Summary of R_c measurements in DELPHI

D. Bloch, J.-P. Engel (CRN Strasbourg)
T. Brenke, M. Elsing, P. Sponholz (Univ. Wuppertal)
D. Bertini, , L. Chaussard, I. Laktineh, F. Zach (IPN Univ. Lyon I)
U. Gasparini (Univ. and INFN Padova)
K. Mönig (CERN)

Abstract

A summary of all DELPHI measurements on $R_{\rm c}$ using charmed hadrons, $P_{\rm c\to D^{*+}}$ and $\frac{R_{\rm b}P_{\rm b\to D^{*\pm}}}{R_{\rm c}P_{\rm c\to D^{*+}}}$ is presented. This allows to provide the relevant tables for the LEP average. Including also a value $P_{\rm c\to D^{*+}}B_*=0.178\pm0.013$ from low energy experiments, the combined values obtained in DELPHI are :

$$R_{\rm c} = 0.1605 \pm 0.0055 \text{ (stat)} \pm 0.0075 \text{ (syst)}$$

$$P_{\rm c \to D^{*+}} Br(D^{*+} \to D^{0}\pi^{+}) = 0.1698 \pm 0.0044 \text{ (stat)} \pm 0.0073 \text{ (syst)}$$

$$\frac{R_{\rm b} P_{\rm b \to D^{*\pm}}}{R_{\rm c} P_{\rm c \to D^{*+}}} = 1.225 \pm 0.061 \text{ (stat)} \pm 0.072 \text{ (syst)}.$$

1 Common inputs

- 1. b fragmentation [1]: $\langle X_E(B) \rangle = \langle E(B)/E_{\text{beam}} \rangle = 0.70 \pm 0.02$
- 2. c fragmentation [2] : $\langle X_E(\mathrm{D}^*) \rangle_{\rm c} = 0.492 \pm 0.007 \text{ (stat + syst.DELPHI)} \pm 0.008 \text{ (model)}$
- 3. gluon splitting [1] : $\langle n({\rm g} \to c \overline{\rm c}) \rangle = (1.6 \pm 0.8)\%$
- 4. B lifetime [3] (with increased error): $\tau(B) = 1.54 \pm 0.10 \text{ ps}$
- 5. Effective mixing $\chi_{eff} = 2\chi_{D^*}(1-\chi_{D^*})$ [4]: $\chi_{eff} = 0.241^{+0.033}_{-0.045}$
- 6. Charm hadrons branching fraction and lifetime:

The ratio
$$\frac{Br(D_s \to K^{*0}K^+)}{Br(D_s \to \Phi\pi^+)} = 0.95 \pm 0.10$$
 was used.

	$\mathrm{D^0} \to \mathrm{K^-}\pi^+$	$D^+ \to K^- \pi^+ \pi^+$	$D_s \to \Phi \pi^+$	$\Lambda_{\rm c} \to {\rm pK}^-\pi^+$
Branching ratio	0.0384 ± 0.0013	0.091 ± 0.006	0.035 ± 0.004	0.044 ± 0.006
Lifetime (ps)	0.415 ± 0.004	1.057 ± 0.015	0.467 ± 0.017	0.206 ± 0.012

Table 1:

All values are from ref. [5] and are identical to those from ref. [3], except for the D⁰ branching fraction.

7. Tracking efficiency [6]: $\pm 2\%$ per track

2 Exclusive channels

2.1 D^{*+} , D^0 , D^+

$$[R_{c}P_{c\to D^{*+}}B_{*}]_{0} = (2.36 \pm 0.16 \text{ (stat)} \pm 0.18 \text{ (syst)} \pm 0.08 \text{ (syst.}Br))\% [2]$$

 $R_{c}P_{c\to D^{0}} = (9.30 \pm 0.89 \text{ (stat)} \pm 0.66 \text{ (syst)} \pm 0.32 \text{ (syst.}Br))\% [2]$
 $R_{c}P_{c\to D^{+}} = (3.47 \pm 0.34 \text{ (stat)} \pm 0.27 \text{ (syst)} \pm 0.23 \text{ (syst.}Br))\% [2]$

with $B_* = Br(D^{*+} \to D^0 \pi^+)$. The ratio

$$r_0 = \frac{R_b P_{b \to D^{*\pm}}}{R_c P_{c \to D^{*\pm}}} = 1.47 \pm 0.15 \text{ (stat)} \pm 0.13 \text{ (syst)}$$

was also measured in ref.[2] with the statistical correlation coefficient of -0.905 relative to the previous $[R_c P_{c\to D^{*+}} B_*]_0$ value.

