{\mathsf{NC}}^{\mathsf{v}} - \sigma_{\mathsf{NC}}^{\mathsf{v}}}{\sigma_{\mathsf{CC}}^{\mathsf{v}} - \sigma_{\mathsf{CC}}^{\mathsf{v}}}$$

Quark-See-Beiträge kürzen sich raus, da : $\sigma_{\nu q} = \sigma_{\overline{\nu q}}$ $\sigma_{\nu \overline{q}} = \sigma_{\overline{\nu q}}$

→ NuTeV und CCFR haben v- und ∇ -Wirkungsquerschnitte gemessen : $\Rightarrow \sin^2 \theta_W = 0.2255 \pm 0.0021$ oder $m_W = 80.25 \pm 0.11$ GeV

 \rightarrow Interpretation der elektroschwachen Messungen benötigt $\alpha(m_7^2)$

→ Vakuum-Polarisation enthält Beitrag der 5 leichten Quarks :

 $\Delta \alpha_{had}^{(5)} = 0.02804 \pm 0.00065$ (Eidelmann, Jegerlehner)

Fehler dominiert durch Unsicherheit in $R(s) = \sigma_{had}/\sigma_{\mu\mu}$ bei kleinen Energien

rkus Elsing

Standardmodell-Fits

Abweichungen der Daten zum Standardmodell-Fit

Moriond 2000

 $\chi^2/\mathrm{ndf} = 23/15 \implies \mathrm{prob}(\chi^2) = 9\%$

→ <u>Anpassung an die Daten von :</u>

präzise Z-Daten von LEP+SLC

• m_wvon LEP-2 und CDF+D0

 $-\sin^2\theta_{W}$ aus der v-Nukleon-Streuung

 $-m_t = 174.5 \pm 5.1 \text{ GeV} (\text{CDF+D0})$

hadronischer Beitrag zu $\alpha(m_Z^2)$: $\Delta \alpha_{had}^{(5)} = 0.02804 \pm 0.00065$

	LEP including LEP-II m _W	all data except m_W and m_t	all data except m _W	all data
m _t [GeV]	176 ⁺¹⁴	167 ⁺¹⁰ - 8	172.9 ± 4.7	173.7 ± 4.4
m _H [GeV]	147 ⁺³⁰⁰ 92	54 ⁺⁸¹ -27	78 ⁺⁷⁶ - 41	67 ⁺⁶⁰ - 33
log(m _H /GeV)	2.17 ^{+0.48} - 0.43	1.73 ^{+0.40} - 0.30	1.90 ^{+0.29} - 0.32	1.82 ^{+0.28} - 0.30
$\alpha_{s}(m_{Z}^{2})$	0.120 ± 0.003	0.118 ± 0.003	0.118 ± 0.003	0.118 ± 0.003
χ^2 /d.o.f.	12/9	22/12	22/13	23/15
$sin^2 \theta_{eff}^{lept}$	0.23178±0.00021	0.23149± 0.00017	0.23150±0.00017	0.23145±0.00016
1 - m_W^2/m_Z^2	0.2233 ± 0.0006	0.2232 ± 0.0007	0.2229 ± 0.0005	0.2227 ± 0.0004
m _W [GeV]	80.363±0.030	80.368 ± 0.034	80.383±0.026	80.394±0.021

→ Anpassung an alle Daten :

10 Jahre elektroschwache Physik bei LEP

17 Millionen Z-Ereignisse

 $m_z = 91.1871 \pm 0.0021 \text{ GeV}$

500 pb⁻¹ pro Experiment bei LEP 2

 $m_w = 80.401 \pm 0.048 \text{ GeV}$

Parameter des Standardmodells festgelegt, nur Higgs fehlt noch

keine signifikanten Abweichungen von SM-Vorhersagen bei LEP 2

Strahlungskorrekturen :

das Higgs ist leicht

→ 500 pb⁻¹ pro Experiment bis Ende 1999 ⇒ geringe Verbesserung in $\sigma_{stat}(m_W)$

 \rightarrow LEP-Betrieb optimiert für SM-Higgs- und χ^{\pm} -Suchen

	102.5-103.0	103.3-103.5
wie 1999	90 pb ⁻¹	0 pb ⁻¹
+ Mini-Ramp	105 pb ⁻¹	15 pb ⁻¹
+ 30 min. Fills	120 pb ⁻¹	25 pb ⁻¹
+ 2x2 Bunche	200 pb ⁻¹	50 pb ⁻¹

← Strahlenergie in GeV

Chamonix-2000 Workshop (optimistisch)

→ Problem mit Maschine ⇒ Möglichkeit an W-Schwelle bei 161 GeV zu laufen ? ⇒ nur geringe Verbesserung in $\sigma_{tot}(m_W)$

Fehler der LEP-Energie ~ 10 MeV \Rightarrow Verbesserung in $\sigma_{tot}(m_W)$ ~ 3-4 MeV

42

