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1 Overview

1.1 Introduction

An ECFA/DESY 1997 workshop series on the physics and detector requirements at a 500/800
GeV linear collider led to a Conceptual Design Report [?] which summarizes the findings of
the study and which forms the starting point for the GEANT description coded in the program
Brahms. The detector concept has been further developed and is more fully described in the
TESLA technical design report, published in 2001. Brahms is an implementation of the TDR
detector. The detectors in V308 reflect the state of developments as of summer 2002.

Brahms is written in FORTRAN and interfaces to GEANT3 [?]. The aim was to produce quickly
a working detailed detector simulation to provide a basis for future developments and to cross-
check the assumptions made in the fast simulations used for physics analyses. This report
describes the version 108 and is intended to act as a catalyst for additions and modifications.
It is expected that the author list will continue to grow and that this report, together with
Brahms itself, will evolve with time. In this context, the reader is encouraged to criticise both
this report and the program itself and to contribute actively to the development of the program.

As FORTRAN and GEANT3 are quickly becoming obsolete future development of a full
detector simulation for a detector at a linear collider will shift more and more to GEANT4 and
other, more modern languages. the next generation GEANT4 based simulation program within
the european linear collider study is MOKKA, developed under the leadership of a group from
the Ecole Polytechnique, France.

Nevertheless for the time being Brahms will be maintained as the basis of the simulation
software until a full replacement is available.

The user of this program is reminded that the geometry of the TDR detector is fairly
complicated, and no warranty is given that the implementation in Brahms is correct. Care
should be taken when interpreting results.

The intended user of the code will tend to be interested more in the details of detector
design, or in physics studies where simple smearing is not appropriate, rather than in general
physics studies. For this reason (and due to time constraints) the code has not been fully
optimised for the general user.

A fast simulation program describing the same detector is available from the above men-
tioned WEB pages. SIMDET V4 is the most recent version and has the TDR detector fully
implemented.

1.2 Getting the Code

The code is since version 308 maintained in a CVS depository in DESY Zeuthen. Access to
the code is via a WEB interface to the depository, or directly through a cvs server. The code
is accessible from the simulation group WEB page:

http://www-zeuthen.desy.de/linear_collider/

where also more instruction on buildung the code etc. may be found.
Three versions of the code are stored at one time – an old one, the current default one, and

a development version. Sources, makefiles and examples are provided for each version. The tree
structure of the depository is shown in figure ??.

General information on the simulation programs of the ECFA / DESY workshop can be
found at the web site:

http://www.ifh.de/linear_collider/

A dedicated Brahms Web page is accessible from this page.
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Figure 1: Layout of the central code depository for the Brahms program.

2 The Code

2.1 General

The code is written in FORTRAN. Since version 308 the code manager PATCHY has been dis-
continued, and instead the normal C preprocessor commands are used. The code is organised
in a CVS based module Brahms. Its directory structure is shown in figure ??.

Figure 2: Layout of directory structure of the CVS module Brahms.
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brinstall the installation scripts for Brahms;
brincludes the common blocks and global definitions used in Brahms;
brsimu routines for the simulation part;
brreco routines for the reconstruction;
brutil some utilities;
brmainb the main program for batch running;
brmaini the main program for interactive running;
brrecob the main program for the reconstuction only batch running;
brrecoi the main program for the reconstuction only interactive running;
brdata example data files for Brahms;
brgeom routines to define the geometry;

brbeamv1: definitions of the beam line and other machine elements
as defined in the CDR;

brbeamv2: definitions of the beam line and other machine elements
for the new beamline designs 1999;

tracking the track fitting code;
calorimetry calorimeter code;
bruser example code for the users interface (event generation);

All required GEANT include files used in Brahms are incorporated in the brincludes/brfram
directory.

The reconstruction code used in the tracking and in the calorimeter detectors is now kept
in separte directories and files. The subdirectory tracking contains the tracking code, the
directory calorimetry the calorimeter code.

The program can be run in interactive mode or in batch mode. For debugging it is useful to
store the positions along particle tracks; this also produces interesting event displays during the
interactive mode and is facilitated via a call of GSXYZ in GUSTEP. You can select the interactive
and batch mode by using running the executables brmaini.bin or brmainb.bin and doing
so will also automatically set the program up in such a way that GSXYZ is called when the
interactive mode is chosen.

The simulation and the reconstruction code is maintained in different directories. The
reconstruction code can be run independently from the simulation code. The simulation code
always contains the reconstruction code, though through use of a control card it can be switched
on or off at execution time. The corresponding executables brrecoi.bin or brrecob.bin will
be also created by the installation.

2.2 Installation of Brahms

The installation is based on a configuration script for Brahms and two makefile templates one
for the creation of the libraries and one for the creation of the executables. These files are
stored in the subdirectory brinstall. The installation has to be done in the ”root” directory
Brahms.

One has to start with the configuration by ”./brinstall/configure”. Using the -h or
--help option configure shows all its options which may be used to configure your Brahms
installation. After the configuration one has to run ”gmake” and optional ”gmake test” to
check the installation. The libraries and axecutables are stored in a seperate subdirectory
(default: a subdirectory ”build” created in the ”root” directory - see the --prefix option of
configure).

The results of gmake test are also stored herein. Details for the installation and possible
modifications are described at the WEB page:

http://www-zeuthen.desy.de/lc_repository/detector_simulation/dev/Brahms
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2.3 Structure of the program

The program is written in the context of GEANT3. The routines specific to the Linear Collider
Detector are implemented via the GEANT user routines GUxxxx. They are explained in more
detail in the following sections.

The code is split into two main parts: the simulation and the reconstruction part. If you
want to can build programs for only the reconstruction or only the simulation.

To ease the interface of user analysis code with Brahms a structure of user routines is
provided, which closely models the GEANT routines, and which are called at the end of the
relevant GEANT routines. These routines are

UBINIT initialisation, before FFREAD
UBSETR initialisation, after FFREAD
UBKINE after generator input
UBTRAK called after GUTRAK for each GEANT track individually
UBTREV called after GUTREV, once per event
UBSTEP called after GUSTEP
UBOUT(i) called at the end of each event

i=1 after the end of the simulation
i=2 after the end of the reconstruction

2.3.1 The simulation program

The simulation part of the program, the real Brahms, does all the GEANT tracking of particles
and computes hits in the sensitive detector volumes. Depending on the detector not all GEANT
hits are stored, but they are converted into hits in electronic cells (e.g. in the calorimeter).

The hits are then communicated to the reconstruction program. This can be done either in-
ternally, in which case the user has not to do anything, or they can be passed via an intermediate
hits file. The structure of the hits file is explained later.

2.3.2 The reconstruction program

The reconstruction of the simulated hits is done in the second part of the program. If run in one
job with the simulation the reconstruction is started from the routine GUOUT, at the end of
the GEANT tracking job. If run as a standalone program the system reads in the hits from the
hits file, and then starts the reconstruction. To give the reconstruction access to the detector
geometry the GEANT infrastructure is used in this case as well to build a geometrical model
of the detector.

NOTE: At the moment there is no mechanism to make sure that the geometry model of the
reconstruction program is the one actually used at the time the hits were generated. It is the
responsibility of the user to ensure that the system starts from coherent data.

2.4 User Control

The user of Brahms can control the program execution through the CERN FFREAD free format
input package. By default both in the interactive and in the batch version a file with FFREAD
cards is read in after the UBINIT, and before the UBSETR routine. All GEANT FFREAD
cards are available and can be set.

The FFREAD cards file is read in through the “generic” name cardsfile. The user is
expected to set a symbolic link from the actual file to this name.

2.4.1 Brahms FFREAD cards

At the time of writing the following FFREADS cards have been implemented. Contributions
for more cards are welcome.
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• turnon Accepts an array of 12 Integer values corresponding to the different subdetectors.
A value of 0 switches the detector off, > 0 on. The following table shows the available
switches and the order in which they have been defined. The mnemonic given is the name
of the logical variable used in the Brahms code to control the subdetector.

1 VTX =1 Pixel detector, =2 CCD detector
for CCD: add 10 to get detector for 1cm beampipe;

add 20 to get detector for 2 cm beampipe
There is currently no APS version for a 1 cm beampipe.

2 ITC Intermediate Tracker
3 FTD Forward Tracking Detector
4 SIT Silicon intermediate Tracker
5 TPC TPC
6 BCAL Barrel calorimeter
7 ECAP Endcap calorimeter
8 Coil The Coil
9 Yoke instrumented Iron
10 Lumi Luminosity calorimeter inside the mask
11 Mask The Tungsten Mask
12 Bpipe =1: normal beampipe; =2: extended beampipe to ±100m
13 Pre The preshower Detector
14 Quad beamline elements (quadrupoles etc)
15 Hall The walls (concrete) of the Hall and Tunnel

• brpmin Minimum momentum to be tracked inside the detector volume, default = 100
MeV.

• ibrpid Array to define which particles are to be tracked in sensitive detector volumes.
Order is that of Geant.

• kinfile Steers the input of 4-vectors into Brahms.
=1 Read 4-vectors from file “kinfile” via routine lcread
=2 use internal routine USKINE for user supplied interface to generator,

simple track generators or similar.

• calopt Controls the level of detail for the calorimeter simulation. Its meaning is the same
as the variable ICALOPT which is described later in the writeup in the calorimeter section.

• hcgap Controls the size of an extra gap between the HCAL and the coil. Default value
is 0. This variable allows for calorimeter studies to determine the effect of reducing the
depth of the calorimeter inside the coil.

2.5 Input/Output

The Input is performed in the subroutine GUKINE. Two modes exist: the user can read 4-vectors
from a file via the routine LCREAD in a format agreed for the workshop. Alternatively a routine
USKINE is called, where users can implement their own event generators. At the moment an
example for a simple single particle generator, an example for using PYTHIA, and an example
for running background files is included.

The kine file is read in under the “generic” name kinfile, which again the user is expected
to set.

Simulated events are passed to the reconstruction program or written to file. The format of
the intermediate hit storage is explained later in this document.
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Reconstructed events are written to file using a format developed and described in the
context of the SIMDET fast simulation program. The exact file format and the definition of
the different quantities saved are given later in this document.

