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Abstract

This document describes the data persistence facilities exploited by the offline reconstruc-
tion software of the ATLAS detector. The first part describes the infrastructure employed to
manage, serialize and deserialize the data objects whereas the second part explains the en-
hancements and extensions that have been proposed and prototyped within the pursuit of the
author’s final project. The new functionality that has been introduced is part of two distinct
domains: it is a storage scheme for some of the most commonly used data structures as well
as an extension supporting the data model schema evolution. The first enhancement makes it
possible to efficiently store the STL collections of polymorphic pointers, reducing the amount
of metadata and time required to recreate them. The second one proposes a framework for
loading the data serialized using the old data model libraries into the most recent in-memory
shapes of the data objects even in the situation when the class hierarchies involved changed
significantly over time.
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1 Introduction
This document concentrates on the description of the software used to handle the results

of the measurements performed by the ATLAS detector. It also reports the enhancements
that were designed and prototyped to improve the software.

This chapter begins with the goal statement, followed by some background information
about the organizational environment in which this work has been done. It introduces some
definitions, acronyms and abbreviations used throughout the document. Finally, it presents
the outline of the remaining chapters.

1.1 The goal of the project

The aim of the project described in this document was to improve the abilities of the
input-output system used by the offline reconstruction software of the ATLAS experiment.
The facilities mentioned provide the means of managing object stores that have abilities to
persistify and recreate the state of the objects being owned by them.

The project started with the development and maintenance of the event data model for
representing the hadronic decays of tau leptons in the offline software of the ATLAS detector.
It has been designed by the author and undergone constant improvement for over two years.
This part (described in section 2.3.4) has been released with the ATLAS software framework
and still is a part of it. The next part, done to better recognize the data persistence issues,
was to implement the persistent classes within the T/P framework (described in section 2.6)
for the tau data model and the tracking data model, this code is also a part of the standard
ATLAS software releases. The final step was to make the two improvements to the core IO
subsystem that are now a part of the ROOT framework.

The improvements that have been proposed influence two distinct areas. The first goal
was to improve the storage scheme for the STL collections of polymorphic pointers. The new
functionality enables the system to store these in the column-wise mode, thus reducing the
amount of metadata that needs to be kept in order to recreate the exact in-memory shape.
This part of the work has been described in section 3.5 and the code is in the ROOT release
since version 5.20.

The second goal of the project was to propose the design and implement the prototype of
a data model schema evolution extension. This subsystem provides the ability to recreate in
memory the state of the objects serialized with the old versions of the data model libraries
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even in the situation when the class hierarchies involved changed significantly over time. The
details are described in section 3.6 and the prototype implemented has been incorporated
into ROOT development release 5.22.

The work was supported by the European Organization for Nuclear Research.

1.2 The organizational environment

1.2.1 The European Organization for Nuclear Research

The European Organization for Nuclear Research, often referred to as CERN, is the
world’s largest particle physics laboratory. It was established by twelve European countries
in 1954 with the aim to provide the infrastructure to carry out complex high energy physics
experiments. Following its mandate laid out in the CERN Convention, the organization
“has no concern with work for military requirements and the results of it’s experimental and
theoretical work are published or otherwise made generally available” [18].

CERN is located in the northwest suburbs of Geneva and its sites and facilities are
scattered on both sides of the Franco-Swiss border. Presently the organization has twenty
member states and eight additional international organizations or countries that have so
called observer status. It is the workplace of nearly 12000 scientists and engineers [6].

Several important achievements in particle physics have been made during experiments
at CERN, two of which were awarded with the Nobel Prize. As of the time of this document,
the preparations for a set of the brand new experiments are nearing their completion. Their
primary goal is to discover the Higgs boson, a hypothetical particle that would help explain
how otherwise massless elementary particles still manage to construct mass in matter.

1.2.2 The accelerator complex

In order to achieve the energies needed for these experiments, the world’s largest system
of particle accelerators has been built (see Figure 1). These devices use electric fields to
accelerate two counter-rotating beams of electrically-charged particles to very high energies
and then collide them together in so called interaction points at which detectors are being
constructed. The Large Hadron Collider will be used to collide protons at total collision
energy of 14 TeV1 and Pb (lead) nuclei at total collision energy of 1150 TeV.

The LHC reuses the 27 km circumference underground tunnel that was built for the
previous accelerator, LEP, which was dismantled in 2000. Within the accelerator, particles
circulate in a vacuum tube and are manipulated by various kinds of superconducting magnets.
Dipole magnets keep the particles in their nearly circular orbits and quadrupole magnets
focus the beam in the interaction points. The magnets use niobium-titanium (NbTi) cables
which become superconducting2 below a temperature of 10 K. The LHC will operate at an
even lower temperature, as it is in a 1.9 K (-271.3◦C) bath of superfluid helium. To avoid
collisions with gas molecules the internal pressure at the LHC will be as low as 10−13 atm
[7].

Prior to being injected into the main accelerator, the particles are prepared by a series
of systems that successively increase their energy. The first system is the linear accelera-

1tera electron volts; electron volt - the amount of energy gained by a single unbound electron when it
accelerates through an electrostatic potential difference of one volt

2superconductivity - a phenomenon occurring in certain materials at very low temperatures, characterized
by exactly zero electrical resistance
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Figure 1: The CERN accelerator complex

tor Linac 2, which generates 50 MeV protons and sends them into the Proton Synchrotron
Booster (PSB). There the protons are accelerated to 1.4 GeV and injected into the Proton
Synchrotron (PS), where they are accelerated to 26 GeV. Finally, the Super Proton Syn-
chrotron (SPS) increases their energy to 450 GeV before they are at last injected into the
main ring, where proton bunches are accumulated, accelerated to their peak 7 TeV energy,
and rotate for many hours while collisions occur at the four intersection points.

The Pb ions will be first accelerated by the linear accelerator Linac 3 and the Low-Energy
Injector Ring (LEIR) will be used as an ion storage and cooler unit. The ions then will be
further accelerated by the Proton Synchrotron (PS) and Super Proton Synchrotron (SPS)
before being injected into LHC ring, where they will reach an energy of 2.76 TeV per nucleon.

There are six experiments installed at the LHC: A Large Ion Collider Experiment (AL-
ICE), ATLAS, the Compact Muon Solenoid (CMS), the Large Hadron Collider beauty
(LHCb) experiment, the Large Hadron Collider forward (LHCf) and TOTEM. ALICE, AT-
LAS, CMS and LHCb are installed in huge underground caverns built around four collision
points of the LHC beams, whereas TOTEM and LHCf share caverns with CMS and ATLAS
respectively.
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Figure 2: The ATLAS detector

1.2.3 A Toroidal LHC Apparatus - ATLAS

ATLAS (see Figure 2) is one of the detectors employed to study the head-on collisions
of two beams of protons accelerated by the LHC. Along with CMS, ATLAS is a general
purpose detector designed to cover the widest possible range of physics phenomena that can
be observed in such circumstances. The detector is 46 meters long and 25 meters high and
consists of concentric layers of sensors, each layer providing part of the required information
on particle identity, energy and direction.

The innermost part of the detector, the tracker, measures the momentum of each charged
particle. It is surrounded by the calorimeters that stop most of the particles, absorbing
their energy and producing signals proportional to those energies. High-energy muons are
the only observable particles able to traverse the full thickness of the calorimeters without
being stopped. The muon spectrometer, surrounding the calorimeters, identifies muons and
measures their properties.

Out of nearly 1 billion proton-proton collisions per second, only a few will have the special
characteristics that might lead to new discoveries. For example the Higgs particle may be
produced in a detectable form in only one collision out of a trillion. To avoid storing immense
amounts of uninteresting information, only those few events whose characteristics make them
potential candidates for interesting physics are selected[3].

One of the principal challenges for the ATLAS collaboration is to manage a storage in-
frastructure able to handle the data generated by the experiment. The detector will produce
around 25 Megabytes of raw data per event (1.6 MB after zero suppression) and there will
be around 40 millions collisions per second occurring within it. This results with the total
amount of 1 Petabyte of data per second to be filtered by the trigger systems. After the fil-
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tering is done there will be about 200 events (320 MB) per second left to be stored. The raw
data will be then processed by the reconstruction software producing Event Summary Data
(ESD) (0.5 MB/event) and Analysis Object Data (AOD) (0.1 MB/event) files which are the
main subject being described in this document and are discussed in more details later. The
core technology exploited to process those files is common to all of the experiments, so all of
them are influenced by the enhancements described in Chapter 3 of this document.

1.3 Chapter outlines

Chapter 2 provides a description of a framework within which the ATLAS reconstruction
software is being developed. It gives a basic architecture overview and provides a more
detailed description of the tools used for data management and serialization. Chapter 3
provides detailed description of the data storage layer that is being used to actually serialize
and deserialize the data objects. It discusses in details how the memory chunks are being
grabbed and organized in the files and how the data model evolution functionality was
implemented.
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2 The ATLAS software
This chapter starts with a short introduction to the ATLAS software framework, called

Athena by briefly describing basic architecture components and methods used to manage the
code, then discusses the object stores and the infrastructure exploited to serialize them and
finally concludes with a description of one of the attempts to provide the schema evolution
functionality, describing it’s strengths and weaknesses.

2.1 Gaudi and Athena

The Athena framework is an enhanced version of the Gaudi framework that was origi-
nally developed by the LHCb experiment. Athena and Gaudi are concrete realizations of
a component-based architecture (also called Gaudi) which was designed for a wide range
of physics data-processing applications. They provide a set of common interface abstrac-
tions, dynamic library loading and configuration facilities which allow new components to be
plugged in easily during runtime. Also, a clear distinction between the algorithms and data
is made. By separating complex algorithmic code that is responsible for creating physics
objects based on the raw data from the entities representing the physics objects themselves,
the dependencies between producers and consumers of those objects are drastically reduced.

Major framework components are:

� Application Manager. The application manager is the overall driving intelligence that
manages and coordinates the activity of all other components within the application.
There is one instance of the application manager and it is common to all applications.

� Algorithms. Algorithms share a common interface and provide the basic per-event
processing capability of the framework. Each Algorithm performs a well defined but
configurable operation on some input data, in many cases producing some output data.

� Tools. A tool is similar to an algorithm in that it operates on input data and can
generate output data, but differs in that it can be executed multiple times per event.
In contrast to algorithms, tools do not normally share a common interface and are
therefore more specialized in their manipulation. Each instance of a tool is owned,
either by an algorithm, a service, or by default by the AlgToolSvc.
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� Transient Data Stores. The data objects accessed by algorithms are organized in
various transient data stores depending on their characteristics and lifetimes. The
event data itself is managed by one store instance, detector conditions data, such as
the geometry and alignment, by another store, etc.