1

$2.2 D_{\rm s}$

$$R_{\rm c}P_{\rm c\to D_s} = (2.02 \pm 0.32 \, ({\rm stat}) \pm 0.40 \, ({\rm syst}) \pm 0.24 \, ({\rm syst.}Br))\% \, [7]$$
.

2.3 $\Lambda_{\rm c}$

$$R_{\rm c}P_{\rm c\to\Lambda_c} = (1.39 \pm 0.31 \text{ (stat)} \pm 0.43 \text{ (syst)} \pm 0.19 \text{ (syst.}Br))\% [8].$$

2.4 Systematics

The following Table 2 summarizes the systematics. For r_0 and $[R_c P_{c\to D^{*+}} B_*]_0$, 61% of the internal errors are correlated. For D⁰ and D⁺, 31% of the internal errors are correlated.

	r_0	D*+	D_0	D+	D_{s}	$\Lambda_{ m c}$
Statistical	∓0.102	± 0.068	±0 . 096	±0 . 098	±0 . 158	± 0.223
Internal	∓0.050	± 0.048	±0 . 049	± 0.054	± 0.145	± 0.295
Tracking		∓ 0.035	∓0.028	∓0.03 5	∓0.03 5	∓ 0.035
c fragmentation	∓0.020	± 0.020	±0 . 020	±0.020	± 0.053	± 0.060
b fragmentation	± 0.043	∓0.033	∓0.030	∓0.028	∓0. 118	∓ 0.030
$\tau(B)$	∓0.048	± 0.023	±0 . 022	± 0.021	± 0.015	± 0.027
$g \to c\overline{c}$	∓0.018	± 0.008	± 0.008	± 0.008	± 0.008	± 0.008
Branching ratio	_	∓0.034	∓0. 034	∓0. 066	∓0. 119	∓0.136
$ au(\mathrm{D,}\Lambda)$	∓0.004	± 0.002	±0.002	±0.006	∓0.008	∓0.0 48
All systematics	∓0.086	± 0.082	± 0.079	±0 . 101	±0 . 231	± 0.338

Table 2: Relative statistical and systematic uncertainties for the exclusive channels.

3 Double tags

The fragmentation probability $P_{c\to D^{*+}}B_*$ is measured both in the $\pi_*\pi_*$ analysis [10] (labeled 1) and in the $D^*\pi_*$ analysis [9] (labeled 2). Only 10% of the double tagged $\pi_*^+\pi_*^-$ events are common with the $D^{*+}\pi_*^-$ candidates. The results are:

$$[P_{c \to D^{*+}} B_*]_1 = 0.170 \pm 0.009 \text{ (stat)} \pm 0.013 \text{ (syst)}$$

 $[P_{c \to D^{*+}} B_*]_2 = 0.163 \pm 0.016 \text{ (stat)} \pm 0.009 \text{ (syst)}$.

Note also that in the D* π_* method, $[P_{c\to D^{*+}}B_*]_2$ slightly depends on R_c :

$$[P_{c \to D^{*+}} B_{*}]_{2} = 0.163 \cdot \left[1 - 0.12 \left(\frac{R_{c}}{0.172} - 1 \right) \right].$$

The ratio r and the value of R_c are also measured in the $\pi_*\pi_*$ analysis:

$$r_{1} = \frac{R_{\rm b} P_{\rm b \to D^{*\pm}}}{R_{\rm c} P_{\rm c \to D^{*\pm}}} = 1.16 \pm 0.06 \text{ (stat)} \pm 0.13 \text{ (syst)}$$
$$\left[R_{\rm c}\right]_{1} = \frac{\Gamma_{\rm c}}{\Gamma_{\rm b}} = 0.171^{+0.014}_{-0.012} \text{ (stat)} \pm 0.015 \text{ (syst)}$$

and the statistical correlation between $[R_c]_1$ and $[P_{c\to D^{*+}}B_*]_1$ is -0.744. The same averaged ratio $r=1.25\pm 10$ was used in these results on R_c and $P_{c\to D^{*+}}B_*$. In the $\pi_*\pi_*$ method, there is also a remaining dependence of the results on R_c :

$$[P_{c \to D^{*+}} B_{*}]_{1} = 0.170 \cdot \left[1 - 0.055 \left(\frac{R_{c}}{0.172} - 1 \right) \right]$$
$$[R_{c}]_{1} = 0.171 \cdot \left[1 + 0.074 \left(\frac{R_{c}}{0.172} - 1 \right) \right].$$