2.6 Defining the Detector Geometry

The definition of the detector geometry happens in two steps, as usual in Geant. First the
materials have to be defined, then the actual geometry. The master routine called by GEANT
is UGEOM. Logically the detector is divided into four volumes:

• cave: the master volume, which encloses all other volumes.

• inner detector, volume CDET: all detector elements which are inside the coil, including
the coil itself.

• outer detector, volume ODET: all detector elements which are outside the coil.

• machine, volume MACH: all detector elements which are connected to the machine:
beampipe, beamline elements, etc.

The structure of this logical subdivision is mirrored by separate subroutines, which build the
different detector parts. Each of these routines then in turn calls one routine for every subde-
tector.

2.6.1 Material Definitions

Media in Geant need to be defined in terms of the properties when interacting with different
sorts of radiations. This is done in two places in the program: Materials, which are needed by
more than one detector, are defined in one central place in the routine DEFMED. These definitions
do not depend on the specifics of the detector.

Materials which are used by one detector only, which are specific to this detector, are
defined in a detector routine DETMAT for detector DET. Some properties of these materials might
be defined through special detector dependent parameters. If so a routine DETGEOM needs to be
called before DETMAT.

At the moment all detectors inside the coil are assumed to be immersed in a constant
magnetic field of 3T . A uniform magnetic field is defined in the opposite direction for materials
outside the coil used in the outer detectors, and the magnitude is given by the ratio of areas
inside and outside the coil (assuming simple flux conservation, in a very naive way). Materials
used in the definition of the beamline are treated in a more complicated way to properly
describe the magnetic fields inside the different beamline elements. At present there is no
special treatment of the magnetic field in the end-caps.

2.6.2 Building Detector Components

The detector geometry is defined in two steps: a routine DETGEOM fills the appropriate common
blocks with dimensions etc. In general the relevant common blocks are DETDIMS. A routine
DETBLD then builds the actual detector. As an example, if the user wants to include the TPC
the following routines are needed:

• TPCGEOM: to define the dimensions etc of the TPC

• TPCMAT: defines the TPC specific materials (gas etc. )

• TPCBLD: builds the actual geometry via calls to GSVOLU, GSPOS etc.

Switching on and off of a subdetector is defined with the FFREAD cards TURNON (see above).
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2.7 The Calorimeter

The calorimeter is one of the major components to benefit from detailed simulation. There
are three options to determine the detail of this simulation and are flagged by the value of an
integer variable ICALOPT in the routine UGEOM (FFREAD card CALOPT).

In the Brahms release 300 and higher significant changes have been introduced for the
handling and storage of calorimeter hits. The calorimeter geometry is now the one described
in the TESLA TDR. The baseline option is using a very finely segmented SI-W calorimeter as
electromagnetic calorimeter, and a scintillator - Iron tile calorimeter as the HCAL. Currently
the alternative option of using a very finely segmented hadronic calorimeter with purely digital
readout (cell hit or not hit) is not (yet) implemented in Brahms.

The calorimeters are simulated with cells of approximatley 1×1cm2 cells, even in the HCAL.
The cells are then recombined into more realistic cells in the reconstruction step. Currently
only one version exists, which simulates the analogue HCAL with cell sizes of 5 × 5cm2 and
larger.

For a detailed description of the calorimeter simulation and reconstruction the reader is
referred to [?], which is included in this note as an appendix. Means of accessing the calorimeter
information are discussed later in this manual.

At the moment the SI-W and Scintillator-Fe systems are selected by default. The older
implementations are still available within Brahms, but are no longer maintained. Details about
the older calorimeter simulation are available in older versions of this note. Its use is discouraged,
since the system is no longer supported.

2.8 Vertex Detector Options

There are two vertex detector descriptions included; a CCD pixel device which can be built by
calling

VXDBLD_CCD

or an ‘active pixel’ design which can be build by calling

VXDBLD_PIXEL

. The vertex detector option can be selected via the FFREAD cards as discussed above. As
usual, either routine should be called within UGEOM. The geometry of the ‘active pixel’ design
is described in the CDR in some detail. The geometry of the CCD design can be found in
the Lund workshop summary transparencies [?]. In version Brahms 305 the geometry of the
detector has been slightly changed to correspond to the detector presented by Chris Damerell
at Hamburg in November 1998, and updated in spring of 2001. Essentially the ladders have
been extended in z to cover a larger solid angle. Some first estimates of materials for support
structures etc are included. At the end of the active detector layers, additional pieces od silicon
have been included to simulate the readout electronics. A first estimate of material for cables
etc in the foward region is included This geometry should be treated as preliminary and with
caution.

The VXD hits are obtained by simple spatial smearing of the energy deposits performed in
the routine GUSTEP. They are contained in the array VXDHITS in the routine GUTREV.
IMPORTANT NOTE: Please treat this code with caution - it needs to be checked by the relevant
detector experts.

The output hits from the VXD are contained in the array VXDHITS in the routine GUTREV.

2.9 Forward Tracking Detectors

The FTD consists of a set of five silicon detectors placed along both z-directions. The geometry
is described in the CDR summary. As for the VXD, the FTD hits are obtained by simple spatial
smearing of the energy deposits. They are contained in the array FTDHITS in the routine GUTREV.
As with all tracking detector hits they are included in the common /CHGTRAK/ described below.
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2.10 Central Tracker - TPC

The TPC is implemented closely to that described in the CDR. At present simple, constant,
rφ and z resolutions are assumed although the functionality exists for z-dependent resolutions
as well as statistical effects involving the number of ionisation electrons. This is all treated in
the routine GUSTEP and the hits stored in the array TPCHITS. As with all tracking detector hits
they are included in the common /CHGTRAK/ described below.

The TPC is segmented into 118 radial rings and then smeared in rφ. The z-position is also
smeared according to the input values in UGEOM.

2.11 SI intermediate Tracker - SIT

The SIT has been implemented as a two layer SI detector in the barrel part. It is planned to
use SI-strips for this detector. At this stage the simulation is rather crude. It does not include
the effects of mirror and fake hits, and probably underestimates the amount of material needed
to support these detectors.

2.12 Information stored for tracks

In the following the documentation given for the different structures which are used to store
hits and tracks during the tracking are repeated. They are a straight lift from the code- the
reader is advised to check in the code that the version repeated here is up-to-date.

Access to the hits, tracks and results from the fits can be done either through a number
of utility routines (see the TK package in the tracker part of the code for a complete list of
these routines) or directly through statement functions, defined to map into the ZEBRA based
storage of the hits and tracks. In the following the statement functions are documented.

**************************************************************************
* TRACKING SUBSYSTEM: PATTERN RECOGNITION AND TRACK MERGING
*
* TKBANK data structure
*
* Kristian Harder, 30 Sep, 1999
*
* many things taken from DELPHI TANAGRA manual by D. Bertrand, L.Pape
**************************************************************************

**************************************************************************
* a) MC track bank: true track parameters for all tracks in the detector
**************************************************************************
*
* This bank is filled by the TK package before calling the local patrec
* modules.
*
* --- total number of tracks that produced at least one hit

INTEGER TKNTRK

* --- track information (equivalent arrays for integer and real access)
* first index:
* 1 (real) px
* 2 (real) py
* 3 (real) pz
* 4 (real) E
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* 5 (real) x of track origin
* 6 (real) y of track origin
* 7 (real) z of track origin
* 8 (integer) GEANT particle code
* 9 (integer) GEANT track number
* 10 (integer) number of hits left in detector
* 11 (integer) HEPEVT track number (if any, zero otherwise)

The information is accessible through two statement functions, called

• TKMCTR(11,NTKMX) ( real function)

• ITKMCT(11,NTKMX) (integer function)

**************************************************************************
* b) HIT bank: all hits collected in current event
**************************************************************************
*
* All hits recorded in the current event are saved here for use
* of the local pattern recognition modules. Filled by the TK package
* before the local patrec modules are called.
*
*
* --- total number of hits

INTEGER NTKHIT

* --- hit information (equivalent arrays for integer and real access)
* first index:
* 1 (real) x
* 2 (real) y
* 3 (real) z
* 4 (real) energy
* 5 (integer) subdetector ID
* 6 (integer) track ID, 0 for real data (sic!)
* 7 (integer) pointer to first exclusion (0 if none)
* 8 (integer) number of exclusions
* 9 (integer) resolution code (see below)
* 10 (real) resolution 1
* 11 (real) resolution 2
* position 7 and 8 are used for mutually exclusive hit candidates
* (mirror hits etc.). they point to entries in the exclusion list
* defined below.
*
* resolution code: two bits are set. The lower value bit describes which
* resolution is described by resolution 1 (pos. 10), the
* higher value bit describes resolution 2 (pos.11).
*
* bit 0 - error on r*phi
* bit 1 - error on z
* bit 2 - error on r
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The hits are available as two statement functions:

• RTKHIT(MXHT,NHMAX) (real function)

• ITKHIT(MXHT,NHMAX) (integer function)

*************************************************************************
*
* --- exclusion list (shared by all other banks)

INTEGER NEXCL,IEXCL(MXEXCL),EXCLERR

* --- pointer array: IHPOINT(ID_DET) points to position of first hit
* from subdetector ID_DET. IHNUMB(ID_DET) stores the number of hits
* found in this detector

INTEGER IHPOINT(3000),IHNUMB(3000)

**************************************************************************
* c) TE bank (subdetector output)
**************************************************************************
*
*
* Following DELPHI nomenclature, the information delivered by a subdetector
* is called track element (TE). A TE may contain fitted tracks (e.g. TPC),
* but may also contain single hits (e.g. Presampler hits).
* This bank must be filled by the local patrec modules.
*
* --- number of track elements (TEs).

