DELPHI Collaboration DELPHI 2000-151 PROG 241

20 July, 2000

Ensuring long time access to DELPHI data:
The IDEA project

Tiziano Camporesi, Philippe Charpentier, Markus Elsing, Dietrich Liko,
Niko Neufeld, Nikolai Smirnov, and Daniel Wicke
CERN

Abstract

The long term accessibility of its data is an important concern of the DELPHI col-
laboration. It is our assumption that the storage of the data by itself will be a minor
issue due to the progress in storage technologies. Therefore DELPHI focuses on a
reorganisation of the data, which should provide a flexible and coherent framework
for physics analysis in the future. A project has been started, IDEA (Improved DEL-
PHI Analysis), to provide an implementation based on modern software technology.
It will ensure usability for future generations of physicists.



1 Introduction

Scientific ethics demands the preservation of data collected by the four LEP experiments.
Given the amount of data and the decreasing costs of storage media, the DELPHI collabo-
ration sees the challenges not in storing the data but in retrieving and interpreting these.
This note presents the effort to address this problems by developing a legacy free analysis
framework.

We are conscious of the fact that the computing environment in high energy physics
is currently changing. Modern software technologies are being introduced and there is a
shift of the computing paradigm. We expect that at the end of the running of the LEP
experiments also physicists still engaged in the experiment will orient themselves towards
the new technologies. In addition a new generation of physicists, who without doubt will
be committed to the new experiments, might be deprived from access to our data due to
a “software generation gap”.

The aim of our project is therefore to develop a new analysis framework for the DEL-
PHI environment in object-oriented style. The programming language of choice is C++,
which offers not only the necessary features, but has also a proven record of industrial
strength software. We plan to keep the project simple and independent from other soft-
ware technologies. This should ensure long time usability even in a changing and still
evolving environment.

We expect that this tool will allow physicists in the future to perform analysis of
DELPHI data, without the detailed knowledge necessary today. Our emphasis is therefore
to develop a framework, that is easy to use for physicists, who do not have access to this
information. We foresee that the physicist in the future will perform some re-analysis of
the data either due to new ideas from theory or due to new experimental findings. On
the other hand we think it will be difficult to repeat high precision analyses in the future,
as the necessary detector expertise will have been lost.

We aim to have this new software environment commissioned before Spring 2001 in
order to have it actively used by people, who have also expertise in our standard analysis
package. We are convinced that this active field test is essential to ensure a software
package well debugged. Our goal is to have several physics papers produced using this
new software by the end of 2001. This package is developed as a competitive alternative
to our standard analysis package (SKELANA [1]), not as a replacement. We plan to keep
our FORTRAN based solution in parallel at least until 2005.

2 Problem specification and requirements

The new analysis framework should allow future generations of physicists to work with
data without the need to become a “DELPHI expert”. One basic assumption was that the
data are derived from the final processing and no additional fine tuning will be necessary.
This remedies the need to provide numerous detector specific packages, that are currently
an important part of our analysis programs.

All information available for a given run or event should be accessible via the same
interface, thereby removing any need to manually access additional data contained in
separate files or data bases. The data should be accessible in a intuitive and abstract
form. Ambiguous information should be removed and obsolete informations should be



hidden.
A detailed analysis of the existing software and data structures has been undertaken
to understand the needs for meeting these goals.

2.1 Use Case Analysis

The most important consideration for us is the usability and acceptance by physicists.
We concentrated therefore on the analysis of so-called “use-cases” [2]. In our case these
use-cases are exemplary physics analyses, which should be supported by our framework.

A quite general category of analyses can be summarised as QCD use-case. Typical for
this kind of analysis is that well defined algorithms, such as the calculation of event shapes
or the reconstruction of jets, are applied to the event data. These algorithms typically
operate on a selection of particles. It has to be possible to apply these algorithms not
only on reconstructed quantities, but also on simulation without detector effects. Some
quantities, that are derived from event data, have to be provided, such as the effective
centre of mass energy of a high energy event (v/s'). In most cases access to more detailed
detector information is not necessary.

Other requirements were derived from a Heavy flavour use-case. As a typical example
we studied the reconstruction of a D* signal. This added the need to access trajectory
information and association between reconstructed and simulated particles. It is also nec-
essary to provide tools for secondary vertex reconstruction and kinematical fits. Another
important tool is the beauty quark tagging.

Finally we have also studied a LEP II search use-case. We found that most tasks can
be performed with tools already identified before. Some additional tools, as constrained
fits for jet systems are necessary.

It is our aim to develop a framework, such that these analysis can be performed in a
simple way. In addition to the framework we plan also to provide reference implementa-
tions for each use-case.