� Services. A service provides services needed by the algorithms. In general these are
high-level, designed to support the needs of the physicist.

� Selectors. These components perform selection. For example, the Event Selector pro-
vides functionality to the Application Manager for selecting the input events that the
application will process. Other types of selectors permit the selection of objects within
the transient data stores.

� Converters. These are responsible for converting data from one representation to an-
other. One example is the transformation of an object from its transient form to its
persistent form and vice versa.

� Properties. All components of the architecture can have adjustable properties that
modify the operation of the component.

� Utilities. These are C++ classes that provide general support for other components.
[4]

The framework also provides a set of basic services offering the minimal functionality
needed for constructing applications. The message service is used to send and format mes-
sages generated in the code, with an associated severity that is used for filtering and dispatch-
ing them. The job options service allows the configuration of the application by end users
assigning values to properties defined within the code. The random numbers service makes
available several random number distributions via a standard interface, and ensures that ap-
plications use a unique random number engine in a reproducible fashion. The chrono service
offers the functionality for measuring elapsed time and job execution statistics. Auditors
and AuditorSvc provide monitoring of various characteristics of the execution of algorithms.
The incident service provides a synchronization between objects within the application by
using named incidents that are communicated to listener clients. The tools service, manages
tools [16].

Typically, to run an application, a user creates a python3 script that is responsible for
loading selected components and configuring them according to the user specific needs. This
python script is then fed to Athena executable that takes care of running the application
according to specified configuration. It is also possible, however, to run the Athena in
interactive mode. In that case the python interpreter is invoked and set up allowing the user
to control the program flow by typing commands to the terminal.

2.1.1 The “Hello world” example of the algorithm

The following example illustrates a very simple concrete example of an algorithm as
being used in Gaudi/Athena environment. The argument does nothing more than notifying
the user of initialization and finalization and for every input event prints “Hello World” (or
whatever the property “Whom” was set to).

3http://python.org/

http://python.org/
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Listing 1: The algorithm class declaration
1 c l a s s Hel loWor ld : p u b l i c Algo r i thm
2 {
3 p u b l i c :
4 Hel loWor ld ( const s t d : : s t r i n g &name , I S v cLoca t o r * pSvcLocato r ) ;
5 ˜ He l loWor ld ( ) ;
6
7 StatusCode i n i t i a l i z e ( ) ;
8 StatusCode exe cu t e ( ) ;
9 StatusCode f i n a l i z e ( ) ;

10
11 p r i v a t e :
12 s t d : : s t r i n g m whom ;
13 } ;

As shown on the Listing 1, the example algorithm class has to inherit from the base
class (interface) called Algorithm and defined in Gaudi/Algorithm.h header. It is obligatory
to implement the following virtual methods: initialize - called before the event processing
commences, typically used for initializing the services exploited during the execution; execute
- called for every input event, in most cases used to retrieve some objects from the StoreGate
(described in more details in section 2.3.1) and modify them or create new ones; finalize -
called after the event processing is finished to free the resources that were reserved in previous
stages. In line 12 a data member that will be used as a property is declared.

Listing 2: The algorithm class definition
1 Hel loWor ld : : He l l oWor ld ( const s t d : : s t r i n g& name ,
2 I S v cLoca t o r * pSvcLocato r )
3 : A lgo r i thm ( name , pSvcLocato r )
4 {
5 d e c l a r eP r o p e r t y ( ”Whom” , m whom = ”World ” ) ;
6 }
7
8 StatusCode He l loWor ld : : i n i t i a l i z e ( )
9 {

10 MsgStream log ( mes s ageSe r v i c e ( ) , name ( ) ) ;
11 l o g << MSG: :WARNING << ” I n i t i a l i z i n g the a l g o r i t hm ” << endreq ;
12 return StatusCode : : SUCCESS ;
13 }
14
15 StatusCode He l loWor ld : : f i n a l i z e ( )
16 {
17 MsgStream log ( mes s ageSe r v i c e ( ) , name ( ) ) ;
18 l o g << MSG: :WARNING << ”F i n a l i z i n g the a l g o r i t hm ” << endreq ;
19 return StatusCode : : SUCCESS ;
20 }
21
22 StatusCode He l loWor ld : : e x e cu t e ( )
23 {
24 MsgStream log ( mes s ageSe r v i c e ( ) , name ( ) ) ;
25 l o g << MSG: :WARNING << ”Execu t i ng : s a y i n g h e l l o to ” << m whom << endreq ;
26 return StatusCode : : SUCCESS ;
27 }

Listing 2 shows the implementation. First in the constructor (line 5) the property is
declared and will be set to the value specified by the user in the job option file, or to “World”
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if nothing is specified. At the beginning of each function a message stream object is created to
communicate with the outer world. Afterwards, the object can be used as an ordinary C++
ostream, with two minor differences. First the message level is be specified (DEBUG, INFO,
WARNING, ERROR, and FATAL) to signalize the severity of the transmitted message, the
message itself and the conclusion endreq to signalize the end of the notification.

Listing 3: The python configuration file
1 i n c l u d e ( ”AthenaPoolCnvSvc / ReadAthenaPoo l jobOpt ions . py ” )
2 i n c l u d e ( ”AthenaSea lSvc / A th enaSea l S v c j o bop t i o n s . py ” )
3 i n c l u d e ( ”Ev en t I n f o / E v e n t I n f oD i c t j o b o p t i o n s . py ” )
4
5 theApp . TopAlg += [ ”He l loWor ld ” ]
6 hwAlg = Algo r i thm ( ”He l loWor ld ” )
7 hwAlg .Whom = ”Lukasz ”
8
9 from AthenaCommon . AppMgr import Serv i ceMgr

10 import AthenaPoolCnvSvc . ReadAthenaPool
11 Serv i ceMgr . E v e n t S e l e c t o r . I n p u t C o l l e c t i o n s = [ ”ESD . poo l . r o o t ” ]
12
13 Serv i ceMgr . MessageSvc . OutputLeve l = 3
14 Serv i ceMgr . MessageSvc . d e f a u l t L im i t = 9999999

To be able to run the algorithm defined above the user must provide a job option file
that defines the environment in which the run should take place (Listing 3). If the algorithm
is supposed to process file, then the data persistence services must be configured (lines 1-3)
and the event selector must be informed which file to use (line 11). The actual algorithm
configuration is performed in lines 5 to 7.

2.2 The code management

The code of the ATLAS software is divided among several projects grouping the compo-
nents of similar functionality. For instance:

� AtlasCore groups all the basic functionality required by the rest of the software (data
persistence services, basic run-time libraries, python kernel and so on)

� AtlasEvent contains all the components describing the event data model (tracks,
calorimeter cells, electrons, photons and so on)

� AtlasReconstruction consists of the algorithms responsible for constructing the “high-
level” physics objects such as electrons, photons, taus or muons from the data obtained
from the detector

� AtlasAnalysis provides functionality enabling users to analyze those objects

2.2.1 The code repository

To manage the code a revision control system is being used. The current implementation
is based on the Concurrent Version System4 however a substantial effort is being made to
migrate to something less antique with Subversion 5 being the most probable replacement.

4http://www.nongnu.org/cvs/
5http://subversion.tigris.org/

http://www.nongnu.org/cvs/
http://subversion.tigris.org/
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CVS allows for decomposition of the codebase into packages usually mapping to concrete
Athena components. Each package is accessible to all the developers for reading and requires
permissions to check-in the changes.

2.2.2 The package manager

Build and run environment management for the projects is being done by the CMT6

tool. The tool provides an environment for Linux systems capable of configuring requested
packages, dealing with their dependencies and carrying out the (re)compilation process. In
order to be handled by CMT, packages must be organized in a specific way and must provide
a requirements file in which the required external components and the compilation and code
generation rules are declared.

Each package is contained in a directory named with the package name and is divided
into the following subdirectories:

� cmt - contains all of the administrative files used to configure and define the package;
typically contains only the requirements file (Listing 4) and is a directory where the
makefiles and other temporary files are created

� src - contains all implementation files and private headers

� share - usually contains python or other configuration files

� <package name> - contains all the header files that are to be exported (visible for
other packages)

Listing 4: An example requirements file
1 package He l loWor ld
2 autho r Lukasz Jany s t < l j a n y s t @ c e r n . ch>
3
4 use A t l a s P o l i c y A t l a sPo l i c y −*
5 use G a u d i I n t e r f a c e Gaud i I n t e r f a c e −* Ex t e r n a l
6 use Sto reGate StoreGate−* Con t r o l
7 use AthenaPoolCnvSvc AthenaPoolCnvSvc−* Database /AthenaPOOL
8 use A t h e n a P o o l U t i l i t i e s A t h e n aPo o lU t i l i t i e s −* Database /AthenaPOOL
9 use A thenaPoo lS e r v i c e s AthenaPoo lSe r v i c e s −* Database /AthenaPOOL

10
11 l i b r a r y He l l oWor ld * . cxx components /* . cxx
12 a p p l y p a t t e r n c omponen t l i b r a r y

The listing 4 presents the requirements file used for the package containing the Hello
World example algorithm described in section 2.1.1. At the beginning the package name and
author are declared, then the packages that are required to build and run the HelloWorld
package are listed and finally the component library is declared to be created from all the files
having cxx suffix. The source files are compiled and linked into a form of dynamic library
which can then be scheduled to be loaded by the python configuration file and provide access
to all the components implemented by it.

6http://www.cmtsite.org/

http://www.cmtsite.org/
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2.3 The event data model

The purpose of the event data model classes is to publish results computed by arbi-
trarily complex algorithms. The results are then registered with an in-memory database (a
blackboard, more in Section 2.3.1) and made available to other algorithms or persistified.
Decoupling data objects from the algorithms producing them has proven to be very scalable
since the algorithmic code is usually volatile and the data object provide a stable interface
for the clients. The ATLAS persistence model does not require any arbitrary interface to
be implemented by the data objects in order to be managed by the blackboard system,
generally everything that fulfils STL Assignable concept can be correctly handled. In most
cases however the objects are grouped into STL-like collections, the DataVectors, before be-
ing published. This section starts with a description of some basic concepts that affect the
design and implementation of the data model and then provides a description of a typical
data model class hierarchy, using tau leptons as an example, as well as the most complicated
one responsible for describing the tracks that the particles followed in the detector.

2.3.1 The data object blackboard

As mentioned before, the ATLAS reconstruction software uses a kind of blackboard to
pass the data objects between the algorithms and, eventually, persistify some of them if
instructed to do so. Essentially, the blackboard holds key-object pairs. To retrieve a stored
object, the user has to know a key and a type of the desired object, symlinking and retrieval
using a base class is also supported. This functionality is provided by an Athena service
called StoreGateSvc, which exposes the object store functionality (described in more details
in section 2.4) to algorithm developers.