INTEGER NTE

* --- DELPHI TANAGRA TE structure for track elements/hits (equivalant arrays)
* first index (m=length of packed covariance matrix):
* 1 (integer) subdetector ID
* 2 (integer) submodule: bit code for VTX/FTD layers used in TE
* 3 (integer) not used (yet) - MUST be set to zero
* 4 (integer) measurement code (see below)
* 5 (integer) pointer to end of TE (m+17)
* 6 (integer) charge (0=neutral, 1=positive, 2=negative, 3=unknown)
* 7 (integer) number of degrees of freedom
* 8 (real) chi^2 of the fit
* 9 (real) length of the track element
* 10 (real) coordinate 1 of reference point: x or R
* 11 (real) coordinate 2 of reference point: y or R*PHI
* 12 (real) coordinate 3 of reference point: z
* 13 (real) theta angle
* 14 (real) phi angle
* 15 (real) 1/p at the reference point (in 1/(GeV/c))
* (or 1/p_t - see measurement code)
* 16 (real) dE/dx (if measured - see measurement code)
* 17 (real) covariance matrix for measured quantities
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* ... (see below)
* m+16 (real) error on dE/dx if dE/dx is measured
* m+17 (real) must be 0.0
*
* measurement code:
* bit 0 = 0 for x,y,z coordinates
* = 1 for R,R*PHI,z coordinates
* bit 1 = 0
* bit 2 = 1 if coordinate 1 is known (index 10), 0 otherwise
* bit 3 = 1 if coordinate 2 is known (index 11), 0 otherwise
* bit 4 = 1 if coordinate 3 is known (index 12), 0 otherwise
* (’known’ means either defined by detector geometry or measured)
* bit 5 = 1 if R*PHI (x) is measured for bit 0 = 1 (0)
* bit 6 = 1 if z (y) is measured for bit 0 = 1 (0)
* bit 7 = 1 if theta is measured
* bit 8 = 1 if phi is measured
* bit 9 = 1 if 1/p is measured
* bit 10 = 1 if 1/p_t is measured
* (’measured’ really means measured, i.e. this quantity contributes
* to the covariance matrix)
* bit 11 = 0
* bit 12 = 0
* bit 13 = 1 if dE/dx is measured
* bit 14-... = 0
*
* covariance matrix:
* every variable activated by a 1 in bit 5..10 is included
* in the covariance matrix. for a 3d tracking detector like
* a TPC, the measured quantities are in most cases
*
* R*PHI and z (coordinates of the reference point at a reference
* radius R which therefore has no error itself)
* theta,phi,1/p
*
* In this example, the order of elements in the covariance matrix
* is the following:
*
* D(R*PHI,R*PHI),
* C(R*PHI,z), D(z,z),
* C(R*PHI,theta), C(z,theta), D(theta,theta),
* C(R*PHI,phi), C(z,phi), C(theta,phi), D(phi,phi),
* C(R*PHI,1/p), C(z,1/p), C(theta,1/p), C(phi,1/p), D(1/p,1/p)

The TE are accessble through statement functions:

• ITE(MXTE,MXEVTE) (integer function)

• REAL RTE(MXTE,MXEVTE) (real function)

* --- additional information. first index:
* 1 (integer) position of first associated hit in hit list (see below)
* 2 (integer) number of hits
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* 3 (integer) pointer to first exclusion (0 if none) in exclusion list
* 4 (integer) number of exclusions
* 5 (integer) track no. (positive if 95% of the hits belong to
* same track, negative if 75%, zero below.)
* remark: the exclusion list is shared with the hit bank (see there).

This information is accessible through a statement function:

• ITEDAT(5,MXEVTE) (integer function)

* --- hit list: pointers to entries in the hit bank.

INTEGER NHITTE,IHITTE(NHMAX)

**************************************************************************
* d) TS bank (ambiguous full track candidates)
**************************************************************************
*
* Merging result as created by the TK package and DELSEARCH.
* Ambiguous use of TEs is possible here; the unambiguous optimal
* track reconstruction will be entered into the TK bank (see below)
*
* --- number of tracks segments (TS) found by DELSEARCH

INTEGER NTS

* --- DELPHI TANAGRA TS structure
* first index (m=length of packed covariance matrix):
* 1 (integer) module identifier (internal use only)
* 2 (integer) bit code for used detectors
* 3 (integer) measurement code (see below)
* 4 (integer) track type (see below)
* 5 (integer) number of TEs used in this TS
* 6 (integer) charge (0=neutral, 1=positive, 2=negative, 3=unknown)
* 7 (integer) not used (must be zero, though)
* 8 (integer) number of degrees of freedom of the track fit
* 9 (real) chi^2 of the track fit
* 10 (real) track segment length
* 11 (real) x of TS start point
* 12 (real) y of TS start point
* 13 (real) z of TS start point
* 14 (real) x of TS end point
* 15 (real) y of TS end point
* 16 (real) z of TS end point
* 17 (real) coordinate 1 of reference point: x or R
* 18 (real) coordinate 2 of reference point: y or R*PHI
* 19 (real) coordinate 3 of reference point: z
* 20 (real) theta angle
* 21 (real) phi angle
* 22 (real) 1/p at the reference point (in 1/(GeV/c))
* (signed with geometric curvature of track
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* measured from nside to outside of detector)
* 23 (real) covariance matrix for measured quantities
* ... (as above)
* 37 (real)
*
* measurement code:
* bit 0 = 0 no estimate at all for the track segment parameters
* = 1 track segment parameters are given
* bit 1 = 0 for x,y,z coordinates
* = 1 for R,R*PHI,z coordinates
* bit 2 = 0 crude estimation of errors (diagonal cov. matrix)
* = 1 full covariance matrix
* bit 3 = 0 all parameters are given if bit 0 is on
* = 1 no error matrix/starting point/end point
*
* track type:
* not yet documented. 1+8 (bits 0 and 3 set) means:
* crude estimation, plane reference surface (cartesian coordinates),
* no start/end points given

INTEGER ITS(MXTS,NTSMX)
REAL RTS(MXTS,NTSMX)
EQUIVALENCE (ITS,RTS)

* --- additional TS information. first index:
* 1 (integer) position of first associated TE in TE list (see below)
* 2 (integer) number of TEs
* 3 (integer) pointer to first exclusion (0 if none) in exclusion list
* 4 (integer) number of exclusions
* 5 (integer) track no. (positive if 95% of the hits belong to
* same track, negative if 75%, zero below.)
* remark: the exclusion list is shared with the hit bank (see there).

INTEGER ITSDAT(5,NTSMX)

* --- TE list. contains all TEs that are used by the TS. (referenced in ITSDAT)

INTEGER NTSTEL,ITSTEL(MXEVTE)

**************************************************************************
* e) TK bank (the real tracking result - unambiguous track candidates)
**************************************************************************
*
* Filled by TK package after resolving all TS ambiguities.
*
*
* --- number of tracks (TK)

INTEGER NTK

* --- DELPHI TANAGRA TK structure
* first index (m=length of packed covariance matrix):
* 1 (integer) module identifier (internal use only)
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* 2 (integer) bit code for used detectors
* 3 (integer) measurement code (see below)
* 4 (integer) track type (as above)
* 5 (integer) number of TEs used in this TK
* 6 (integer) charge (0=neutral, 1=positive, 2=negative, 3=unknown)
* 7 (integer) not used (must be zero, though)
* 8 (integer) number of degrees of freedom of the track fit
* 9 (real) chi^2 of the track fit
* 10 (real) track length
* 11 (real) x of TS start point
* 12 (real) y of TS start point
* 13 (real) z of TS start point
* 14 (real) x of TS end point
* 15 (real) y of TS end point
* 16 (real) z of TS end point
* 17 (real) coordinate 1 of reference point: x or R
* 18 (real) coordinate 2 of reference point: y or R*PHI
* 19 (real) coordinate 3 of reference point: z
* 20 (real) theta angle
* 21 (real) phi angle
* 22 (real) 1/p at the reference point (in 1/(GeV/c))
* (signed with geometric curvature of track
* measured from inside to outside of detector)
* 23 (real) covariance matrix for measured quantities
* ... (as above)
* 37 (real)
*
* measurement code:
* bit 0 = 0 for x,y,z coordinates
* = 1 for R,R*PHI,z coordinates

INTEGER ITK(MXTK,NTKMX)
REAL RTK(MXTK,NTKMX)
EQUIVALENCE (ITK,RTK)

* --- additional TK information. first index:
* 1 (integer) position of first associated TE in TE list (see below)
* 2 (integer) number of TEs
* 3 (integer) track no. (positive if 95% of the hits belong to
* same track, negative if 75%, zero below.)

INTEGER ITKDAT(3,NTKMX)

* --- TE list. contains all TEs that are used by the TK. (referenced in ITKDAT)

INTEGER NTKTEL,ITKTEL(MXEVTE)

**************************************************************************

C --- the tracking common block
COMMON /TKBANK/ TKNTRK,
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* & TKMCTR,
> NTKHIT,

* & ITKHIT,
> NEXCL,IEXCL,EXCLERR,
> IHPOINT,IHNUMB,
> NTE,

* ITE,ITEDAT,
> NHITTE,IHITTE,
> NTS,ITS,ITSDAT,NTSTEL,ITSTEL,
> NTK,ITK,ITKDAT,NTKTEL,ITKTEL
SAVE /TKBANK/

**************************************************************************

+KEEP,TKNOISEPAR.
***********************************************************
*
* background hits per bunch crossing for tracking detectors
*
***********************************************************

INTEGER TNVXL1,TNVXL2,TNVXL3,TNVXL4,TNVXL5
INTEGER TNVTX1,TNVTX2,TNVTX3,TNVF2A
INTEGER TNFTD1,TNFTD2,TNFTD3,TNFTD4,TNFTD5,TNFTD6,TNFTD7
INTEGER TNSIT1,TNSIT2
INTEGER TNFCH
INTEGER TNNBX,TNENERGY

COMMON /TKNOISEPAR/
> TNVXL1,TNVXL2,TNVXL3,TNVXL4,TNVXL5,
> TNVTX1,TNVTX2,TNVTX3,TNVF2A,
> TNFTD1,TNFTD2,TNFTD3,TNFTD4,TNFTD5,TNFTD6,TNFTD7,
> TNSIT1,TNSIT2,
> TNFCH,
> TNNBX,TNENERGY
SAVE /TKNOISEPAR/

2.13 Track Reconstruction

A full pattern recognition module is available in Brahms which has been developed based on
code from DELPHI and OPAL. Pattern recognition is performed in each subdetector capabale
of doing so: SI detector, TPC, FCH at the moment. In a second step the track information
from each individual sub-detector is merged using a merging processor. The structure and
performance of the pattern recognition package is described in detail in [?].