3 Design

As a result of the use-case analysis, entities can be categorised in two classes. One class
is concerned with the representation of data recorded by the experiment. The other
class concerns entities that represent physics algorithms and their implementation. These
elements provide the user - the physicist - with a flexible analysis environment. For a
specific problem these elements can be assembled in an easy way to form the program.

3.1 Experimental data

Two different kind of experimental data could be identified. One is the actual data
recorded for an event, the other is additional information, that is the result of monitoring
and calibrating the detector. Both types of data are provided to the physicist in a homoge-
neous environment by means of the DELIOS package [3]. As an additional advantage this
package decouples the data from the underlying storage medium. Currently this allows
to access event data stored either in ZEBRA banks [4] or Objectivity databases [5]. In the
future it could be adapted to the technology of choice. In the following the organization
of the event data is discussed in some more detail.



==Interface==

Particle

SimParticle RecParticle

Figure 1: The inheritance relation used to model the dependence of RecParticle and
SimParticle to their common interface Particle is shown by an UML diagram [7].

3.1.1 Organization in layers

A fundamental aspect is the organization of the event data in a layered model. On the
highest abstraction level the event data are organized as entities that are close to our
understanding of collision events. Events are seen as cascades of decaying particles. This
leads naturally to an organization of the data in trees consisting of particles and vertices.
On this level event data can be seen independent from the actual experiment.

Complementary to the reconstruction information also simulation information is pro-
vided on this level. There are two different kind of information, one concerning the
underlying event generator, the other concerning the detector simulation. The informa-
tion is again organized naturally as a tree of particle and vertices. For some analyses this
level is already providing enough information.

On the second level the data is seen as trajectories, reconstructed by the tracking
detectors, and showers seen in the calorimeters. While this abstraction is already closer
to the actual event reconstruction, it still can be seen in a way independent from the
experiment. Again there is a class of analyses that will need no more information.

On the third level the data is seen as actual detector data. This information is specific
to the DELPHI experiment. Its level of detail corresponds to the DELPHI short DST [6].

The Particle and Vertex layer

Reflecting the fact that similar information is provided by reconstruction and simulation,
a pattern based on interfaces has been chosen. Entities are defined by a pure abstract
base class Object. For simulation information a SimObject is derived, that implements all
attributes and values. For reconstructed entities or quantities a Rec Object is derived that
additionally provides information on the measurement uncertainty, if appropriate.

This strategy allows on the one hand to use Objects to implement algorithms, which
can be applied to simulation and to reconstruction information. On the other hand
algorithms can be implemented in terms of RecObjects, in case the full reconstruction
information is necessary. This scheme has been applied to entities like the particle itself
(Particle, RecParticle and SimParticle, see figure 1), but also to quantities like the
particle charge.

A second design choice was to express the tree structure of particles and vertices by a
tree container, that has been implemented similar to the standard containers provided by
the STL.This separation of objects and their associations provides additional flexibility.



RecParticle

|

Track

N

ChargedTrack NeutralTrack

Perigee

Figure 2: Design fragment of the track layer shown by an UML diagram. RecParticles
can have associated Track information. Depending on the type of the track an appropriate
Track object is chosen, currently a charged or a neutral track. Detailed geometrical
information are the member attributes of these objects.

A real data event contains one particle vertex tree, RecVPTree. A simulated data event
has in addition a second tree, SimVPTree. In a similar way the relation between simulated
and reconstructed entities is not implemented by links but by external associators based
on STL multimaps. Again this increases flexibility, as the choice of association between
simulation and reconstruction data might not be unique.

It was found necessary for many applications to deal with selections of particles, par-
ticle lists. To allow easy exchange, they are commonly expressed as list of particles stored
in a STL container vector<RecParticle*>.

The Track layer

This layer is concerned with the true geometrical shape of the particle trajectories. A
particle can be associated to a track, which contains information that are as close as
possible to the original measurement (see figure 2). Currently we have concentrated on
the design of the trajectory of charged tracks. We plan to complement this layer not only
with information on neutral showers but also with detailed information on reconstructed
decays, as so-called Vs and hadronic interactions.

The most important aspect of our strategy is the use of the information closely con-
nected to the actual measurement. For charged tracks in DELPHI this implies trajectory
information in so-called perigee parameters and their uncertainties [8]. Other represen-
tations, as for example the four-vectors in the particle layer, are derived from this infor-
mation. Basic functionality, as for example the extrapolation of the perigee to arbitrary
vertex positions, are provided as methods and allow to profit from the precise information
in an easy way.



This layer is essential for many physics analysis that depend on precise geometrical
information, such as the calculation of impact parameters, secondary vertices or invariant
masses.