The only requirement for a class to be registered with the StoreGate, besides fulfilling
of an STL Assignable concept, is to provide a specialization of the ClassID traits template
done with the CLASS DEF macro.

Listing 5: A basic usage of StoreGate
1 StoreGateSvc * s t o r eGa t e ;
2 StatusCode sc = s e r v i c e ( ”Sto reGateSvc ” , s t o r eGa t e ) ;
3
4 sc = s to r eGate−>r e c o r d ( c on t a i n e r , ”ContainerName ” ) ;
5 sc = s to r eGate−>s e tCons t ( c o n t a i n e r ) ;
6
7 const Rec : : T r a c kPa r t i c l e C o n t a i n e r * t r a c kCon t a i n e r ;
8 sc = s to r eGate−>r e t r i e v e ( t r a c kCon t a i n e r , t rackConta inerName ) ;

Listing 5 shows the basic usage of the ATLAS data object blackboard. Lines 1 and 2 show
how the service handle can be retrieved. This is usually done at the algorithm initialization
time. Lines 4 and 5 show how a container can be registered with a given string key, lines 7
and 9 show how a container can be retrieved provided that the user knows the associated
key.

2.3.2 DataVectors

Typically all of the collections are either instances of the DataVector class templated for
the contained elements or classes deriving from DataVector with some added functionality.
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A DataVector<T> acts like a std::vector<T*> with few exceptions. The most important
are:

� Optionally, depending on how it is constructed, it can manage the memory of the
objects it contains. The ownership policy is set on construction time by passing the
SG::VIEW ELEMENTS or SG::OWN ELEMENTS parameter to the constuctor. By
default, DataVector owns its elements so that the elements are deleted either when any
method removes them from the container or when the container itself is deleted.

� Methods that return a reference in std::vector return ElementProxy objects instead.
This is done to ensure proper handling of the elements being owned by the container.
That is, when an element is assigned to a new object, the old element is deleted and
the container takes the ownership over the new one.

� Due to ownership issues, standard algorithms that alter the range that they operate
on (such as datasort or remove if do not work properly on DataVectors. Hence,
DataVector specific specializations are provided.

� DataVectors may inherit from one another. If a contained class A inherits from class B
then DataVector<A> may also derive from DataVector<B>, as set by the user. This
is done with DATAVECTOR BASE macro which provides a template specialization
for the DataVectorBase template used in the DataVector class definition (see Listings
6 and 7).

Listing 6: The DataVectorBase template
1 template <c l a s s T>
2 s t r u c t DataVectorBase
3 {
4 typedef Da t aVe c t o r d e t a i l : : NoBase Base ;
5 } ;

Listing 7: The DataVector class definition
1 template <c l a s s T, c l a s s BASE = typename DataVectorBase<T> : : Base>
2 c l a s s DataVector : p u b l i c BASE

2.3.3 Persistent object pointers

It is often required to link together two objects registered with StoreGate. Ffurthermore
in most cases it is necessary to provide a link to particular element of the registered col-
lection. To fulfill these requirements the concept of persistent pointers was introduced and
the functionality is provided by two classes. An object of the DataLink class provides a
connection to a “top level” object registered with StoreGate. An ElementLink is a means of
pointing to an element of a “top level” collection.

Both classes are based on policies [2] (Listings 8 and 9). DataLink and ElementLink
both use StoragePolicy set to DataProxyStorage<STORABLE> by default which knows
how to retrieve the requested object from the database. The ElementLink not only needs
to retrieve a “top level” object but also must return a pointer to one of its constituents.
The IndexingPolicy provides the means to decompose the storable object and pick the right
element. In this case the GenerateIndexingPolicy template checks if the container fulfils the
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STL concept of Sequence, ie. has a ForwardIterator, if so the ForwardIndexingPolicy is used,
otherwise the user must provide his own specialization of DefaultIndexingPolicy which can
cope with his custom container.

Listing 8: The DataLink class definition
1 template <typename STORABLE,
2 c l a s s S t o r a g ePo l i c y=DataProxyStorage<STORABLE> >
3 c l a s s DataLink :
4 p u b l i c S t o r a g ePo l i c y

Listing 9: The ElementLink class definition
1 template <typename STORABLE,
2 c l a s s S t o r a g ePo l i c y=DataProxyStorage<STORABLE>,
3 c l a s s I n d e x i n gP o l i c y=typename SG : : G en e r a t e I n d e x i n gPo l i c y <STORABLE> : : t ype >
4 c l a s s ElementL ink :
5 p u b l i c S to r ag ePo l i c y ,
6 p u b l i c I n d e x i n gP o l i c y

2.3.4 The Tau Event Data Model

The Tau Event Data Model (EDM) is a moderately complicated case among the data
model class hierarchies used in ATLAS software, still it is affected by most of the IO per-
fomrance and data model evolution issues. It has been designed and maintain for over two
years by the author of this document and more detailed description of the contents and the
evolution over time of the class hierarchies can be found in the following documents: [14] [19]
[10] [11] [15]. The EDM was designed to meet the needs of two reconstruction algorithms,
a simulation algorithm (ATLFAST), the High Level Trigger system and the data analysis
framework. It consists of the main class, called TauJet and various detail classes, some of
which are stored in files depending on the level of details required for given file type [12].

The TauJet class (Figure 3) is the trunk of the data model. It implements the INavi-
gable4Momentum interface providing generic access to its constituents and holds the basic
information about the reconstructed particle and links to objects holding more detailed in-
formation:

� name of the algorithm which reconstructed the object

� discriminant scores the object got from cuts, neural networks, likelihood algorithms,
boosted decision trees and so on

� ElemenLinks to objects that were used to produce the TauJet (Tracks, CaloClusters,
Jets)

� ElementLinks to TauDetails objects providing more detailed, algorithm specific infor-
mation

The ParticleBase base class holds the information about the charge of the particle and
the vertex of its origin while P4EEtaPhiM manages the 4-Momentum information.

The TauDetails classes hold the algorithm specific information. Each reconstruction
algorithm stores the results of its computations in either *Details or *ExtraDetails class
depending on the importance of the specific information for the user performing the analysis.
All of the details classes are stored in the ESD (Event Summary Data) files while the AOD
(Analysis Object Data) files store only *Details classes (*ExtraDetails are omitted).
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Figure 3: The inheritance hierarchy of TauJet

Figure 4: The inheritance hierarchy of TauDetails

2.3.5 The Tracking Event Data Model

The Tracking Event Data Model describes the tracks followed by the particles passing
through the detector. It is generic enough to handle data produced both by the Inner
Detector and the Muon Spectrometer. Consisting of around a hundred classes it is by far
the most complicated case within the ATLAS software. A detailed description can be found
in [1]. The description provided by this section is very brief and concentrates on the class
hierarchy as only this information is relevant to the discussion of the IO performance and
the data model evolution issues.

The code is scattered between many packages in the Tracking, InnerDetector and Muon-
Spectrometer projects. The main class is called Trk::Track, it contains a Trk::TrackSummary,
Trk::FitQuality objects, a vector of Trk::TrackStateOnSurfaces, as well as some vectors
of cached objects which are marked as “transient” and are irrelevant from the stand
point of the serialization system. The Trk::TrackStateOnSurface class consists of point-
ers to objects deriving from Trk::ParametersT<Charged>, Trk::MaterialEffectsBase and
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Figure 5: The contents of Trk::Track

Trk::MeasurementBase (see Figure 5). The inheritance hierarchies of these classes are rather
complex and often involve multiple inheritance, the classes on all levels of the hierarchy con-
tain other complex objects. As an example, Figure 6 presents the inheritance hierarchy for
the Trk::TrackParameters class.

Figure 6: The inheritance hierarchy of TrackParameters

In total, the EDM contains around a 80 classes (around 55 in Tracking, 15 in InnerDe-
tector and 10 in MuonSpectrometer) [13].

2.4 The object store

Before the user object can be handled by an object store it has to be wrapped into
a DataBucket object. The DataBucket objects provide additional information about their
contents such as their inheritace hierarchy and equip the system with ability to cast the
object being held to one of its base types by knowing the CLID or typeinfo of the target
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type. The object has to be wrapped again, this time in the DataProxy object that holds the
information necessary to store and retrieve the data from POOL (see Section 2.7). The data
store itself is implemented as a set of maps associating names and CLIDs with the actual
data proxy objects.

2.5 The streaming algorithms and event selectors

The writing process is performed by an ordinary algorithm which is run every event after
all other algorithms are completed. It takes all the objects from the object store and calls
the appropriate POOL converter. Additional information that cannot be stored with the
object data is put into a structure called DataHeader that is also stored in the file.

The reading is initiated by an event selector that reads the data header for particular
event and decides whether the event can be processed. If it can, the event selector processes
the contents of the data header and recreates the DataProxy objects from the information
stored in it and puts these objects in the object store. Later, when a user algorithm requests
an object (via StoreGateSvc::retrieve) then the right proxy object is found and the POOL
converter is called to recreate the object’s in-memory state. The recreated object is then
returned to the user.

2.6 The transient-persistent separation

The converters are used to modify the objects before they are passed to POOL prior to
writing and after they are retrieved from POOL durring the reading process. By default
the converters are generated by a CMT macro and do not modify the objects that are being
passed through them. This ability to change the objects has been used to implement the
ATLAS system handling the schema evolution and modifying the objects so that they may
easily be handled by ROOT IO.

The main idea is to have two different class hierarchies holding the same information: the
transient one that is being used by the algorithms and the persistent one that is being passed
to the ROOT IO system via POOL (see Section 2.7). At any given moment in time there
may be many persistent representations that were used to represent the changing transient
data model and that were serialized to files at different times. The persistent class has the
same name as the transient one with px suffix, where x is the current persistent version
number. There can be only one transient representation: the current one. There is also a
set of converters that are capable of translating any persistent representation to the current
transient one and vice versa.

Listing 10 shows an example POOL converter for a TauJetContainer object holding
a set of TauJet objects described in section 2.3.4. The conversion to a persistent object
(as performed prior ro writing) picks the most recent T/P converter and converts the cur-
rent transient data model to the most recent persistent data model, in this case Analy-
sis::TauJetContainer to TauJetContainer PERS which is a typedef to TauJetContainer p3.
The persistent to transient conversion, performed after reading, involves checking which per-
sistent version had been written to a file by comparing the POOL identifiers and picking the
right converter for the job.