Alternatively the user can select a “fake” option where no pattern recognition is done, but
the MC information is used to define tracks.

In each case the tracks are then fitted using a KALMAN filter algorithm.
The track fitting is done in two steps. In a first step the hits in the TPC and separately the

hits in the ITC are fitted to reconstruct the track segments measured in both detectors. In the
second step these track segments are combined with the silicon hits to reconstruct the full track.
The first step can later be replaced by a local pattern recognition for the two subdetectors, the
second step can be interfaced after a future global track search.
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The Kalman filter track fit uses a simplified description of the detector material to allow
for energy loss and multiple scattering. The material is represented in list of surfaces, which
are either symmetric cylinders or planes around the beam pipe. The energy loss in GeV (for a
mip) and the number of radiation length, for a particle crossing the surface perpendicular, are
stored in the structure. Two setups are prepared in the current version representing the CCD
or the PIXEL setup of the detector.

A second set of surfaces is implemented containing at least one surface per subdetector.
The fit package generates extrapolations to all of these surfaces which are crossed by the fitted
track. These extrapolations contain the full energy loss and multiple scattering corrections.
Such improved extrapolations (compared to a simple helix ansatz) are very useful for a future
pattern recognition package. They are not yet used in the code.

The fit package contains an outlayer removal on the basis of a χ2 cut. This logic can be
used inside a future pattern recognition algorithm to remove fake hits associated to a track.

The name of the fit package is DELFIT. It is called via the routine:

SUBROUTINE TRKFIT(NHITS,TRKHITS,VPOS,FITRES,FITCOV,
& CHI2,IERROR,NDF)

The parameters are:

input:
NHITS Number of hits on the track
TRKHITS (NMXCHIT,5) dimensional array containing hit values:

(1) x-position of hit
(2) y-position of hit
(3) z-position of hit
(4) number of ionized electrons in hit
(5) Type of detector hit
(6) rφ error of hit
(7) z error of hit

VPOS 3-Dimensional vector for reference point
Output:
FITRES Fit result (σr−Φ,σz, θ,φ, 1/p)

(σr−Φ,σz are the impact paramaters wrt. the reference point.)
FITCOV packed covariance matrix
chi2 fit chi2
TRKHITS (5) on output TRKHITS(5) is set negative if the hit was rejected by the

outlier removal
ndf number degrees of freedom of the fit after removing outlyers.
IERROR Error flag; ZERO if OK.

TRKFIT converts the hits into the internal DELPHI format and steers the fitting of the track-
elements within the TPC and the ITC and the fitting of the full track. The interface to the
DELPHI fit package itself is provided by the routine TK2FIT
TK2FIT first obtains a rough estimate of the track parameters as a starting point for the fit.
This is done either by using the track segment parameters from the previous fit to the TPC or
ITC hits, or by preforming a polar inversion on all hits. The track fit steering routine FK3TRK
is called twice to use the result of the first call to improve this starting point. After the iteration
the optimal track parameters are returned as well as a list of outlayer hits removed from the
fit.

2.14 Luminosity Calorimeter

The Luminosity Calorimeter and the Large Angle Tagger are implemented as described in
the TDR as SI-W calorimeters with fine sampling in both the transverse and the longitudinal
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direction. The LAT is part of the calorimeter system and as such is used in the reconstruction
of the energy flow in the event.

2.15 Instrumented Coil

The coil is treated as a cylinder of ‘sensitive’ aluminium material in the routine COILMAT so
that the amount of energy lost in the coil can be obtained. In addition a cylindrical layer of
scintillator is included at the outside of the coil to act as a coil ‘calorimeter’. The output is
included in the common COILHITS:

INTEGER NCLMAX
PARAMETER(NCLMAX=1000)
REAL ECLMAT,ECLSCN,ECLMTOT,ECLSTOT
INTEGER ICLTRAK,NUMBVCL,NCLMAT,NCLSCN
COMMON /COILHITS/ECLMAT(4,NCLMAX),ECLSCN(4,NCLMAX),ICLTRAK(NCLMAX),

& NUMBVCL(NCLMAX),NCLMAT,NCLSCN,ECLMTOT,ECLSTOT

where NCLHITS is the number of coil hits, ECLMAT(4,IHIT),ECLSCN(4,IHIT) are the energy
deposits and ECLMAT(I,IHIT),ECLSCN(I,IHIT) I=1,3 are the x,y,z coordinates of the deposits
in the MATerial and SCiNtillator respectively. ICLTRAK is the GEANT track which produced
the hit. The total energies deposited in the coil material and scintillator are returned in the
variables ECLMTOT,ECLSTOT respectively.

2.16 Instrumented Iron

The return yoke can be built by calling YOKEBLD in UGEOM. The yoke exists as material only
with any total energy deposit being output within the array YOKHITS in GUTREV. The iron has
been segmented according to the description given in the TDR. The information is available
but at this stage has not yet been implemented in the reconstruction routines.

3 The HITS storage

Since release 308 Brahms supports the new common data model and storage model LCIO.
Output of hits is realised in the LCIO data model. The reader is referred to the LCIO manual
for a detailed documentation of the quantities stored, and for methods to access the information.

The hits file contains also information about the detector geometry used in the simulation.
This is read by the reconstruction program an used to build it accordingly.

For backwards compatibility the old method of storing hits etc in Brahms has been retained.
The following documentation is only concerned with the old method.

3.1 The old (pre LCIO) HITS storage model

Brahms offers the user the possibility to store the GEANT hits in a file and to read them back
at a later time into the reconstruction program. This saves significant amounts of CPU time if
e.g. different reconstruction algorithms should be tested or compared.

The hits are written into a binary stream with on-the-fly compression. A number of simple
interface routines are provided to facilitate the writing and reading from the files.

As of Brahms version 306 no knowledge about the length of individual records is needed any
more. The interface routines deduce this from the file and read in the appropriate number of
bytes automatically. As a consequence the internal format of the hit files has changed between
version 305 and 306. While Brahms 306 is backwards compatible and can read old-style files,
only new styles ones can be written.
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The structure of the file is as follows:

_______________________________________________________________________
SOF => Start of file marker 16 bytes

(1) = ’S’
(2) = ’O’
(3) = ’F’
(4) = number of words in the extended header

_______________________________________________________________________
extended header #(4)*4 bytes- 16 bytes

(1) - (20) code (see Brahms) for subdetector configuration of
the particular run

(21) number of events skipped when doing the simulation
(22) IO version number
(23) code number to identify that version numbers
(23) - #(4) not used

_______________________________________________________________________
MC information: a copy of the kinfile record

(1) number of HEP-evt records
(1)* 15 words per record

------------------------------------------------------------------------

SOR => Start of Run marker 12 bytes
________________________________________________________________________
| Run header 40 bytes
|
| (1) = run number
| (2) = event number
| (3-10) = not used
|_______________________________________________________________________

for each detector stored and for each event:
________________________________________________________________
| Detector header 12 bytes
| (1) = detector ID
| (2) = number of detector blocks
| (3-10)= not used
|_______________________________________________________________

for each detector block
________________________________________________________
| detector block header 40 bytes
| (1) = detector ID (maybe sub-ID, if implemented)
| (2) = version number
| (3) = # of hits stored
| (4) = # of words / hit stored
|_______________________________________________________

for each hit
________________________________________________
| hit information
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| (# of hits) * (# of words) * 4 bytes
|_______________________________________________
| MC track information
| (# of hits) * 4 bytes
|_______________________________________________
| volume information (volume number of the hit)
| (# of hits) * (# of words) * 4 bytes
|_______________________________________________

at the end of each event

________________________________________________________________
| EOB = End of Block 12 bytes
|_______________________________________________________________

at the end of the file
________________________________________________________________________
EOF = End of File Marker
________________________________________________________________________

The information stored for each detector is different from detector and detector and mirrors
at the moment the information stored in the GEANT hits common blocks. Typically the first
three words are the spatial coordinates of the hit (x,y,z) in carthesian coordinates, followed by
(if appropriate) the energy deposited and possibly other information. Please refer to the code
to find out the exact details.

4 Storing Energy Flow Objects

The result of the processing of tracks, calorimeter information and muon system information
are energy flow objects. The information about the energy flow objects is stored in a ZEBRA
structure, located in the main store, with the top bank called BDST.

For each energy flow object a sub-bank is created, hanging at link −neflow, where neflow
is the number of the energy flow. The bank structure is shown in in Figure ??.

The information for each energy flow object is stored in banks BDS1 to B999 (at the
moment the number of eflow objects is limited to 300 by the SNARK program.). The energy
flow objects are accessible through the statment function REF(index, ieflow) and IEF(index,
ieflow) respectively. They are defined in the common BRDFUNC2 and BRDFUNC.

For each energy flow object the following words are stored:
REF(1,i) Px
REF(2,i) Py
REF(3,i) pz
REF(4,i) E
IEF(5,i) ID (only for MC)
REF(6,i) 1.0: object is linked to track

2.0: object islinked to track, but track is secondary
IEF(7,i) track number (TK) for charged, cluster number for neutral object
REF(8,i) charge

There are a total of nef(1) energy flow objects available. An additional bank is available
at position nef(1) + 1, which collects the information on any hits in the calorimeter which are
not connected with an energy flow object.

Each bank supports two banks: BEHT and BHHT, in which pointers at the hits in the
ECAL (BEHT) and HCAL (BHHT) are stored. These pointers are accessible through the
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Figure 3: Typical bank layout for the energy flow objects.

statement functions: IEF EP(index, ieflow) and IEF HP(index, ieflow). The pointers
point straight into the common ECRECONST and HBRECONST, where the calorimeter
hits are stored.

The word at position 7 of the energy flow object can be used to access the tracker information
or the cluster information, depending on whether the objects is charged or neutral.

5 DST Output

It is our aim to implement the output of the reconstructed objects in LCIO as well if the LCIO
data model is completed. Details will be described in the LCIO manual.