Together with the information in this layer we have also developed tools that are
necessary for physics analysis, like an object oriented version of our vertex reconstruction.

3.2 The algorithm objects

Physics analysis are sharing a number of algorithms, that operate on event data to provide
useful information. Typically a physics analysis would create several instances of such
algorithm objects and evaluate their results in turn.

Some of these algorithms need access to all event data, the so-called EventTools. An
example is the calculation of the effective centre of mass energy at high energy events or
the beauty-quark tag. Other algorithms are defined naturally on subsets of the particles,
on particle lists, and are called ParticleListTools. A typical example is the evaluation
of event shapes and the reconstruction of jets.

Common to all algorithm objects is a calculate_on() method. Corresponding to
the algorithm object this method takes the event or a particle list as an argument. On
evaluation the algorithm object remembers the result and is providing it to the physicist
by specific access methods.

Because similar information might be obtained by different implementations, we chose
to provide abstract base classes to represent the result of algorithms. This allows to pass
the result of one algorithm to another, without introducing a dependency on the specific
implementation.

This scheme is general enough and it can be adapted to other kind of tools that are
anticipated to turn up in the further development of IDEA. It is also assumed that this
scheme is adopted by the users to provide more and more “ready to use” particle list
tools, so that other colleagues may profit from their work.

4 Status

The framework has been implemented to the extend of the QCD and the Heavy Flavour
use case. The particle and vertex layer as well as the track layer are implemented as
specified by the design. A number of event and particle list tools have already been
released. Few more complex tools are currently available by an implementation that
provides an object oriented wrapper to the legacy implementation.

After a review of our design, we plan to complement the features by working on the
next use case. Our next aim is to design and implement the access to detector specific
information.

We see the use of our framework by physicists, who might not be C++ experts, as an
important benchmark of the usability. Thus we plan to reach by autumn a phase where
we can start first “field trials”.



5 Conclusions

We believe that the data from LEP should be accessible much beyond the end of the
LEP collaboration themselves. Therefore we consider it our duty to provide a software
environment allowing access to DELPHI data which should be working at least until the
end of the exploitation of the LHC experiments.

We chose to develop the IDEA package to access our DSTs based on object oriented
technology and implemented in C++. IDEA will allow user friendly access to the DELPHI
data to the new generation of students and to the people who are willing to use modern
computing tools in the short to medium term. In the long term, it will allow easy access
to the DELPHI data for the whole HEP community, most likely limited to the detector
independent layer.

The fact that the I/O is separated from the analysis package and the layering of the
information in structures allows access independent on the choice of the storage format. In
particular one could imagine, with some effort, to use IDEA to access the DST of any ete™
collider experiment. Some of the solutions adopted at implementation level regarding the
treatment of simulated vs. reconstructed information are original and could be exported
easily to an LHC environment.

The code has been developed having specific use-cases in mind. Presently the package
can be used for analysis not too demanding on the particle identification level, QCD like,
and work is ongoing to allow spectroscopy and searches analysis by the end of the year.

Being aware of the advantages of modern storage solutions which are based on object
persistency, we would still prefer to maintain our data in ZEBRA format [4] in the case of
the experiment data. It is assumed that I'T division will care about the storage medium
and about the definition of the storage format. If it will not be possible to maintain
ZEBRA we need to know this before the end of this year, else we might lack the expertise
to convert our DSTs to any different format.

References

[1] F. Cossutti et al., Improvements to SKELANA for Version 2.0, DELPHI Note 99-175
PROG 239.

[2] G. Schneider and J. P. Winters, Applying Use-cases, Addison Wesly, 1998.

[3] N. Smirnov, F. Carena and T. Spassoff, Object model of Delphi Data, DELPHI Note
98-157 PROG 235.

[4] The ZEBRA System, CERN Program Library Long Writeups Q100/Q101.
[5] Objectivity Inc., http://www.objectivity.com
6] T. Spassoff, DELPHI extended short DST content, DELPHI Note 97-147 PROG 222.

(7] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User
Guide, Addison-Wesley, 1999.

[8] P. Billoir and S. Quinn, Fast vertezx fitting with a local parametrization of tracks,
Nucl. Instr. Meth. Phys. Res., A 311 (1992) 139-150.

6



[9] N. Smirnov, F. Carena, and T. Spassoff, Data archiving in the DELPHI experiment,
CHEP98, Chicago, 1998.

[10] T. Camporesi, P. Charpentier, M. Elsing, D. Liko, N. Neufeld, N. Smirnov, and
D. Wicke, Object oriented data analysis in the DELPHI experiment, CHEP2000,
Padova, 2000.