The following Table 3 summarizes the systematics. In the internal error, the correlation between $[R_c]_1$ and $[P_{c\to D^*} + B_*]_1$ is also -0.744.

	r_1	$[R_c]_1$	$[P_{c \to D^{*+}} B_*]_1$	$[P_{c \to D^{*+}} B_*]_2$
Statistical	∓0.052	± 0.076	∓0.053	∓0.099
Internal	∓ 0.063	± 0.072	∓ 0.050	∓ 0.052
Tracking			∓ 0.020	∓ 0.020
c fragmentation	∓ 0.055	± 0.025	∓ 0.052	∓ 0.017
b fragmentation	± 0.069	∓ 0.027	± 0.010	± 0.004
$g \to c\overline{c}$	∓ 0.003			
χ_{eff}			± 0.004	± 0.006
$r = 1.25 \pm 0.10$		∓ 0.027	± 0.011	∓ 0.010
All systematics	∓0.108	± 0.085	∓0.076	∓0.060

Table 3: Relative systematic uncertainties for the double tag analyses.

4 $R_{\rm c}$ from the overall charm rate

$$[R_{\rm c}]_3 = R_{\rm c} [P_{\rm c \to D^0} + P_{\rm c \to D^+} + P_{\rm c \to D_s} + (1 + \delta_{\Sigma_{\rm c} + \Xi_{\rm c}}) P_{\rm c \to \Lambda_c}]$$

= 0.164 ± 0.011 (stat) ± 0.013 (syst)

where $\delta_{\Sigma_c+\Xi_c} = 0.15 \pm 0.05$ describes the $P_{c\to\Sigma_c} + P_{c\to\Xi_c}$ fraction. Due to the D⁰ and D⁺ measurements, there is still a statistical correlation between R_c from the overall charm rate and the results of the exclusive D*+ analysis (see Table 4). The systematics are detailed in the following Table 5.

	$[R_{\rm c}]_3$	$[R_{c}P_{c\to D^{*+}}B_{*}]_{0}$	r_0
$[R_{\rm c}]_3$	1.000	0.202	-0.196
$[R_{\rm c}P_{\rm c\to D^{*+}}B_{*}]_{0}$	0.202	1.000	-0.905
r_0	-0.196	-0 . 905	1.000

Table 4: Statistical correlation matrix between the overall charm rate method and the exclusive D*+ analysis.

Statistical	± 0.067
Internal	± 0.042
Tracking	∓ 0.031
c fragmentation	± 0.028
b fragmentation	∓ 0.040
$ au(\mathrm{B})$	± 0.023
$\mathrm{g} ightarrow \mathrm{c} \overline{\mathrm{c}}$	± 0.008
$Br(D^0 \to K^-\pi^+)$	∓0. 019
$Br(D^+ \to K^-\pi^+\pi^+)$	∓ 0.014
$Br(D_s \to \Phi \pi^+)$	∓ 0.014
$\frac{Br(D_s \to K^{*0}K^+)}{Br(D_s \to \Phi\pi^+)}$	± 0.004
$Br(\Lambda_{\rm c}) \to pK^-\pi^+$	∓ 0.013
$\Sigma_{\rm c} + \Xi_{\rm c}$ fraction	± 0.004
$ au(\mathrm{D^0})$	± 0.001
$\tau(\mathrm{D}^+)$	± 0.001
$ au(\mathrm{D_s})$	∓ 0.001
$ au(\Lambda_{f c})$	∓ 0.005
All systematics	±0.082

Table 5: Relative statistical and systematic uncertainties on $R_{\rm c}$ from the overall charm rate method.