In addition Brahms is capable of writing an output rather similar to the one produced by
SIMDET. Thus it should be possible to run the same analyses on SINDET and on Brahms
output. The relevant part from the SIMDET manual is reproduced here - the details will
probably change as the format of the records change over time.

The number of energy flow objects, NEFLOW, then follows. For each object, blocks of
records follow, describing status information, best estimates, generator information, charged
particles, calorimeter clusters and muons from the muon system, in this order.
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Figure 4: Layout of the pointer bank, supported by an energy flow bank.

File header record:

Offset Variable name Data type Meaning
1 INSTATE INTEGER ISR flag, PYTHIA default:

0 = no radiation,
1 = ISR & Beamstrahlung,
2 = ISR only,
3 = Beamstrahlung

2 SQRTS REAL nominal collider cms energy [GeV]
3 SIGMA REAL Cross section [fb], if provided
4 IDCLASS INTEGER Reaction identifier, user defined
5 NEVENT INTEGER Number of events to be processed
6 IFBEST INTEGER Flag for best estimates
7 IFFORM INTEGER Flag for formatted output
8 IFDEDX INTEGER Flag for dEdx
9 IFHIST INTEGER Flag for complete (restricted) event history
10 IFBKGR INTEGER Flag for background events

This record is written once per file.
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Generated particle record:

Offset Variable name Data type Meaning
1 STATUS INTEGER 0 = no detector response, 1 = detector response
2 ID INTEGER particle code according to PYTHIA convention
3 line INTEGER line number of particle in the PYTHIA record
4 Px REAL x-component of momentum [GeV]
5 Py REAL y-component of momentum [GeV]
6 Pz REAL z-component of momentum [GeV]
7 E REAL Energy [GeV]
8 m REAL mass of particle [GeV]
9 Q REAL charge of particle
10 x REAL x-component of vertex [mm]
11 y REAL y-component of vertex [mm]
12 z REAL z-component of vertex [mm]
13 Time REAL time of production [mm/c]

This record is repeated NGENPA times.

Energy flow record 1: status of energy flow object

Offset Variable name Data type Meaning
1 STATUS INTEGER < 0: invalid object,

1=charged object,
2=neutral object,
3=composite object

2 Type INTEGER particle code according to PYTHIA convention,
999 = cluster of unresolvable neutral and charged particles

3 NGEN INTEGER number of generator particles contributing
to the energy flow object

4 NTRK INTEGER number of charged particles contributing
to the energy flow object

5 NCAL INTEGER number of clusters contributing to the energy flow object
6 NMUS INTEGER number of muons contributing to the energy flow object

This record and the following blocks are repeated NEFLOW times.

Energy flow record 2: best estimate for object’s energy and direction

Offset Variable name Data type Meaning
1 Px REAL x-component of momentum [GeV]
2 Py REAL y-component of momentum [GeV]
3 Pz REAL z-component of momentum [GeV]
4 E REAL Energy [GeV]
5 m REAL mass of particle [GeV]
6 Q REAL charge of particle

This record is written once per energy flow object.

Energy flow record 3: generator particle contributing to energy flow object

Offset Variable name Data type Meaning
1 link INTEGER line number of particle in the PYTHIA record
2 Efrac REAL energy fraction

This record is repeated NGEN times.
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Energy flow record 4: charged particle tracks that are part of the object

Offset Variable name Data type Meaning
1 P REAL absolute value of momentum [GeV]
2 Theta REAL polar angle [radian]
3 Phi REAL azimuth angle [radian]
4 Q REAL charge of particle
5 Imp(R,phi) REAL transverse impact parameter [cm]
6 Imp(R,z) REAL longitudinal impact parameter [cm]
7 cov. matrix REAL xy-xy element
8 cov. matrix REAL xy-z element
9 cov. matrix REAL z-z element
10 cov. matrix REAL xy-theta element
11 cov. matrix REAL z-theta element
12 cov. matrix REAL theta-theta element
13 cov. matrix REAL xy-phi element
14 cov. matrix REAL z-phi element
15 cov. matrix REAL phi-theta element
16 cov. matrix REAL phi-phi element
17 cov. matrix REAL xy-1/p element
18 cov. matrix REAL z-1/p element
19 cov. matrix REAL theta-1/p element
20 cov. matrix REAL phi-1/p element
21 cov. matrix REAL 1/p-1/p element
22 dEdx REAL signed electron probability
23 dEdx REAL signed muon probability
24 dEdx REAL signed pion probability
25 dEdx REAL signed kaon probability
26 dEdx REAL signed proton probability
27 dEdx REAL normalised electron dEdx value
28 dEdx REAL normalised muon dEdx value
29 dEdx REAL normalised pion dEdx value
30 dEdx REAL normalised kaon dEdx value
31 dEdx REAL normalised proton dEdx value

This record is repeated NTRK times.

Energy flow record 5: calorimeter cluster (ECAL/HCAL/LAT/LCAL) that are
part of the object

Offset Variable name Data type Meaning
1 E REAL energy [GeV]
2 Theta REAL polar angle [radian]
3 Phi REAL azimuth angle [radian]
4 Time REAL timing information
5 C(em) REAL probability of being consistent

with an electromagnetic particle
6 E REAL energy [GeV]
7 Theta REAL polar angle [radian]
8 Phi REAL azimuth angle [radian]
9 Time REAL timing information
10 C(mip) REAL probability of being consistent

with a minimum ionizing particle

This record is repeated NCAL times.
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Energy flow record 6: muons from the muon system that are part of the object

Offset Variable name Data type Meaning
1 E REAL energy [GeV]
2 Theta REAL polar angle [radian]
3 Phi REAL azimuth angle [radian]
4 Q REAL charge of particle
5 Time REAL timing information
6 C(punch) REAL probability of being consistent

with an punch-through object

This record is repeated NMUS times.
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7 Appendix: The Tracking Package

Kristian Harder

Track reconstruction in all Brahms versions since 2.00 is performed by a complex software
package, the largest part of which has been adapted from corresponding software in actual use
at the LEP experiments. Code from ALEPH, DELPHI and OPAL was merged with dedicated
new code to achieve the desired functionality. This implies, however, that the Brahms track
reconstruction package is a collection of completely different programming styles, making it
sometimes hard to understand the structure and basic ideas of the code. This document intends
to support further Brahms track reconstruction development, tuning and debugging by giving a
walk-through through all relevant components of the track reconstruction software. Important
parameters are discussed as well as known shortcomings of the code (as of Brahms 3.05).

First, a brief overview over the modules of the reconstruction code will be given. The main
part of this document will then describe the track reconstruction process routine by routine.
This document will conclude with a set of receipts for tuning the performance of Brahms and
adding or changing subdetectors.

This note is based on Brahms version 3.05 as of November 1, 2002. However, most statements
should be valid for a large variety of Brahms versions since 2.00.

7.1 Overview of the track reconstruction modules and data formats

Each package introduced in this section is merged into Brahms as individual program source
file. The package names being referred to in the following correspond to the respective file name
(except version number and file name extension) in the Brahms code subdirectory src/tracker/.

The steering package TKSTEER provides interfaces to all individual tracking packages and
handles data storage, format conversion, user interface and global performance analysis. It runs
a three-stage track reconstruction process: first, local track search in the individual subdetectors
are performed. Three local track searches are implemented: SIPATREC investigates the silicon
based inner tracking system of vertex detector (VTX), silicon intermediate tracker SIT and
forward tracking disks FTD. TPCPATREC performs a track search in the TPC. FCHPATREC
finally looks for tracks in the additional forward chambers behind the TPC end caps. TKSTEER
provides hits in the tracking system in a common format, shown in Table ?? for easy access by
local track searches. TKSTEER requires all local track search packages to present their output
in the TE (track element) data format given in Table ??. The TE format is general enough to
accommodate both local tracks and single hits. This is used for the silicon pattern recognition,
where all hits are passed on to later reconstruction steps along with the tracks found locally.
This is done to allow a refinement of the local silicon track search, which suffers most of all local
track searches from background hits, at a later stage of the global track reconstruction process.

The TE format is a mixed type (integer and real) array, which does seem a bit inconvenient
and inflexible from today’s standard, but it has to be used to avoid major rewriting of the
second stage of the track reconstruction, coded in the DELSEARCH package. DELSEARCH
attempts to find matching TEs from individual subdetectors. This is done by creating seed
tracks out of TEs, extrapolating their parameters to all subdetectors in question, and picking
up matching TEs from these subdetectors. In order to be able to pick up individual silicon
hits, all silicon layers are treated as separate subdetectors in this code. DELSEARCH assigns
TEs to any global track candidate where they fit into according to the track parameters and
errors. It does not care about possibly ambiguous assignments of single TEs to more than one
such global track candidates. The result of DELSEARCH is therefore not considered final, but
is given in terms of TSs (track segments, see Table ??) which have to processed further.

The third step of track reconstruction tries to reduce the set of partially redundant and
ambiguous TSs to a consistent set of tracks (TKs, see Table ??). This set is optimized by
a maximizing a score function taking into account the total number of tracks, the number of
TEs used in these tracks (with different weights for different subdetectors) and the track fit χ2.
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index type meaning unit
1 real x position cm
2 real y position cm
3 real z position cm
4 real deposited energy GeV
5 integer subdetector ID (Brahms convention, i.e. > 100) —
6 integer Monte Carlo track ID, 0 for real data (sic!) —
7 integer pointer to first exclusion (0 if none) —
8 integer number of exclusion list entries for this hit —
9 integer resolution code: bit 0 set if error on rφ given, —

bit 1 set for error on z, bit 2 for error on r.
exactly two bits should be set.

10 real first resolution word, cm
corresponding to lower active bit at index 9

11 real second resolution word, cm
corresponding to upper active bit at index 9

Table 1: Data format for hit storage in the tracking banks. The mixture of real and integer
variables in one array is achieved by declaration of a real and an integer array and equivalencing
them. It is the responsibility of the user to know which index to access as which datatype.
Indices 7 and 8 are used for mutually exclusive hit candidates (e.g. mirror hits in strip detectors).
They point to entries in a separate exclusion list (array IEXCL in the TKBANK sequence).