Listing 10: A POOL Transient-Persistent converter for TauJetContainer
1 TauJetContainer PERS *

2 TauJetConta inerCnv : : c r e a t e P e r s i s t e n t ( A n a l y s i s : : TauJe tConta ine r * t r an sCont )
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3 {
4 MsgStream msg ( msgSvc ( ) , ”TauJetConta inerCnv ” ) ;
5 TauJetConta inerCnv p3 cnv ;
6 TauJetContainer PERS * pe r sOb j = cnv . c r e a t e P e r s i s t e n t ( t ransCont , msg ) ;
7 return pe r sOb j ;
8 }
9

10 Ana l y s i s : : TauJe tConta ine r *TauJetConta inerCnv : : c r e a t eT r a n s i e n t ( )
11 {
12 MsgStream msg ( msgSvc ( ) , ”TauJetConta inerCnv ” ) ;
13 Ana l y s i s : : TauJe tConta ine r * t r an sOb j = 0 ;
14
15 s t a t i c poo l : : Guid p1 gu id ( ”AD52E539−5A69−493A−B33C−7BE558348EBA ” ) ;
16 s t a t i c poo l : : Guid p2 gu id ( ”3F9C4AF7−1B48−4DBC−BA24−F7CF658E7820 ” ) ;
17 s t a t i c poo l : : Guid p3 gu id ( ”3B6CC0D5−D033−45A6−9440−0276EE55B4C5 ” ) ;
18
19 i f ( compareC lassGu id ( p3 gu id ) ){
20 s t d : : au to p t r <TauJetConta ine r p3>
21 pe r sOb j ( poo lReadObject<TauJetConta ine r p3 >() ) ;
22 TauJetConta inerCnv p3 cnv ;
23 t r an sOb j = cnv . c r e a t eT r a n s i e n t ( pe r sOb j . ge t ( ) , msg ) ;
24 }
25 e l s e i f ( compareC lassGu id ( p2 gu id ) ){
26 s t d : : au to p t r <TauJetConta ine r p2>
27 pe r sOb j ( poo lReadObject<TauJetConta ine r p2 >() ) ;
28 TauJetConta inerCnv p2 cnv ;
29 t r an sOb j = cnv . c r e a t eT r a n s i e n t ( pe r sOb j . ge t ( ) , msg ) ;
30 }
31 e l s e i f ( compareC lassGu id ( p1 gu id ) ){
32 s t d : : au to p t r <TauJetConta ine r p1>
33 pe r sOb j ( poo lReadObject<TauJetConta ine r p1 >() ) ;
34 TauJetConta inerCnv p1 cnv ;
35 t r an sOb j = cnv . c r e a t eT r a n s i e n t ( pe r sOb j . ge t ( ) , msg ) ;
36 }
37 e l s e
38 throw
39 s t d : : r u n t im e e r r o r ( ”Unsupported p e r s i s t e n t v e r s i o n o f TauJe tConta ine r ” ) ;
40
41 return t r an sOb j ;
42 }

The persistent object is a mirror of the transient one. It usually contains the same
members and the base classes are contained as data members, not inherited. The converter
usually does an assignment for the data members being basic types or calls appropriate T/P
converters of the complex types (see Listings 11 and 12).

Listing 11: One of the persisten object representing transient TauJet class
1 c l a s s TauJet p3 {
2 f r i e n d c l a s s TauJetCnv p3 ;
3 p u b l i c :
4 TauJet p3 ( ) : m f l ag s ( 0 ) , m vetoF lags ( 0 ) ,
5 m isTauF lags ( 0 ) , m roiWord (0 ) {} ;
6 ˜TauJet p3 ( ) {} ;
7
8 p r i v a t e :
9 P4EEtaPhiMFloat p2 m momentum ;
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10 Pa r t i c l eB a s e p 1 m pa r t i c l eBa s e ;
11 E l emen tL i nk I n t p1 m c l u s t e r ;
12 E l emen tL i nk I n t p1 m c e l l C l u s t e r ;
13 E l emen tL i nk I n t p1 m je t ;
14 E l emen tL i nk I n tVec to r p1 m tracks ;
15 E l emen tL i nk I n tVec to r p1 m tauDe ta i l s ;
16 unsigned char m f l ag s ; // 0 b i t − has TauPID ob j e c t
17 // 1 b i t − i s Tau // o b s o l e t e
18 // 2 b i t − autho r TauRec
19 // 3 b i t − autho r Tau1P3P
20 unsigned long m vetoF lags ;
21 unsigned long m isTauF lags ;
22 unsigned long m numberOfTracks ;
23 unsigned i n t m roiWord ; // r e qu e s t e d by t r i g g e r
24 s t d : : v e c to r <s t d : : p a i r <int , f l o a t > > m params ;
25 } ;

Listing 12: Parts of a transient-persistent converter
1 s t a t i c P4EEtaPhiMCnv p2 momCnv ;
2 s t a t i c Pa r t i c l eBa s eCnv p1 partBaseCnv ;
3 s t a t i c ElementLinkCnv p1<ElementLink<Ca l oC l u s t e rCon t a i n e r > > c l u s t e rCn v ;
4 s t a t i c ElementLinkCnv p1<ElementLink<J e t C o l l e c t i o n > > j e tCnv ;
5
6 void TauJetCnv p3 : : persToTrans ( const TauJet p3 * pers ,
7 Ana l y s i s : : TauJet * t r an s ,
8 MsgStream &msg ) {
9

10 momCnv . persToTrans ( &pers−>m momentum , t r an s , msg ) ;
11 partBaseCnv . persToTrans ( &pers−>m par t i c l eBa s e , t r an s , msg ) ;
12 c l u s t e rCn v . persToTrans ( &pers−>m c lu s t e r , &t ran s−>m c lu s t e r , msg ) ;
13 c l u s t e rCn v . persToTrans ( &pers−>m ce l l C l u s t e r , &t ran s−>m ce l l C l u s t e r , msg ) ;
14 j e tCnv . persToTrans ( &pers−>m jet , &t ran s−>m jet , msg ) ;
15
16 t r an s−>m numberOfTracks = pers−>m numberOfTracks ;
17 t r an s−>m roiWord = pers−>m roiWord ;
18
19 i f ( g e tB i t ( pe r s−>m f lags , 2 ) )
20 t r an s−>s e tAutho r ( TauJetParameters : : tauRec ) ;
21 i f ( g e tB i t ( pe r s−>m f lags , 3 ) )
22 t r an s−>s e tAutho r ( TauJetParameters : : tau1P3P ) ;
23 }

This kind of approach ensures that a wide range of possible schema evolution scenarios
can be handled. It also enables users to make some modifications to the data structures
that can make them easier to handle for the underlying ROOT IO technology. Usually the
pointers are preplaced with the actual objects and in some cases the data structures are
flattened to ensure that the ROOT IO will be able to store the data model entirely in a split
mode and to save the space and time spent in the IO operations. The flattening is done by
having a persistent “top-level” object holding std::vectors containing all the possible objects
present in the class hierarchy and the information on how to recreate the transient structure.
Also, some compression is done by packing together the floating-point data members that
do not need to be stored with full precission offered by the double type.

There is no way to generate the persistent versions automatically so the developer must
do a lot of dull typing to actually implement the persistent classes and the converters. Since
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the persistent classes and the transient persistent converters contain explicit references to
other persistent types, one can observe so called “chain effect” which occurs when one of the
classes placed at the bottom of the hierarchy changes. In such a case, all other classes and
converters referring to that class must also be updated. Given the fact that the ATLAS data
model consists of hundreds of classes it, is a huge maintenance problem. Also the flattening
and the floating-point numbers packing make the converters more sophisticated, and hence
more difficult to maintain.

2.7 POOL - the LCG persistence framework

The aim of POOL is to follow a technology neutral approach to the storage systems.
It provides a set of service APIs that isolate experiment framework user code from the
details of a particular implementation technology. Even though POOL implements object
streaming via ROOT-I/O and uses MySQL as an implementation for relational database
services, there is no link time dependency on the ROOT or MySQL libraries. Back end
component implementations are instead loaded at runtime.

The POOL system is based on a hybrid technology approach. It combines two main
technologies with quite different features into a single consistent API and storage system.
The first technology includes so-called object streaming packages (e.g. ROOT I/O described
in Chapter 3) that deal with persistence for complex C++ objects, such as event data com-
ponents. The second technology class provides Relational Database (RDBMS) services, such
as distributed, transaction consistent, concurrent access to data that still can be updated.

POOL implements a distributed store with full support for navigation between individual
data objects. References between objects are transparently resolved meaning that referred-to
objects are brought into the application memory automatically by POOL as required by the
application. References may connect objects in either the same file or spanning file and even
technology boundaries. Physical details such as file names, host names, and the technology
that holds a particular object are not exposed to reading user code. These parameters can
therefore easily be changed, which allows for optimizing the computing fabric with minimal
impact on existing applications[9].
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3 The ROOT Framework
ROOT is an object-oriented framework aimed at solving the data analysis challenges of

high-energy physics. It provides, among other tools, a C++ class introspection functionality
and data serialization framework that are widely used in the software of the LHC based
experiments. Virtually all of the reconstructed data will be stored and processed using
them.

To give the reader a broader perspective on how these systems were implemented this
chapter starts with a brief discussion of the memory layout of C++ classes as generated by
the GCC. Next, it presents a sketch of the compiler independent introspection systems based
on dictionaries. Thirdly the description of the file format and the serialization framework
itself is presented. Finally, this chapter discusses the schema evolution facilities of which the
foundations were layed out by the author of this document.

3.1 The memory layout of C++ objects

In order to serialize or read back the objects the system must be able to access the memory
occupied by them in a generic way. That is it has to be able to list the data members and
access or assign their values. The task is quite difficult to do in a portable way as the C++
standards do not enforce a common ABI 7 so that the compilers are free to organize the
layout of the objects in a way that is optimal for a given system. This section shows an
example of how the object memory is organized by the gcc compiler and can be accessed by
the user. More detailed information on the C++ object model and memory access can be
found in [17] and [5].

Listing 13: A simple class hierarchy
1 c l a s s L e f t {
2 p u b l i c :
3 i n t m a ;
4 double m b ;
5 } ;
6
7 c l a s s Right {
8 p u b l i c :

7Application Binary Interface - http://en.wikipedia.org/wiki/Application_binary_interface

http://en.wikipedia.org/wiki/Application_binary_interface
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9 double m c ;
10 double m d ;
11 } ;
12
13 c l a s s Bottom : p u b l i c Le f t , p u b l i c Right {
14 p u b l i c :
15 i n t m e ;
16 } ;

Listing 13 defines a very simple class hierarchy where one class derives from two others
without any additional complications in the form of virtual methods or virtual inheritance.
In memory an object of class Bottom takes the form presented in the Figure 7. It occupies a
consecutive chunk of memory with all of the data members packed into it. The contents of
the object can be then accessed simply by knowing where the object starts and what is the
offset of the required data member. As an example the value of the data member Right::m d
can be accessed or assigned by dereferencing the m d pointer (Listing 14).