5 Combination of measurements

The measurements presented here are combined together using the procedure defined by the LEP heavy flavour working group [1]. In a first step the exclusive D^{*+} and the double tag measurements are combined. For this average R_c , $P_{c\to D^{*+}}B_*$ and r are treated as free parameters. The results of this fit is:

$$R_{\rm c} = 0.1622 \pm 0.0090 \; ({\rm stat}) \pm 0.0093 \; ({\rm syst})$$

 $P_{c \to D^{*+}} B_{*} = 0.1653 \pm 0.0086 \; ({\rm stat}) \pm 0.0095 \; ({\rm syst})$
 $r = 1.259 \pm 0.066 \; ({\rm stat}) \pm 0.077 \; ({\rm syst})$

with statistical and systematic correlation matrices (Table 6). The detailed breakdown of the error is given in Table 7.

		Statistical			Systematic	
	$R_{ m c}$	$P_{c \to D^{*+}} B_*$	r	$R_{\mathbf{c}}$	$P_{c \to D^{*+}} B_*$	r
$R_{\rm c}$	1.00	-0.83	-0.33	1.00	-0.61	-0.11
$P_{c \to D^{*+}} B_*$	-0.83	1.00	-0. 02	-0.61	1.00	-0. 24
r	-0.33	-0. 02	1.00	-0.11	- 0.24	1.00

Table 6: Statistical and systematic correlation matrices of the D^{*+} and double tag analyses.

	$R_{\mathbf{c}}$	$P_{c \to D^{*+}} B_*$	r
Statistical	± 0.056	∓0. 052	∓ 0.052
Internal	± 0.051	∓0.03 9	∓0.045
Tracking	∓0.009	∓0 . 019	∓0.002
c fragmentation	± 0.016	∓ 0.035	± 0.027
b fragmentation	± 0.001	∓0. 002	± 0.020
$\operatorname{Br}(\mathrm{D}^0 \to \mathrm{K}^-\pi^+)$	∓0.020	± 0.002	∓0.003
$ au(\mathrm{B})$	± 0.001	±0 . 004	∓0.021
$\mathrm{g} ightarrow \mathrm{c}\overline{\mathrm{c}}$	_	± 0.002	∓0.008
χ_{eff}	∓0.003	± 0.005	∓0.001
All Systematics	± 0.057	∓ 0.058	∓0.061

Table 7: Relative statistical and systematic errors on R_c using the D*+ and double tag analyses.

In a second step also the R_c measurement from the overall charm rate has been included in the average. The following results have been obtained:

$$\begin{array}{rcl} R_{\rm c} &=& 0.1661 \pm 0.0072 \; {\rm (stat)} \pm 0.0081 \; {\rm (syst)} \\ P_{\rm c \to D^{*+}} B_{*} &=& 0.1622 \pm 0.0076 \; {\rm (stat)} \pm 0.0088 \; {\rm (syst)} \\ r &=& 1.245 \pm 0.062 \; {\rm (stat)} \pm 0.074 \; {\rm (syst)} \; . \end{array}$$

6 Conclusion

The DELPHI measurement of $P_{c\to D^{*+}}B_*$ agrees well with $P_{c\to D^{*+}}B_*$ obtained from low energy data of 0.178 \pm 0.013. If this number is used as an additional constraint in the fit, the results change to :

$$R_{\rm c} = 0.1605 \pm 0.0055 \text{ (stat)} \pm 0.0075 \text{ (syst)}$$

$$P_{\rm c \to D^{*+}} Br(D^{*+} \to D^{0} \pi^{+}) = 0.1698 \pm 0.0044 \text{ (stat)} \pm 0.0073 \text{ (syst)}$$

$$\frac{R_{\rm b} P_{\rm b \to D^{*+}}}{R_{\rm c} P_{\rm c \to D^{*+}}} = 1.225 \pm 0.061 \text{ (stat)} \pm 0.072 \text{ (syst)}.$$

The statistical and systematic correlation matrices are presented in Table 8 and the error breakdown in Table 9. The result for R_c is compatible with the Standard Model expectation of 0.172.

		Statistical			Systematic	
	$R_{ m c}$	$P_{c \to D^{*+}} B_*$	r	$R_{\mathbf{c}}$	$P_{c \to D^{*+}} B_*$	r
$R_{\rm c}$	1.00	-0.57	-0.40	1.00	-0.40	-0.12
$P_{c \to D^{*+}} B_*$	-0.57	1.00	-0. 76	-0.40	1.00	-0.28
r	-0.40	-0.76	1.00	-0.12	-0. 28	1.00

Table 8: Statistical and systematic correlation matrices of the final DELPHI + low energy data result.