The optimization is done in a recursive algorithm, for which the C programming language was
preferred over Fortran. This code package consists therefore of two files: DELSOLVE contains
the main C coded algorithm, and DELAMBI provides a Fortran-to-C interface for it.

All track reconstruction packages use the package DELFIT to perform track fits. DELFIT
is a fast track fit package using a set of infinitely thin material planes as detector representa-
tion. These material planes are being set up in Brahms together with the detector geometry
definitions. Deviations from detector setup and fit material database can lead to significant
degradation of the tracking performance.

All packages described so far provide realistic track reconstruction algorithms, i.e. do not
use any specific Monte Carlo information. However, for debugging and/or benchmark purposes,
the full chain can be switched to ideal track reconstruction using FFREAD cards. Ideal (or
“dummy”) track search in the individual subdetectors is done in an extra package (DUMPA-
TREC) to keep the complicated realistic track search packages free from extra code for this
option. DELSEARCH does not require too much extra code for ideal subdetector merging;
therefore this option is included in the main code itself. Since ideal merging does not lead to
ambiguities, the DELSOLVE stage is per definition inactive in ideal reconstruction mode, and
no extra measures had to be taken to accommodate for both reconstruction variants. Ideal
reconstruction, as well as performance analysis of the realistic reconstruction, requires access to
the Monte Carlo information. For this purpose, TKSTEER keeps a record of all Monte Carlo
tracks (data format as in Table ??).
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index type meaning unit
1 integer subdetector ID —
2 integer submodule: bit code for VTX/FTD layers —

used in TE, ignored otherwise
3 integer not used (yet) - MUST be set to zero —
4 integer measurement code (see below) —
bit 0 0 for x, y, z coordinates; 1 for R, RΦ, z coordinates

1 always 0
2 1 if coordinate 1 is known (index 10 in TE), 0 otherwise
3 1 if coordinate 2 is known (index 11 in TE), 0 otherwise
4 1 if coordinate 3 is known (index 12 in TE), 0 otherwise

(’known’ means either defined by detector geometry or meas.)
5 1 if RΦ (x) is measured for bit 0 = 1 (0)
6 1 if z (y) is measured for bit 0 = 1 (0)
7 1 if Θ is measured
8 1 if φ is measured
9 1 if 1/p is measured
10 1 if 1/pt is measured

(’measured’ really means measured, contrib. to the cov. matrix)
11 always 0
12 always 0
13 1 if dE/dx is measured
14-... always 0

5 integer pointer to end of TE (m+17, m=length of cov. matrix) —
6 integer charge (0=neutral, 1=positive, 2=negative, 3=unknown) —
7 integer number of degrees of freedom —
8 real χ2 of the fit (if any — set to 1 otherwise) —
9 real length of the track element cm
10 real coordinate 1 of reference point: x or r cm
11 real coordinate 2 of reference point: y or rφ cm
12 real coordinate 3 of reference point: z cm
13 real polar angle Θ at reference point 0..π
14 real azimuthal angle φ at reference point 0..2π
15 real 1/p or 1/pt at the reference point (see meas. code) (GeV/c)−1

16 real dE/dx (ignored if not measured) ???
17 real covariance matrix for measured quantities:

RΦ, z (reference point at fixed radius R),
Θ, φ, 1/p has the following entries:
(RΦ,RΦ),

... (RΦ,z), (z,z),
(RΦ,Θ), (z,Θ), (Θ,Θ),
(RΦ,φ), (z,φ), (Θ,φ), (φ,φ),
(RΦ,1/p), (z,1/p), (Θ,1/p), (φ,1/p), (1/p,1/p)

m+16 real error on dE/dx if dE/dx is measured ???
m+17 real must be 0.0 —

Table 2: TE (track element) data format (from the DELPHI TANAGRA database system)
for storage of subdetector contributions, both single hits and locally fitted tracks, to the global
track search. The covariance matrix describes all parameters that are measured according to the
TE measurement code. In the measurement code bits 5–10 describe the variables contributing
to the TE covariance matrix. The order of the variables in the covariance matrix is the same
as herein.
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index type meaning unit
1 integer module code (internal use only)
2 integer bit code for used detectors
3 integer measurement code (see Table ??)
4 integer track type: always 9 in Brahms
5 integer number of TEs used in this TS
6 integer charge (0=neutral, 1=positive,

2=negative, 3=unknown)
7 integer always 0
8 integer number of degrees of freedom of the track fit
9 real χ2 of the track fit
10 real track segment length cm
11 real x of TS start point cm
12 real y of TS start point cm
13 real z of TS start point cm
14 real x of TS end point cm
15 real y of TS end point cm
16 real z of TS end point cm
17 real coordinate 1 of reference point: x or R cm
18 real coordinate 2 of reference point: y or RΦ cm
19 real coordinate 3 of reference point: z cm
20 real Θ angle at reference point 0..π
21 real φ angle at reference point 0..2π
22 real 1/p at reference point (GeV/c)−1

(signed with geometric curvature of track
measured from inside to outside of detector)

23 real covariance matrix for measured quantities
... (as above)
37 real

Table 3: Data format for ambiguous global track candidates (track segments, TS). These rep-
resent the merging result as created by the TKSTEER package and DELSEARCH. Ambiguous
use of TEs is possible here, e.g. use of the same TE in more than one TS; the unambiguous
optimal track reconstruction is stored in TK banks (see Table ??).

bit meaning
0 0 no estimate at all for the TS parameters

1 TS parameters are given
1 0 for x, y, z coordinates

1 for R, RΦ, z coordinates
2 0 crude estimate of error (diagonal matrix)

1 full error matrix available
3 0 all parameters are given if bit 0 is on

1 no error matrix, start point, end point

Table 4: Description of the measurement bit code used in the TS data format.
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index type meaning unit
1 integer module identifier (internal use only)
2 integer bit code for used detectors
3 integer 0 for x, y, z coordinates, 1 for R,RΦ, z
4 integer track type: always 9 in Brahms
5 integer number of TEs used in this TK
6 integer charge (0=neutral, 1=positive,

2=negative, 3=unknown)
7 integer always 0
8 integer number of degrees of freedom of the track fit
9 real χ2 of the track fit
10 real track length cm
11 real x of TK start point cm
12 real y of TK start point cm
13 real z of TK start point cm
14 real x of TK end point cm
15 real y of TK end point cm
16 real z of TK end point cm
17 real coordinate 1 of reference point: x or R cm
18 real coordinate 2 of reference point: y or RΦ cm
19 real coordinate 3 of reference point: z cm
20 real Θ angle at reference point 0..π
21 real φ angle at reference point 0..2π
22 real 1/p at the reference point (GeV/c)−1

(signed with geometric curvature of track
measured from inside to outside of detector)

23 real covariance matrix for measured quantities
... (as above)
37 real

Table 5: Data format for final track candidates (TK). This information is stored in the arrays
RTK/ITK of the TKBANK sequence in TKSTEER. The number of TK is stored in NTK.
Whenever possible, this information should not be accessed using these variables directly, but
through the TKSTEER interface routines TKREAD and TKNUMB.

index type meaning unit
1 real px at origin GeV/c
2 real py at origin GeV/c
3 real pz at origin GeV/c
4 real E at origin GeV
5 real x of track origin cm
6 real y of track origin cm
7 real z of track origin cm
8 integer GEANT particle code —
9 integer GEANT track number —
10 integer number of hits left in detector —
11 integer HEPEVT track number (if any, zero otherwise) —

Table 6: Data format for storage of true (Monte Carlo) track information. This information is
stored in ZEBRA banks and can be accessed via the statement functions TKMCTR/ITKMCT.
The number of tracks is stored in TKNTRK. However, this information should usually be
accessed by the TKSTEER utility routines TKREAD and TKNUMB, to allow for possible
future changes of the internal implementation.

31



7.2 FFREAD cards

7.3 Routine-by-routine walk-through through the track reconstruction

7.3.1 TKSTEER - main program flow

initialization: TKINIT, TKSETR

Initialization of the track reconstruction code is done centrally by TKINIT and TKSETR in
TKSTEER. TKINIT defines FFREAD cards and call initialization routines of individual track-
ing packages where necessary. TKSETR should be called after values have been read for the
FFREAD cards. It verifies the usefulness of the user-supplied values for FFREAD cards and
does FFREAD-card dependent initialization of other tracking packages. A large fraction of the
TKSETR code is then dedicated to setting up the expected amount of noise hits in individual
subdetectors and subdetector layers.

overall steering: TKTREV and supporting routines

The routines involved in the track reconstruction are show in figure ??.

TKTREV program flow

TKTREV

TKBBANK TKHVTX TKHFTD TKHITC TKHSIT TKHTPC TKHFCH TKPUSH TKADDH TKPUSH_TPC TKMKEX TKAMBI TKPERF TKCALI TKFPERF

TKSTOR TKNOISE TKGHIT TKCOUNT FKRTPE TKFCOUNT TKNHIT TKREFIT FXAMBI

TKNUMB TKLIST TKTPCR TK2FIT DELDET FKXZTR TKGLAB TKLSEX TKREAD TKUPDA DELSOLVE

TKVETO FKREF DELID

FSFLFT FSFAND

FSFIC2

Figure 5: Flow chart for the track reconstruction.
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The starting point for the track reconstruction is the routine TKTREV in TKSTEER.
It is called from the overall reconstruction steering routine RERECO (and was called from
GUTREV in Brahms 2.xx, hence the name). This routine begins with the event initialization,
i.e. initialization of the ZEBRA banks for tracking (via TKBBANK) and reset of all pointers
and index variables. It then calls routines that transfer all GEANT hits to the tracking hit
store, where they can be easily (and independently of the GEANT version) accessed by the
local track searches. Other than the GEANT banks, the TK hit bank contains also information
on the precision of the hit coordinates, which is subdetector-specific. Therefore it is done
separately by a dedicated routine for each subdetector: TKHVTX (vertex detector, CCD or
APS), TKHFTD (forward tracking disks), TKHSIT (silicon intermediate tracker), TKHTPC
(TPC), TKHFCH (forward chambers). These routines are also responsible for injecting the
number of noise hits defined in TKSETR. They are mere interfaces to a generic noise hit
injection routine (TKNOISE) and a generic hit readout routine (TKGHIT).