Data member name Offset
Left::m a 0
Left::m b 4
Right::m c 12
Right::m d 20
Bottom::m e 28

Figure 7: The memory layout of the class defined in Listing 13

Listing 14: Data access example
1 Bottom* b = new Bottom ( ) ;
2 double* m d = ( double * ) ( ( ( char *) b ) + 20 ) ;

The class hierarchy described above is rather simple and it is probable that all the com-
pilers will represent it in the same way. Things get more complicated though, using poly-
morphism or virtual multiple inheritance. The compiler uses the virtual tables to figure out
the offset of some of the data members and the pointers to the right virtual functions [8]. In
general, however, the object always occupies a consecutive chunk of memory but the offsets
to the same data member may differ from platform to platform.

3.2 The introspection systems

The introspection or reflexion systems are facilities by which a computer program can
observe and modify its own structure and behavior. They are usually present in a high-level
languages and provide on runtime a set of features such as an ability to discover and modify
the code constructs, convert a string matching a function to actual function call, create
and access an object of a class knowing just a string name of that class and so on. The
C++ language does not provide any of these features but they can be emulated to some
extent by a system of dictionaries. The ROOT framework currently supports two systems
of this kind: it’s native CINT as well as Reflex that has been originally developed by the
LCG project8 and can be interfaced to ROOT via subsystem called CINTEX. The next two

8http://lcg.web.cern.ch/lcg/

http://lcg.web.cern.ch/lcg/
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sections take a closer look at both of the systems concentrating on the areas relevant for the
object persistence, ie. runtime discovery of the object shapes.

3.2.1 Reflex

Reflex is a system that is used by the ATLAS experiment to provide the introspection
capabilities for ATHENA and the class shape information for the data persistence system.
It comes with a well defined C++ interface and a generator that analyzes the source files
to create the dictionary code. The dictionary generation process is based on a GCCXML
application that uses GCC to parse a C++ program and generate its XML representation
from GCC’s internal data structures. The result is then picked up by a python program
called genreflex and translated again to a C++ dictionary code. Genreflex can optionally
take a selection.xml file that defines which parts of the input program should be present in
the resulting dictionary. The dictionary code can be then compiled and either dynamically
or statically linked to the application using the introspection system (see Figure 8).

Figure 8: Reflex dictionary generation process

Figure 9: GuineaPig class hierarchy used to test the introspection systems

Listing 15: Reflex overview
1 Type t = Type : : ByName( ”GuineaPig ” ) ;
2 Object o = t . Cons t ru c t ( ) ;
3
4 f o r ( s i z e t i = 0 ; i < t1 . Funct ionMemberSize ( ) ; ++i ) {
5 s t d : : cout << ”Method : ” << t1 . FunctionMemberAt ( i ) . Name( ) << s t d : : e nd l ;
6 }
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7
8 f o r ( s i z e t i = 0 ; i < t . DataMemberSize ( ) ; ++i ) {
9 s t d : : cout << ”Data Member : ” << t . DataMemberAt ( i ) . TypeOf ( ) . Name ( ) ;

10 s t d : : cout << ” , o f f s e t : ” << t . DataMemberAt ( i ) . o f f s e t ( ) << s t d : : e nd l ;
11 }
12
13 f o r ( s i z e t i = 0 ; i < t . BaseS i z e ( ) ; ++i ) {
14 s t d : : cout << ”Base : ” << t . BaseAt ( i ) . Name( ) << s t d : : e nd l ;
15 }
16
17 Type tba se1 = Type : : ByName( ”GuineaBase1 ” ) ;
18 Type tba se2 = Type : : ByName( ”GuineaBase2 ” ) ;
19 Object obase1 = o . Cas tOb jec t ( tba s e1 ) ;
20 Object obase2 = o . Cas tOb jec t ( tba s e2 ) ;
21
22 o . Set ( ”m mem3” , 43 ) ;
23 o . Set ( ”m mem4” , 45 .35 ) ;
24
25 s t d : : cout << ”m mem3 = ” << Object Cas t<int >( o . Get ( ”m mem3”) ) << s t d : : e nd l ;
26
27 s t d : : v e c to r <void *> parVect ;
28 double par1 = 12 . 3 2 ;
29 parVect . push back ( ( void *)&par1 ) ;
30 i n t r e t 1 = Object Cas t<int >( o . I nvoke ( ”someth ing ” , parVect ) ) ;
31 s t d : : cout << ”Returned va l u e : ” << r e t 1 << s t d : : e nd l ;
32
33 o . De s t r u c t ( ) ;

Listing 15 briefly presents the most important aspects of the Reflex C++ API. The code
deals with the class hierarchy shown on Figure 9. The first two lines deal with the type finding
and the object construction; lines from 4 to 15 show how various pieces of information about
the class hierarchy are retrieved; lines from 17 to 20 demonstrate casting to base classes; in
lines 22-25 the data members are being accessed for reading and writing; lines from 27 to 31
demonstrate a method call and finally in line 33 the object is destructed.

Listing 16: Reflex dictionary
1 namespace shadow {
2 #i f d e f GuineaPigSubSub1
3 #undef GuineaPigSubSub1
4 #e n d i f
5 c l a s s Gu ineaP ig : p u b l i c : : GuineaBase2 {
6 p u b l i c :
7 Gu ineaP ig ( ) ;
8 v i r t u a l ˜ Gu ineaP ig ( ) throw ( ) ;
9 v i r t u a l i n t someth ing ( double ) throw ( ) ;

10 i n t m mem3 ;
11 double m mem4 ;
12 } ;
13 }
14
15 namespace {
16 s t a t i c void * method 1491 ( void * o , const s t d : : v e c to r <void*>& arg , void *)
17 {
18 s t a t i c i n t r e t ;
19 r e t = ( ( ( : : Gu ineaPig *) o)−>someth ing ) (* ( double *) a rg [ 0 ] ) ;
20 return &r e t ;
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21 }
22
23 void Gu i n e aP i g d i c t ( ) {
24 C l a s s B u i l d e r ( ”GuineaPig ” , type id ( : : Gu ineaPig ) , s i z e o f ( : : Gu ineaPig ) ,
25 PUBLIC | ARTIFICIAL | VIRTUAL , CLASS)
26 . AddBase ( type 593 , BaseOf f s e t< : : GuineaBase1 , : : Gu ineaPig > : : Get ( ) ,
27 PUBLIC)
28 . AddDataMember ( type 28 , ”m mem3” , O f f s e tO f ( shadow : : Gu ineaP ig , m mem3) ,
29 PRIVATE)
30 . AddDataMember ( type 1367 , ”m mem4” ,
31 Of f s e tO f ( shadow : : Gu ineaP ig , m mem4) , PRIVATE)
32 . AddFunctionMember ( Func t i onTypeBu i l d e r ( t y p e v o i d ) , ”˜GuineaPig ” ,
33 de s t r u c t o r 1490 , 0 , 0 , PUBLIC | VIRTUAL | DESTRUCTOR )
34 . AddFunctionMember ( Func t i onTypeBu i l d e r ( type 28 , type 1367 ) , ”someth ing ” ,
35 method 1491 , 0 , ”arg1 ” , PUBLIC )
36 . AddFunctionMember<void *( void )>( ” ge tBa s e sTab l e ” , method x0 , 0 , 0 ,
37 PUBLIC | ARTIFICIAL ) ;
38 }
39 }
40 namespace {
41 s t r u c t D i c t i o n a r i e s {
42 D i c t i o n a r i e s ( ) {
43 Gu i n e aP i g d i c t ( ) ;
44 }
45 ˜ D i c t i o n a r i e s ( ) {
46 t ype 196 . Unload ( ) ; // c l a s s Gu ineaPig
47 }
48 } ;
49 s t a t i c D i c t i o n a r i e s i n s t a n c e ;
50 }

In most cases class data members are declared private, but in order to dump the state of
objects the system still needs to be able to access them. To cope with the visibility issues
REFLEX creates “shadow” classes with exactly the same memory shape as the ones defined
by users (Listing 16, lines 2-12), so that the right offsets can be obtained without causing
compiler errors and without having to use preprocessor tricks (such as defining private to
be public). Methods are wrapped into functions accepting object pointers and vectors of
parameters so that they can always be called in the same way (lines 16-21). To build the
full type information Reflex creates dictionary functions putting all the information together
(lines 23 to 38) and finally a static data structure is declared to invoke the dictionary functions
when the dictionary library is loaded dynamically and unload them when it is removed from
the memory (lines 40 to 50).

3.2.2 ROOT CINT

The CINT dictionaries are natively supported by ROOT and extensively used throughout
the framework. The data persistence system uses the information provided by them to dump
and recreate the state of the in-memory objects. To generate the dictionaries a built-in C++
interpreter is used and an additional “LinkDef” file can be accepted to list the entities for
which the dictionary should be generated and pass some additional parameters (Figure 10).

The API for manipulating object through the CINT dictionary system is somehow more
raw the one provided by Reflex. It exposes the memory directly to the user via void pointers.
TClass object is used to get the information about the shape of the class hierarchies. It knows
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Figure 10: ROOT CINT dictionary generation process

how to construct and destruct the objects and holds all the information about the types and
offsets of the base classes and data members associated with it.

Listing 17: CINT Overview
1 TClass * c l = TClass : : Ge tC l a s s ( ”GuineaPig ” ) ;
2 void * ob j = c l−>New ( ) ;
3
4 T I t e r nex t ( c l−>GetL i s tO fBas e s ( ) ) ;
5 TBaseClass * base ;
6 whi le ( base = ( TBaseClass *) nex t ( ) ) {
7 TClass * baseC l = base−>Ge tC l a s sPo i n t e r ( ) ;
8 void * basePt r = ( ( char *) ob j ) + c l−>Ge tBa s eC l a s sO f f s e t ( ba seC l ) ;
9 }

10
11 T I t e r nex t ( c l−>GetListOfDataMembers ( ) ) ;
12 TDataMember* member ;
13
14 whi le ( member = (TDataMember*) nex t ( ) ) {
15 s t d : : cout << member−>GetTrueTypeName ( ) << ” ” << member−>GetName ( ) ;
16
17 TClass *mcl = TClass : : Ge tC l a s s ( member−>GetTrueTypeName ( ) ) ;
18
19 i f ( member−>I s B a s i c ( ) && ! strcmp ( member−>GetTrueTypeName ( ) , ” i n t ” ) ) {
20 i n t * mem = ( i n t * ) ( ( ( char *) ob j ) + member−>Ge tO f f s e t ( ) ) ;
21 }
22 e l s e i f ( mcl ) {
23 char * p t r = ( ( char *) ob j ) + member−>Ge tO f f s e t ( ) ;
24 }
25 }
26
27 c l−>Des t r u c t o r ( ob j ) ;

The dictionary code is very similar to the one presented in Listing 16. Two major
difference are that the dictionary code creates the lightweight TGenericClassInfo objects
for each type (these objects are then converted to TClass objects on demand). The second
difference is that sometimes there is no need to create the shadow classes, since the classes
deriving from TObject can be instrumented with a Streamer function providing access to
the class private content.
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3.3 CINTEX

CINTEX is a subsystem capable of converting types and functions known to Reflex to
their CINT counterparts. When enabled, it converts all the known Type objects to instances
of the TGenericClassInfo class. It also registers a type listener with the Reflex API so that it
is notified when new dictionary information is loaded and the conversion to CINT structures
can be performed.