	$R_{\rm c}$	$P_{c\to D^{*+}}B_*$	r
Statistical	± 0.034	∓0.026	∓ 0.050
Internal	± 0.037	∓ 0.024	∓ 0.047
Tracking	∓ 0.022	∓ 0.007	_
c fragmentation	± 0.005	∓ 0.020	± 0.024
b fragmentation	∓ 0.005	± 0.001	∓ 0.016
$P_{c\to D^{*+}}B_*$ (low energy)	∓ 0.023	± 0.029	∓ 0.011
$Br(D^0 \to K^-\pi^+)$	∓ 0.008	∓ 0.013	∓ 0.002
other charm Br	∓ 0.007	± 0.004	± 0.004
charm lifetime	∓ 0.001	± 0.001	± 0.002
B lifetime	± 0.005		∓ 0.002
$\mathrm{g} o \mathrm{c} \overline{\mathrm{c}}$	± 0.001		∓ 0.009
χ_{eff}	∓ 0.001	± 0.002	
All Systematics	± 0.047	∓0.0 43	∓0.059

Table 9: Relative stat. and syst. errors of the final DELPHI + low energy data result.

The three (almost) independent DELPHI measurements of R_c are summarized in Table 10. The exclusive D*+ result is obtained by combining $[R_c P_{c\to D^*+} B_*]_0$ and r_0 with the double tag measurements $[P_{c\to D^*+} B_*]_2$ and r_1 and with the value $P_{c\to D^*+} B_* = 0.178 \pm 0.013$ from low energy data.

	$R_{\rm c}$
Exclusive D*±	$0.148 \pm 0.007 \text{ (stat)} \pm 0.011 \text{ (syst)}$
Double tag of inclusive D*±	$0.171^{+0.014}_{-0.012} (\mathrm{stat}) \pm 0.015 (\mathrm{syst})$
Overall charm rate	$0.164 \pm 0.011 \text{ (stat)} \pm 0.013 \text{ (syst)}$
Total	$0.1605 \pm 0.0055 \text{ (stat)} \pm 0.0075 \text{ (syst)}$

Table 10: DELPHI R_c results.

References

- [1] The LEP Experiments: ALEPH, DELPHI, L3 and OPAL, "Combining Heavy Flavour Electroweak Measurements at LEP", CERN-PPE/96-17 (1996), Nucl. Instrum. and Methods to be published.
- [2] D. Bloch et al., DELPHI Collab., "Study of Charm Mesons Production in Z Decays and Measurement of Γ_c/Γ_h", contribution eps0557 to the International Europhysics Conference on High Energy Physics, Brussels, July 27 - August 2, 1995.
- [3] Particle Data Group, "Review of Particle Properties", Phys. Rev. **D50**, Part I (1994).
- [4] OPAL Collab., contribution eps0289 to the International Europhysics Conference on High Energy Physics, Brussels, July 27 - August 2, 1995.
- [5] Particle Data Group, "Review of Particle Properties", 1995, unpublished.
- [6] DELPHI Collab., P. Abreu et al, "Determination of $|V_{cb}|$ from the semileptonic decay $B^0 \to D^{*-}\ell^+\nu$ ", CERN-PPE/96-11 (1996), Zeit. Phys. C to be published.
- [7] I. Laktineh and F. Zach, "Measurement of $R_c \cdot P_{c \to D_s}$ using Inclusive $D_s \to \Phi \pi$ and $D_s \to K^{*0}K$ Channels, DELPHI Note 96-41 PHYS 613.
- [8] D. Bertini and L. Chaussard, "A Measurement of the Λ_c Baryon Production in Charm Decays", DELPHI Note 96-42 PHYS 614.
- [9] U. Gasparini, "Determination of $P(c \to D^{*+})$ at LEP using a Double Tag Method based on the Detection of Slow Pions opposite to Fully Reconstructed D*±", DELPHI Note 96-34 PHYS 607.
- [10] D. Bloch et al., "Update of the Double Tag Measurement of Γ_c/Γ_h and $P_{c\to D^{*+}}$ using inclusive D*±", DELPHI Note 96-33 PHYS 606.