The track reconstruction itself begins with a sequence of calls of local track search routines.
Depending on the FFREAD card setup, either ideal pattern recognition routines (“LP detname”)
from DUMPATREC are called, or realistic pattern recognition routines from the respective
packages. The realistic silicon track search requires a second routine to be called after the
track search itself: it was mentioned earlier that silicon hits are to be passed on to later stages
of track reconstruction to allow a later review of the assignment of hits to tracks. However,
the SIPATREC package only returns tracks, not the hits which have not been assigned to a
track. This is done by TKADDH instead. It should be noted that the track reconstruction
routine call statements are surrounded by code which records the time required by the individ-
ual packages, allowing a final CPU consumption statistics at the end of a run. After all TEs
from the subdetector track searches have been found, a call to TKPUSH adjusts the ZEBRA
bank size accordingly, so that all remaining space is available for subsequent steps of the event
reconstruction.

The next part of TKTREV is dedicated to book-keeping mutually exclusive TEs. Two TEs
are considered mutually exclusive if they either share hits or if hits in one TE are mutually
exclusive with hits from the other TE. The former is simply a means to describe that the track
reconstruction considers it impossible that a single hit can be part of more than one track.
The latter, hit exclusions, comes from the method used to treat strip detectors in the track
reconstruction. Hit reconstruction in strip detectors leads to ambiguous hit candidates: true
hits and their mirror hits. It is not a priori which hits are true and which are mirrors, but it
is clear that out of a given set of a true hit and its mirror hits, only one hit candidate can be
used in the final track candidates,whereas the others have to be discarded at some point. This
is ensured by marking each set of true and mirror hits as mutually exclusive. Which hit will
actually be chosen as true is left to the final (DELSOLVE) stage of track reconstruction, where
the best track fits are selected out of all possible combinations suggested by DELSEARCH. To
emphasize this, at this stage in TKTREV, exclusions are just registered in a list during a call
to TKMKEX; no attempt is taken at this point to resolve any exclusions.

The global track search defines the next section of TKTREV: a call to FSFSTR (in DEL-
SEARCH) runs the subdetector merging processor which creates TSs. A subsequent call to
TKAMBI starts the final ambiguity resolver. TKAMBI is the interface to the interface to the
C code in DELSOLVE — a slightly unfortunate construction arising from the idea not to touch
the original DELPHI Fortran-to-C interface code in DELAMBI too much. Sole purpose of
TKAMBI is to copy all TSs into the TK bank, since DELSOLVE operates on the TK bank
exclusively. After running DELSOLVE, TKAMBI also takes care of wiping track candidates
that were marked as “not to be used” by DELSOLVE from the TK bank.

After the track reconstruction itself was done, a call to TKPERF (if selected by FFREAD
cards) evaluates the performance of the reconstruction in this specific event. Finally, a call to
TKCALI interfaces the track reconstruction result to the calorimeter code. TKCALI has become
a major piece of code due to completely different data structures in tracking and calorimetry.
First of all, TKCALI attempts to extrapolate all track parameters to the inner face of the
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calorimeter. This is done by using a feature of the DELFIT package: all surfaces defined in
the common blocks FKEXTS and FKEXTY (both in patchy keep sequence FKEXTS) are
used as target extrapolation surfaces, and the track fit will assign a set of track parameters
to all surfaces that are being traversed by the fitted track. TKCALI replaces the regular set
of extrapolation surfaces temporarily by just three ones, one cylinder and two end cap planes,
which outline the outer boundary of the tracking detectors. Then all tracks are refitted with
the help of TKREFIT, which dissects every TK into its individual hits, forms TEs out of
those hits and refits the track. Following this refit, the track parameters outside the tracking
detector volume will be available as extrapolated track parameters on one out of the three
extrapolation surfaces. In the case of the end cap planes, this is exactly at the inner boundary
of the calorimeter. Tracks ending up in the barrel do however require another step due to
the octagonal shape of the calorimeter. Octagonal extrapolation surfaces, as well as planar
surfaces other than those orthogonal to the beam axis, are not foreseen in DELFIT. Therefore
a second barrel extrapolation surface is defined for each barrel track. The radius of this barrel
is chosen such that it coincides with the inner calorimeter radius at the φ coordinate where the
track leaves the tracking detectors. This is an approximation which is good for tracks of large
momentum, but becomes increasingly imprecise for small momentum tracks.

Along with the track parameters at the outer end of each track, TKCALI calculates the
Perigee parameters (especially distances of closest approach to the interaction point in xy and
z, d0 and z0). Both parameter sets are stored in the CALOINPUT keep sequence (see Table ??).

7.4 How to...

The intention of this section is to provide Brahms developers with all information necessary to
perform specific tasks involving major changes to the tracking code.

7.4.1 How to add a new detector

The addition of a new tracking detector requires only a rather small number of steps. The
tracking code is quite generic, so the structure of the code should hardly be affected at all.
Whenever reference to a specific example helps to illustrate the necessary tasks, the new detector
will be referred to as NEW (Non-Existing Wire chamber).

First of all, the geometry definition and declaration of a sensitive volume have to be added
to the GEANT declarations in Brahms. A new detector ID, ID NEW , has to be defined, plus
possibly subcomponent (layer) IDs ID NEW1, ID NEW2 etc. The generic subdetector ID
ID NEW should be a multiple of 100 (Brahms detector ID convention). Subcomponent IDs
can then take any useful value between ID NEW + 1 and ID NEW + 99. Details of how to
create a detector in GEANT are not discussed here.

The track reconstruction system has to know what type of track reconstruction (ideal or
realistic) it is supposed to use for this detector. This requires an entry in the ipatrc array.
Increase the array size of ipatrc in the TKFFREAD keep sequence in TKSTEER by one. The
FFKEY statement in TKINI has to changed accordingly, and the upper limit of the DO loop
that sets the default values in the same routine has to be increased. In TKSETR, the detector
name array chdet has to be extended by one entry with the name of the new detector. The
increased number of detectors has to be taken care of in two DO loops in this routine.

The creation of GEANT hits for the new detector has to be steered by a routine similar to
TPCDHIT et al. — just add a routine NEWDHIT to account for hits from this detector and
make sure it is called from GUSTEP.

The next step is to provide means to read the hits from the new detector and make them
available for the track reconstruction routines. A new subroutine TKHNEW is needed which
uses the generic hit read routine TKGHIT to retrieve hits and store them in the tracking data
arrays. The new routine should be modeled after TKHTPC etc. A call to this routine has to
be added to TKTREV.
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variable type meaning unit
MC information

ninp0 integer number of MC tree particles —
lpart0(i) integer particle ID code for this particle —
lvert0(i) integer Address of particle in HEP record —
xmass0(i) real MC mass of particle GeV
xcharge0(i) real charge of particle e
xc0(i) real origin x of particle cm
yc0(i) real origin y cm
zc0(i) real origin z cm
cx0(i) real px/p (true momentum) —
cy0(i) real py/p —
cz0(i) real pz/p —
pm0(i) real p GeV/c

charged track information at the point of closest approach to the IP
ninp1 integer number of charged tracks (equal to number of TK) —
lpart1(i) integer particle ID (if MC) —
lvert1(i) integer MC vertex number —
xmass1(i) real mass of particle GeV
xcharge1(i) real charge (-1., 0., 1., or 10. if unknown) e
xc1(i) real −d0 sin(φ) cm
yc1(i) real d0 cos(φ) cm
zc1(i) real z0 cm
pm1(i) real |p| GeV/c
cx1(i) real sin(Θ) cos(φ) —
cy1(i) real sin(Θ) sin(φ) —
cz1(i) real cos(Θ) —

charged track information at the face of the calorimeter
ninp2 integer number of charged tracks (equals to number of TK banks) —
lpart2(i) integer particle ID (if MC) —
lvert2(i) integer MC vertex number —
xmass2(i) real mass of particle —
xcharge2(i) real charge (-1., 0., 1., or 10. if unknown) —
xc2(i) real x coordinate at calorimeter face cm
yc2(i) real y coordinate at calorimeter face cm
zc2(i) real z coordinate at calorimeter dace cm
pm2(i) real |p| at calorimeter face GeV/c
cx2(i) real sin(Θ′) cos(φ′) —
cy2(i) real sin(Θ′) sin(φ′) —
cz2(i) real cos(Θ′) —

Table 7: Track parameter format as used in the TKCALI output. This information is stored in
the CALOINPUT sequence in BRCDES.

TKHNEW must also take care of adding an adequate amount of noise hits to the hit data
banks. The implementation of noise requires a few additional steps. First of all, a new variable
TNNEW (or, for a multi-layer detector, variables TNNEW1, TNNEW2, ..., TNNEWn)
has to be added to the TKNOISEPAR sequence in TKSTEER. Add initializations of this
variable/these variables to TKSETR in TKSTEER, depending on beam energy (TNENERGY )
and magnetic field (BFIELD). This is done in a huge IF-ELSE-statement.

During track reconstruction, the information provided by the new subdetector has to be
presented in DELPHI TE format (see Table ??). For detectors without local pattern recognition,
this is easily achieved by using the generic dummy pattern recognition routine LPDET in
DUMPATREC. See LPFCH for usage of this routine. For a detector without capability of
local pattern recognition, LPDET will just return all the hits in TE format. The routine
LPNEW calling LPDET for the new detector must then be called from TKTREV. In order
to call LPDET, one needs the Brahms detector ID of the new detector (or, respectively, all
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subcomponent IDs), the detector type (plane, cylinder, cone) and the DELPHI measurement
code to be assigned to the TE - both for hits and possibly fitted tracks. See Table ?? for
the definition of this code. LPSI might give nice examples for most detector types. LPDET
furthermore requires a pattern recognition code. A value larger than zero asks LPDET to store
hits and tracks (if any). Values below zero prevent hit TEs from being created — only fitted
tracks are returned. So far this option is only used for the TPC. Since no attempt is done to
improve the TPC pattern recognition at a later stage of the track reconstruction, storage of
all TPC hits is considered an unnecessary burden. Multi-layered detectors whose hits are to
be used in the track reconstruction must have a separate detector ID for each layer, otherwise
track reconstruction will simply not work: the DELPHI code takes at most one TE per detector
ID to construct a track candidate. LPNEW has to be called in TKTREV close to where the
corresponding calls are for the existing subdetectors.