3.4 The ROOT files

3.4.1 The file format

A ROOT file consists of one ”file header”, one or more “data records,” and zero or more
“free segments”. The file header is of fixed length and is always located at the beginning of
the file, while the data records and free segments may in principle appear in any order. The
file header contains some basic information about the file, including a “magic file identifier,”
file version number, pointers to the beginning of the list of data records and so on.

A free segment is of variable length and it is a set of contiguous bytes that are unused and
available to use for new or resized data records. The first four bytes of a free segment contain
the negative of the number of bytes in the segment while the contents of the remaining part
are irrelevant.

A data record represents either user data or data used internally by ROOT. All data
records have two portions, a “key” portion and a “data” portion. The key portion precedes
the data portion. The format of the key portion is the same for all data and corresponds
to an object of the TKey class. The object name and they key cycle are together sufficient
to uniquely determine the record within the file. All the data in a ROOT file is stored in
machine independent format (ASCII, IEEE floating point, Big Endian byte ordering).

Figure 11: ROOT File Structure

There are several types of data records used internally by the IO system to support the
storage of byte sequences. These record types are “TFile” for storing data relevant to the file
as a whole, “TDirectory” for managing logical contents of the file, “KeysList” containing a
list of the logical objects, and “FreeSegments” sotring pointers to the unused chunks of the
file.

3.4.2 Logical structure of the ROOT file

Logically a ROOT file is like a UNIX directory, it can contain objects or other directo-
ries. The TFile class used for representing files provides ways of browsing and altering this
directory structure as well as facilities for storing of retrieving objects.
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3.4.3 Trees

The ROOT trees, represented by the TTree class, provide a sophisticated IO functionality
based on top of the simple physical and logical structure described in sections 3.4.1 and 3.4.2.
It is especially well suited for storing a large number of the same-class objects which is usually
the case for the LHC experiments. The TTree class is optimized to reduce disk space and
enhance the access speed and is usually stored as an object in a directory. The major
difference between storing objects in trees instead of using directories directly is that in trees
the objects are not written individually but rather collected and written bunch at a time.

A tree consists of objects called branches, which are objects of classes deriving from the
TBranch class. The branches allow users to decompose the objects into portions that are
stored in separate buffers. This kind of approach reduces the amount of storage space since
the branch and its sub-branches always hold the objects of the same type needed to store
the metadata which is required to restore the in-memory shape just once. Moreover, the
portions of data that end up in the same sub-branch are usually very similar, since they refer
to the same data member, so they can be better handled by the deflation algorithm used to
compress the buffers.

Listing 18: Example of Tree creation
1 const char* dictname = ”. / l i bGu i n e aP i g d i c tC INT . so ”;
2 i f ( a rgc == 2 && ! strcmp ( a rgv [ 1 ] , ” r e f l e x ” ) ) {
3 dictname = ”. / l i bGu ineaP ig d i c tREFLEX . so ”;
4 ROOT: : C i n t e x : : C i n t e x : : Enab le ( ) ;
5 }
6
7 gSystem−>Load ( d ictname ) ; // or a co r e spond i ng d lopen c a l l on p o s i x sy s tems
8 // f o r t ha t matte r
9

10 GuineaPig * oGP = new GuineaPig ( ) ;
11 s t d : : v e c to r <GuineaPig >* vGP = new s t d : : v e c to r <GuineaPig >() ;
12 s t d : : v e c to r <BuineaPig*>* vGPStar = new s t d : : v e c to r <GuineaPig *>();
13
14 TF i l e * f i l e = new TF i l e ( ”ARootF i l e . r o o t ” , ”RECREATE” ) ;
15 TTree* t r e e = new TTree ( ”TestTree ” , ”A ROOT Tree ” ) ;
16
17 t r e e−>Branch ( ”GuineaPig ” , &oGP , 32000 , 99 ) ;
18 t r e e−>Branch ( ”Gu ineaP igVec to r ” , &vGP , 32000 , 99 ) ;
19 t r e e−>Branch ( ”Gu ineaP igVec to rS ta r ” , &vGPStar , 32000 , 99 ) ;
20
21 t r e e−>F i l l ( ) ;
22 f i l e −>Write ( ) ;
23 f i l e −>C lo s e ( ) ;

Listing 18 shows how a tree can be created for a class hierarchy shown on Figure 13. It
presents how to store a single object of this class, a standard vector of objects of this class
and a standard vector of pointers, possibly polymorphic, to objects of this class. Before
dealing with trees, the shape of the class hierarchy needs to be made known to the system.
To do that either a REFLEX or CINT dictionary must be loaded (lines 1 to 8) and we also
need to have some data objects to be stored (lines 10 to 13). The next step is to create a file
and a tree objects (lines 14 and 15) and then create branches holding the objects (lines 17
to 19). The first argument to the procedure creating a branch is the name the new branch
should be identified by. The second one is a pointer to the data object that should be stored
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in the branch, the third one is a size of a single buffer and a fourth one is a split level.
The buffer size determines how many objects can be grouped together before the buffer is
written down and a new one is created. The split level tells the system how long the objects
should be split if it is possible. That is how many levels of sub-branches representing the
data members can be created. In this case it is set to 99 so that there is one branch for each
data member. The TTree::Fill procedure fills the appropriate branch buffers with the data
held by the objects and creates a new entry. The state of the objects may change later and
be dumped again with a call to Fill, thus creating another entry. At the end the file needs
to be closed.

The object splitting is possible as long as the system does not encounter pointers as the
structure of the tree is static and the contents of the memory pointed to by the pointers
can only be determined on run-time (actually this was true for older versions of ROOT
but the system was updated to adapt the structure of the trees in some cases due to the
improvements done by this project).

Listing 19: Example of reading back the objects
1 TF i l e * f i l e = new TF i l e ( ”ARootF i l e . r o o t ” , ”READ” ) ;
2
3 TTree* t r e e = ( TTree *) f i l e −>Get ( ”TestTree ” ) ;
4 t r e e−>SetBranchAddress ( ”GuineaPig ” , &oGP ) ;
5 t r e e−>SetBranchAddress ( ”Gu ineaP igVec to r ” , &vGP ) ;
6 t r e e−>SetBranchAddress ( ”Gu ineaP igVec to rS ta r ” , &vGPStar ) ;
7
8 t r e e−>GetEntry ( 0 ) ;
9

10 f i l e −>C lo s e ( ) ;

The read-back procedure is presented in Listing 19. Obviously the dictionary information
must also be loaded before the objects are loaded as was shown on Listing 18. To read the
objects an input file needs to be opened for reading (line 1) and the tree object needs to be
retrieved (line 3). The next step is to tell the branch where in memory the data should be
recreated (lines 4 to 6). The TTree::GetEntry methods loads the requested objects to the
memory. After all the reading is done the file has to be closed.

3.4.4 Dealing with buffers

When the branch buffers are filled with data they are written to a file as ordinary records,
as described in section 3.4.1. The tree object together with it’s branches is handled the same
way. The branches have all the information required to locate on file the right buffer records
for the requested entry so that no linear search is required and the retrieval process is very
efficient. Furthermore, if the contents of a buffer vary in size then the buffer itself contains
a lookup table pointing to the offset of the right entry.

3.4.5 Ways of describing persistified data

Every non-collection class serialized to a ROOT file has a corresponding TStreamerInfo
object associated with it. The TStreamerInfo objects hold the information about the name,
version, checksum, data members (their type, names and so on) and about the order in which
they were stored into the buffers providing complete information about the data stored in
the files. As an example, the streamer info structure for the class presented in Figure 9
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is shown on Figure 12. TStreamerInfo object representing the GuineaPig class holds three
TStreamerElement objects representing the entities the class is consisted of. There is one
concrete element of class TStreamerBase representing the base class and two elements of
class TStreamerBasicType representing the data members. Before the read process starts
this information is matched against the information provided by the dictionaries to handle
simple changes in the in-memory class shape.

Figure 12: Example TStreamerInfo structure

3.4.6 Serialization and deserialization process

The actual procedures of serialization and deserialization are performed recursively by
methods of the TStreamerInfo class desciribeing the input object. The serialization pro-
cedure dumps relevant part of the memory to an object of the TBuffer class whereas the
deserialization procedure performs essentially the same operation in the reverse direction
and taking into account the type change if one occurred and can be handled. The scope of
the serialization procedure, that is whether the entire input object should be handled or just
some parts of it, depends on the split level.

The STL collections are handled in special way, because while processing collections
the system is not really concerned with the memory shape of the object representing the
collection, but with the actual elements. Hence, the TCollectionProxy class was introduced
to wrap the collection objects and provide a common interface to handle all of them. The
collection proxies provide the means to determine how many elements are contained by the
collections and define a operator[](int) method which returns the pointer to the indexed
element.

If the current object is not supposed to be split, the serialization (and deserialization) is
done by looping over the streamer elements and dumping the chunks of the object memory
that the current streamer element describes to a buffer. The collections of objects (not
pointers to objects) can be handled in two ways: they can be streamed either object-wise or
member-wise. The object-wise streaming simply dumps the elements to the buffer one-by-
one whereas the member-wise streaming processes the first data member of all elements in
the collection, then the second one and so on.

If the object is split between many branches then the serialization is done by looping over
the branches responsible for handling the parts of the input object. The addres of the relevant
part is passed to the TStreamerInfo object together with the index of the streamer element
that should be processed. The remaining part of the serialization process is essentially the
same.

If the object being processed is not split then with every complex object in the hierarchy
(a base class or a data member of non-basic type) a 32-bit bytecount is stored pointing to
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the position where the object ends. This enables the system to continue reading even if
something goes wrong with the current object (a dictionary or a streamer info is missing).
Furthermore, with every complex object a 16-bit class version is written or if such information
is unavailable the systems assume that it is equal to zero and writes a cyclic redundancy
checksum computed from the dictionary information about the data members. Behavior like
that enables ROOT to recognize the mismatch between the in-memory shape of the class
and the contents of the buffer and adopt to such situation.