For a detector with local pattern recognition capabilities the action at this point should
depend on the entry in the IPATRC array associated with the detector. A value of 1 is used
for realistic pattern recognition. This requires a custom routine which should read hits with the
routine TKREAD and return collections of hits to be fitted as tracks using TKMKTE. A value
of 2 in IPATRC asks for ideal pattern recognition. If the code is implemented as described
above for detectors without local pattern recognition, everything should work automatically.
LPDET fits tracks whenever possible, i.e. it attempts to fit tracks whenever one track leaves at
least three hits in the respective subdetector. Depending on the value in IPATREC, either
the custom realistic pattern recognition routine or LPNEW have to be called in TKTREV close
to where the corresponding calls are for the existing subdetectors.

At this stage, everything should be in place to provide the track merging processor DEL-
SEARCH with the information it needs. However, DELSEARCH itself requires a couple of
adaptations for the new detector. First of all, a detector number has to be assigned to the
detector. This has to be done in the FSFPARAMS sequence in DELSEARCH. Add a new pa-
rameter definition for i NEW to the existing list of parameters i TPC, i FCH etc. If the new
detector is capable of local pattern recognition, one might want to start the merging process
from this detector (among other strategies, of course). In this case, i NEW has to be inserted
early, before i SCAN1. All detectors capable of functioning as seed for the track merger have
to be listed in the beginning, and their total number maxpd (max primary detectors) has to be
increased by one when adding the new detector there. For non-primary detectors i NEW must
be larger than all i SCANn values, and maxpd stays the same. In any case, the total number
of detectors, indicated by maxdet, must be increased by 1. Each submodule ID requires its own
parameter, i.e. i NEW1, i NEW2 etc. if applicable. (Applicable means that the new detector
has submodules and the submodule hit TEs are stored in the tracking banks for usage in the
merging processor. See comments on LPDET usage given earlier. E.g. there are no individual
parameters for all TPC pad rows, because individual TPC hits are not passed on to the merging
processor.)

DELSEARCH requires some more information on the new detector in the FSFPARAMS
sequence. The variable detorder needs an entry for the new detector. It describes the printing
order of detectors whenever track candidates are shown on the screen. detname needs an entry
for the new detector to tell DELSEARCH what name to print for the new detector. The variable
detid needs another detector ID for the new detector. Track candidates are described as bit
patterns of contributing subdetectors in DELSEARCH. Therefore each detector (submodule,
layer) needs to have a unique bit number between 0 and 31 assigned. The values of 0, 1, 2,
30 and 31 are reserved for internal purposes. The value of detid(i TPC)=5 should never be
changed.

The routine FSFINP in DELSEARCH is responsible for reading all subdetector TEs from the
tracking banks. It needs to know the correspondence of Brahms ID ID NEW (ID NEW1, ...)
and i NEW . Add this to the long IF-ELSE-statement. The correspondence between Brahms
ID and DELPHI ID (detid(i NEW )) should be taken care of automatically in the routine
DELDET in TKSTEER. In case the identification of subdetectors in DELSEARCH fails to
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work, this routine is a good place to check.
A diagnostic routine in DELSEARCH, FSFPRINTTE, also wants to know a detector name.

It should be added to the IF statement in that routine.
The next issue is to tune the merging algorithm itself. FSFANA3 in DELSEARCH loops

over all possible subdetector combination using a large number of nested DO loops. Find out
what the maximum number of tracking subdetectors is a track can traverse in the detector. In
standard Brahms, this is 5 CCD layers, SIT1, SIT2, TPC, FCH (TPC and FCH do not return
individual hits, so there is only one TE for the full detector), i.e. 9 detectors — correspondingly
more after adding another detector. FSFANA3 needs at least this number of nested DO loops
to operate correctly. If necessary, add more loops, including the IF statement accompanying
each loop header. Don’t forget to update all variable names, goto destinations and statement
labels when doing copy/paste to add more loops!

Technically, DELSEARCH is now able to treat the new detector correctly. However, with
the above changes applied, it will still not be used in the merging process. DELSEARCH needs
definitions of track search strategies that include the new detector. This is done in FSFSTR.
There we have a sequence of track searches starting from various detectors (TPC, SI), and a
few re-iterated searches starting from partially merged tracks (SCAN1, SCAN2 etc.). For each
existing search one has to define whether the new detector should be included in this specific
approach. method(i NEW )=0 does not attempt to merge any TE of the new detector into
track candidates at this stage. method(i NEW )=imethod means that DELSEARCH should
attempt to extrapolate track candidates from the primary detector of the respective search to
the new detector and attempt to find suitable TEs. Whether this merging is done according
to matching track parameters (realistic mode) or according to matching Monte Carlo ID of the
track elements (ideal track reconstruction) is determined from the value of the FFREAD card
MCMERGE (true=ideal, false=realistic).

If the new detector is a primary detector, one will probably also want to start a track search
from it. Copy for example the TPC track search section somewhere before the “cleanup and
iterate searches” section in FSFSTR. Make sure that the new search defines the new detector as
starting point of the track search by setting method(i NEW ) = none. The first argument of the
FSFANA3 call has to be adapted as well. Furthermore, to allow for time consumption analysis,
change the argument of the time array references to i NEW . One should also add a statement
whether the TPC (or whatever detector was primary detector in the track search we copy-pasted
from) should be included as target in our new track search: method(i TPC) = method or 0.
The call to FSFANA includes a bit code setting some flags, the definition of which can be found
in Table ??.

Further changes have to be applied to DELSOLVE. As DELSOLVE is C code as opposed to
FORTRAN as used in DELSEARCH and TKSTEER, it uses its own set of symbolic constants
to describe the subdetectors. Add the value of detid(i NEW ) to a definition of NEWCODE in
the list of compiler directives defining TPCCODE, FTDCODE and so on. The array DetScore
defines how important it is to keep a TE of a specific subdetector in a track candidate. If the
importance is very low, one might tend to throw out this subdetector if this increases the track
fit quality significantly. Add a value for the new detector to this array to reflect the relative
importance of it. For example, standard Brahms assigns 20 points to a TPC track, whereas
each SI hit gives 5 points. A value of −1 in the array marks an unused detector ID.

At this point Brahms should be able to reconstruct tracks including the new detector.
Every TE of the new detector will be added to the track where it fits best — unless all track
fits involving this specific TE fail. This means that all track combinations involving the new
detector are tested. This might be rather slow, but should give the largest reconstruction
efficiency that Brahms can achieve with this system. If that does not work, at least one item
of the list of changes described in this section was not correctly implemented.

To speed up the merging without too much loss of efficiency, the DELSEARCH can prese-
lect matching TEs looking for matching track parameters. Usage of this feature requires some
tuning. The routine FSFINI in DELSEARCH defines cuts for the helix extrapolation of track
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flag meaning
FLAG DATA select TE merging according to

measured hit/track parameters
FLAG LABL select TE merging according to MC track ID
FLAG USEUSED allow to add same TE

to more than one track candidate
FLAG GIVESINGLTE allow single TE to be used as

track candidate (e.g. TPC)
FLAG PCONST constrain momentum with beam spot
FLAG SCANDET scan previous track candidates

for missing detectors
FLAG CUT100 check at most 100 TEs per subdetector (layer)
FLAG NOPLINV do not use polar inversion to get

initial track parameter estimate
FLAG AVERAGETHETA for polar inversion: use average Θ of all TEs

instead of primary TE only
FLAG BEAMSPOT use beamspot constraint in track fit

Table 8: List of bit flags used to steer the behavior of the track search engine FSFANA3. Track
parameter estimation by polar inversion is foreseen for angular regions without standalone
pattern recognition capabilities. It should not be necessary in Brahms.

parameters from each subdetector to each other. The cuts define a maximum deviation of track
parameters of the target detector TE compared to extrapolated values of the primary detector
TE. (Where no cuts are defined, the default behavior is to combine all TEs that survive a com-
mon track fit, as described above.) Possible cuts are given in Table ??. For tuning, add arbitrary
cuts on all variables you consider useful. Cut values of 0 are recommended for all quantities for
tuning, as tuning can be done with any cuts, and the harder the cuts are, the faster Brahms
runs. Switch on DELSEARCH performance histogramming (FFREAD card DESHST 1) and
run a few events. The number of events should be large enough to contain a total of a thousand
tracks or more. After the run, look at the histograms in the DELSEARCH subdirectory of
the tracking histogram output file. Two histograms are filled for each combination of detector
i FROM and detector i TO if cuts on the extrapolated track parameters are defined in FSFINI.
The histogram IDs for any such extrapolation are 10000× i FROM +50× i TO+10 ... +19 for
correct combinations, and +20 ... +19 for wrong combinations. All combinations are filled into
the histogram, even if they fail to pass the cuts defined in DELSEARCH. It might be necessary
to adjust the histogram range and/or binning towards the end of FSFINI in DELSEARCH.
Optimized cut values can be found best by plotting the correct and the wrong combinations on
top of each other with log scale on the y axis.

The overall performance of Brahms track reconstruction can be evaluated by switching the
FFREAD card TKPERF to 1. Then, a file tkperf.summary will be created, showing a text
summary of

• local pattern recognition performance

• TS contribution: how many tracks that have hits in a specific subdetector are recon-
structed using the hits in this detector (after DELSEARCH)

• TK contribution: same as TS contribution, but for final track candidates (after DEL-
SOLVE)
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38



variable meaning
xcx cut on agreement of x coordinates
xcy cut on agreement of y coordinates
xcRPhiR cut on agreement of RΦ coordinates
xcz cut on agreement of z coordinates
xctheta cut on agreement of Θ coordinates
xcphi cut on agreement of φ coordinates
xcthest cut on agreement of Θ∗ directions
xcphist cut on agreement of φ∗ directions

Table 9: List of track parameter variables, cuts on which define compatible and incompatible
TE parameters. A second set of variables, starting with pl instead of xc, is available for cuts
on parameters obtained by polar inversion.
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