This kind of behavior provides a flexible way to handle errors as well as means of recog-
nizing differences between in-memory shape and the data that has been stored on disk. In
particular if the objects involved are small the relative overhead is very significant.

In the split-mode the error recovery and versioning information is stored only once, with
the appropriate branch, not with every object. This allows for huge space savings while
dealing with big number of relatively small objects.

3.4.7 Serializing and deserializing pointers

Cases involving pointers must be handled in a special way as cycles are possible and one
physical object can be pointed to by many pointers. Also, the pointer can point to any
object deriving from the one that was declared or be a zero pointer.

To cope with this situation, every buffer contains an object map associating 32-bit tags
with the addresses of the objects. The writing is performed as follows:

1. If the input pointer is a zero-pointer then kNullTag is written to the buffer and the
writing algorithm ends

2. If the input pointer points to an address that was handled already (so that it has an
entry in the object map) then the tag of the object is being stored and the algorithm
ends

3. If the object was not stored before then:

3.1 A space for 32-bit bytecount is reserved

3.2 The actual class name is written in the following way:

3.2.1 If the TClass object corresponding to the class has an entry in the object
map (an object of this class was written in this buffer already) then the
object tag (ored with kClassMask is stored

3.2.2 If such class was not stored before then the kNewClassTag is stored and the
string with the name of the class follows

3.3 The actual object is streamed

3.4 The bytecount is written in the slot reserved before

This kind of algorithm is able to handle every possible case of data structure containing
pointers, including graphs with cycles. The flexibility is quite costly though as additional
space is used for the tags and additional computation time is spent in map searches. If the
class hierarchy being stored involves many small objects, it is heavily dependent on pointers.
If one object is not pointed to more than once and there are no cycles (as in the case of
ATLAS), then this kind of algorithm provides little gain for a high price.
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3.5 The split storage mode for collections of pointers to polymorphic
objects

During the pursuit of this project, a set of improvements were made to allow the tree
structures to handle the STL collections of polymorphic pointers. The structure dynamically
upgrades its shape creating new sub-branches when new objects are encountered.

Figure 13: Class hierarchy used for split collection example

Normally the entire tree structure is created before any data is stored in the tree. An
input object is split and branches are created for its base classes, data members and their
data members as long as splitting is no longer possible either due to encountering a nested
collection or pointers in any form. The splitting is performed during the TTree::Branch call
(Listing 18) and done this way does not work for pointers since a pointer can point to any
object deriving from the declared class or be a zero pointer. Therefore, the tree structure
cannot be determined in advance. The branch creation algorithm was upgraded to create an
object of TBranchSTL class when it encounters an STL collection of pointers and delegate
the further splitting to its Fill procedure when the actual data is being processed.

The TBranch::Fill algorithm works in the following way:

1. A table for 8-bit indices capable of containing as many elements as the input collection
is created

2. For every element in the input collection the following is performed:

2.1 If the element being processed is a zero pointer, then zero is inserted in the position
of the index table corresponding to the current position in the input collection and
the loop proceeds to the next element.

2.2 If the element is not a zero pointer and its concrete type hasn’t been encountered
yet then a new TBranchElement object is created (together with appropriate sub-
branches) to represent an std::vector of pointers to this object. In this case splitting
is possible even for pointers since we can safely assume that the collection will
contain objects of the same concrete type and no zero pointers. The existing
structures were updated to handle such a case as a collection of actual objects.

2.3 If the concrete type was encountered before or operation 2.2 was performed, then it
means that we have a sub-branch and a collection dedicated for this type elements.
The element is inserted into this collection and the ID of the sub-branch is inserted
in the position of the index table corresponding to the current position in the input
collection.
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3. The index table is stored in the buffers of the TBranchSTL object.

4. The TBranchElement::Fill method is called for all direct sub-branches if the TBranch-
STL object.

Figure 14 shows the example TBranchSTL object with the immediate sub-branches cre-
ated while storing an std::vector<ClassA*> filled with the objects presented on Figure 13.

Figure 14: Branch hierarchy resulting from splitting of the class hierarchy presented on 13

The deserialization algorithm reads the index table and loops over the indices. If a
zero is encountered then a null pointer is inserted to the output collection. Otherwise, the
appropriate branch data is read and the last unprocessed element in the vectored stored in
it is inserted to the output collection.

The actual buffering is done by the same code that is invoked for a collection of objects.
The collection of pointers that is being processed is passed to it by an adaptor class. Finally,
many other minor improvements to other entities responsible for processing the trees were
made.

Figure 15: Differences in size of the same collection stored in differend modes

To check the behavior of the algorithm the ROOT IO test storing 400 entries with col-
lections of 1000 hit objects in each (a hit object contain 3 floats and up to 31 ints) has been
updated to also test a split store for the case of a collection of pointers. Figure 15 shows the
differences in the amount of storage space occupied in the case of storing the same objects as
a vector of objects, a vector of pointers to objects in a split mode and a vector of pointers in
a non-split mode. The plots show that the storage space taken by a split vector of pointers is
slightly larger than in the case of a vector of objects. The overhead is caused by the necessity
of having an index table to recreate the collection in memory.
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Figure 16: Differences in reading time of the same collection stored in different modes

Figure 16 shows the reading time for the three cases mentioned in the previous paragraph.
A big difference between a vector of objects and a split vector of pointers is caused by a
necessity to process the index table and to allocate the memory in less efficient way. In
the former case the memory already allocated can be reused whereas in the later case only
the memory for holding pointers is pre-allocated and the memory for the actual objects has
to be allocated during the reading process. The amount of time used to read a non-split
collection of pointers is even greater due to the necessity to inspect the object map to recreate
the pointer structure (as described in 3.4.7) also the amount of the storage space ocupied
in this case is larger so more time may be spent in the operating system IO calls and the
decompression algorithm.

3.6 The data model evolution

The reconstruction and data analysis algorithms used by the experiments are constantly
improved. From time to time there is a need to change the data model to better support the
extended algorithms and the new features offered by them. Sometimes the changes are trivial,
such as adding a new data member to handle a new property of the object computed by
algorithm and sometimes the class hierarchy needs to be changed significantly. As mentioned
before the experiments produce huge amounts of data and the updated algorithm must be
able to process the data files written down using old class hierarchies. Hence the persistence
systems have to provide facilities for loading back the old data structures to new in-memory
representations.

3.6.1 Automatic conversion capabilities

In the previous versions of the system the ability to load older versions of class shapes into
memory worked well for data written in object-wise mode. In this case the conversion can
be handled using the Streamer methods. For member-wise (split-mode) streaming, however,
the schema evolution abilities of the system were more limited. The framework can easily
recalculate the memory offsets of the data members when they differ from the information
stored in the file. This is done by simply matching the memory offset information delivered
by the dictionary subsystem against the names stored in the appropriate TStreamerInfo
objects. This is however possible only if the data members have the same name and contain
the same logical information. When the names in the streamer information and in dictionary
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information match but the types of considered data member differ between disk and memory
and the type is a basic type, then the framework will attempt to do the conversion. The
conversion between the STL collections (vectors, lists, deques, sets and multisets) works as
well since those are represented by collection proxies with a uniform interface. These facilities
are helpful but insufficient to meet all the needs of the experiments. An effort has been made
to extend the system to handle these needs more, and this section describes the proposal of
the extensions and presents the implemented prototype.

3.6.2 How the automatic conversion is done

As it was mentioned in Section 3.4.6 the actual reading of an object is done by the
TStreamerInfo structure associated with the class of the object. If the difference between
in-memory class and on-disk class is detected (the checksums or the version numbers differ)
then the TStreamerInfo::BuildOld method tries to adjust the offsets to the new values or
disables the streamer elements if the data members associated with them are not present in
the current in-memory object.

Figure 17: The TStreamernfo objects associated with TClass for a sample hierarchy

Figure 17 shows an example TClass object holding a list of streamer info structures
corresponding to different versions of a class. If the objects in memory are the object of
class ClassA in version 2 and the read of the version 1 is attempted, then the system could
easily adjust the streamer info for version 1 to read data to the new shape. If, however, the
in-memory shape was that of version 3 and the reading of version 1 or 2 was attempted, then
the adjustments could not be made because there is no sufficient information to perform the
appropriate conversions. The extension that has been proposed attempts to cope with that.

3.6.3 The requirements for the extension

This section lists and discusses the requirements that the system has to meet to be usable
by the experiments and acceptable for other users not concerned by the schema evolution
issues.

Backward and forward compatibility The newly implemented functionality cannot
cause any backward compatibility problems. The system must be able to process
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the files written with the old versions of the software. Also the forward compatibility
has to be preserved in the sense that the files written with the new system have to be
readable with the old versions of ROOT.

No performance penalty for the users that do not wish to use the new facilities
The newly implemented functionality cannot impose any significant costs on the users
who do not wish to use it.

Transparency The conversion hints must always be declared in the same way regardless
the storage mode used to handle the objects.

Minimization of the chain effects The chain effects described in the sections dedicated
to the T/P separation (2.6) have to be avoided as much as it is possible.

Possibility of storing the conversion rules in the files The system has to provide the
possibility of serializing the conversion rules so that they could be used in a bare ROOT
mode when the dictionary information for the serialized objects is not available and
the system tries to emulate the in-memory shape.

Ability to set the values of the transient data members The system has to provide
the functionality allowing users to set the values of the transient data members.

Handling the data member and class name changes The system must provide the
functionality to easily cope with the situation in which the names of the data members
or the classes involved in the structure change but there is no other modification.

Ability to cache the on-disk data and convert it to the new shape The system
must be able to load the data stored on disk to the memory cache and provide access
to it in an efficient way for a user-specified conversion function. The system also has
to provide the metadata describing the cached data including the information about
the types of objects and their version numbers.

Ability to directly access the buffer In some rare occasions (ie. when some internal
ROOT writing algorithms change) there is a need to have a direct access to a buffer
instead of the cached data. The system has to provide facilities for handling situations
like that.

3.6.4 The general idea for the extension

Simple data model changes can easily be handled by the system by matching the names of
the streamer elements against the dictionary information or disabling the streamer elements
that do not correspond to any data members in the in-memory class. This approach could be
easily extended to data member renaming by providing the system with the information that
on-disk data member m mem1 is an in-memory data member m mem2 and the conversion
can be done either automatically or using other rules specified by the user. The same
situation appears when we need to rename a class. If the system encounters on-disk ClassA
and the user requested to load it to in-memory ClassB the system could be instructed
to match the streamer info for ClassA against the dictionary information of ClassB. The
situation is more complicated when some of the data members cannot be matched, such as
when an on-disc class stores some information about coordinates using cartesian system and
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the in-memory class requests to have the same information in spherical system, other data
members match just fine. In such a situation a conversion function needs to be provided, in
this case a conversion function which takes cached information encoded in cartesian system
and converts it to a spherical system. A conversion function take as input an arbitrary
sub-set of the data members of the object on file and sets an arbitrary sub-set of the data
members of the in-memory object.

The general idea for the schema evolution extension is to upgrade the BuildOld procedure
to cope with more sophisticated changes by inserting “artificial” streamer elements into the
streamer info structure that are handled in a special way by the reading routine. The
artificial streamer elements do not represent any data member neither in on-disk class nor
in in-memory class. When encountered by the reading procedure they instruct it to perform
operations other that putting the currently processed chunk of data from the buffer to a
memory location that corresponds to the data member represented by the element.

Figure 18: The upgrades to the BuildOld method

Figure 18 is an example how the streamer info structure for class ClassA in version 2
could be upgraded to read this kind of objects to the in-memory version 3. First an artificial
element instructing the read procedure to allocate the cache is inserted, then the members
that are required as input to one of the rules are marked as needing to be stored in the
cache. After these data members are put into the cache the conversion can be performed
and a streamer info holding the information about the conversion function to be called is
inserted. The final step is to clean up the cache. Note that there is no need to do anything
with data member“m mem1”since it is present both on-disk and in memory so it is processed
the same way it was done before.

3.6.5 The syntax of the rules defined in the dictionaries

The system provides two ways of defining the conversion rules. One way is to specify
the rule in the dictionary helper file (LinkDef.h in CINT or selection.xml in REFLEX ). The
rule is processed by the dictionary generator and converted to C++ code in the dictionary
file. The information is then passed to the introspection system and can be modified or
extended from the C++ code by the API described in section 3.6.7. It is more convenient
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than defining the rule directly in the C++ code because the dictionary generator can do
some preprocessing of the code snippet provided by the user defining some helper variables
which makes the code that user has to write a lot simpler.

Listing 20: Normal schema evolution rule defined in CINT LinkDef file
1 #pragma r ead \
2 s o u r c eC l a s s=”ClassA ” \
3 s ou r c e=”doub l e m a ; doub l e m b ; doub l e m c ” \
4 v e r s i o n=”[4−5 ,7 ,9 ,12− ] ” \
5 checksum=”[12345 ,123456 ] ” \
6 t a r g e t C l a s s=”ClassB ” \
7 t a r g e t=”m x ” \
8 t a rge tType=” i n t ” \
9 embed=”t r u e ” \

10 i n c l u d e=”i o s t r e am ; c s t d l i b ” \
11 code=”{m x = o n f i l e . m a * o n f i l e . m b * o n f i l e . m c ;} ” \

Listing 21: Normal schema evolution rule defined in REFLEX selection XML
1 < i o r e a d s o u r c eC l a s s =”ClassA ”
2 s ou r c e =”doub l e m a ; doub l e m b ; doub l e m c ”
3 v e r s i o n =”[4−5 ,7 ,9 ,12− ]”
4 checksum =”[12345 ,123456 ]”
5 t a r g e t C l a s s =”ClassB ”
6 t a r g e t =”m x ”
7 t a rge tType =”i n t ”
8 embed=”t r u e ”
9 i n c l u d e =”i o s t r e am ; c s t d l i b ”>

10 <![CDATA[
11 m x = o n f i l e . m a * o n f i l e . m b * o n f i l e . m c ;
12 ] ] >
13 </ i o r ead >

Listings 20 and 20 present the syntax for defining the rules that depend on the buffered
code. They consist of a set properties and a code snippet.

� sourceClass - The field defines the on-disk class that is the input for the rule.

� source - A semicolon-separated list of values defining the source class data members
that need to be cached and accessible via object proxy when the rule is executed. The
values are either the names of the data members or the type-name pairs (separated by
a space). If a type is specified then the ondisk structure can be generated and used in
the code snippet defined by the user.

� version - A list of versions of the source class that can be an input for this rule. The
list has to be enclosed in a square bracket and be a comma-separated list of versions
or version ranges. The version is an integer number, whereas the version range is one
of the following:

– “a-b” - a and b are integers and the expression means all the numbers between
and including a and b

– “-a” - a is an integer and the expression means all the version numbers smaller
than or equal to a
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– “a-” - a is an integer and the expression means all the version numbers greater
than or equal to a

� checksum - A list of checksums of the source class that can be an input for this
rule. The list has to be enclosed in a square brackets and is a comma-separated list of
integers.

� targetClass - The field is obligatory and defines the name of the in-memory class that
this rule can be applied to.

� target - A semicolon-separated list of target class data member names that this rule
is capable of calculating.

� targetType - This property is meant to define the target type if used without dictio-
naries (when the rule was serialized to a file), it is ignored otherwise.

� embed - This property tells the system if the rule should be written in the output file
is some objects of this class are serialized.

� include - A list of header files that should be included in order to provide the func-
tionality used in the code snippet.

� code - An user specified code snippet, see 3.6.6.

Listing 22: Raw schema evolution rule defined in CINT LinkDef file
1 #pragma readraw \
2 s o u r c eC l a s s=”TAxis ” \
3 s ou r c e=”fXb i n s ” \
4 t a r g e t C l a s s=”TAxis ” \
5 t a r g e t=”fXb i n s ” \
6 v e r s i o n=”[−5] ” \
7 i n c l u d e=”TAxis . h ” \
8 code=”\
9 {\

10 F l o a t t * x b i n s =0;\
11 I n t t n=b u f f e r . ReadArray ( x b i n s ) ; \
12 fXb i n s . Set ( x b i n s ) ; \
13 } ”

Listing 23: Raw schema evolution rule defined in REFLEX selection XML
1 < i o r e ad r aw s o u r c eC l a s s =”TAxis ”
2 s ou r c e =”fXb i n s ”
3 t a r g e t C l a s s =”TAxis ”
4 t a r g e t =”fXb i n s ”
5 v e r s i o n =”[−5]”
6 i n c l u d e =”TAxis . h”>
7 <![CDATA[
8 F l o a t t * x b i n s = 0 ;
9 I n t t n = b u f f e r . ReadArray ( x b i n s ) ;

10 fXb i n s . Set ( x b i n s ) ;
11 ] ] >
12 </io r ead raw>
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Listings 22 and 23 present the syntax for defining a raw conversion rule. A raw conversion
rule differs from a normal conversion rule by the type of the input data. A normal conversion
rule accepts as its input a cached data that can be accessed via TVirtualObject whereas a raw
rule accepts an object of TBuffer class that contains the data member that was declared in
a source property of the rule. Since ROOT supports many storage modes and data members
of the same object may end up in different buffers the raw rule can only declare one data
member as it’s input.

3.6.6 The code snippets in the rules declared in dictionaries

The user provided code snippets have to consist of valid C++ code. The system can do
some preprocessing before wrapping the code into function calls and declare some variables to
facilitate the rule definitions. The user can expect the following variables being predeclared:

� newObj - variable representing the target in-memory object, it’s type is that of the
target object

� oldObj - in normal conversion rules, an object of TVirtualObject class (details are
presented in 3.6.8) representing the input data, guaranteed to hold the data members
declared in the source property of the rule

� buffer - in raw conversion rules, an object of TBuffer class holding the data member
declared in source property of the rule

� names of the data members of the target object declared in the target property of the
rule declared to be the appropriate type

� onfile.xxx - in normal conversion rules, names of the variables of basic types declared
in the source property of the rule

3.6.7 The C++ API concerning handling the rules

The C++ API, as presented on Figure 19, is a key part of the new system. It allows
users to define the rules that have to be applied to convert the old on-disk data to the new
versions of the data model classes from the C++ code. It also allows for the modifications or
removal of the rules that were declared in the dictionaries. All conversion rules are associated
with the target in-memory class and are being held by the TClass object corresponding to
this class. Each TClass object can have exactly one TSchemaRuleSet object associated with
it. The rule set object holds and facilitates manipulations and querying for the rules and
can also be serialized to persistify the schema evolution information in the new files that are
produced. Objects of the TSchemaRule class are being owned by the TSchemaRuleSets and
they cannot be deleted if they are returned outside in the TObjArrays or TSchemaMatch
objects. The rule sets also perform consistency checks of the rules contained in them. The
user cannot, for example, define two rules for the same input class version producing the
same output data member.

The TSchemaRule object corresponds to a schema rule declared in a dictionary. Most
of the setter methods accept strings in exactly the same format as the ones described in
section 3.6.5 and they provide convenient ways of getting the values they hold. that is the
target data members are returned as a linked lists of string names. The class also provides
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methods for testing if the rule represented by it should be applied to a class of given version
or checksum. There are also two types of “special” rules. First of all, an alias rule (a rule
having only a targetClass and a sourceClass defined) tells the system that it is possible to
do a conversion between the classes mentioned. Secondly a renaming rule with sourceClass,
targetClass, source and target properties defined tells the system that the data members
described by the rule have the same meaning (either only the name changed or the conversion
can be performed using other rules). In the C++ code it is possible to pass the code as a
snippet but the user can also provide a function pointer doing the conversion. A normal
conversion function accepts a void pointer that is set to a target object being reconstructed
and a TVirtaulObject pointer pointing to an object containing cached information. A raw
conversion function also accepts a void pointer to a target object but the second parameters
is a pointer to TBuffer object.

TStreamerInfo::BuildOld method has been updated to take the conversion rules into
account and to insert the artificial streamer elements that are then processed by the reading
procedure. The streamer infos that were updated to result with current in-memory shape
for old on-disk input data are cached because the adjustment procedure takes much time
and would have to be repeated very frequently.

Figure 19: The C++ API for defining the conversion rules

3.6.8 The C++ API concerning handling the buffering

Normal conversion functions accept as their input a proxified pieces of the on-disk data
that were specified in the source properties. If the piece of data is of complex type its shape
should be the same as the one on disk (before performing any conversion on this piece if the
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conversion rules for its type were defined). This is necessary since there may exist conversion
rules converting a given source class to many different target classes and it may not be
possible to determine the right target type automatically.

Figure 20: An UML diagram of TVirtualObject class

Figure 20 shows an UML diagram of TVirtualObject class. It has to be able to support
the case when the input to the conversion function is a collection. Hence, it has IsCollection,
Size and At methods. Data members or base classes could be accessed using GetMember
method. The templated one is meant to retrieve basic types, since they can be accessed by
just casting a memory cell to a given type. The one returning TVirtualObject should to be
used with the concrete types since their memory printout cannot be safely casted to any
type. The GetMember methods should get the integer id as the input parameters instead
of the string names of the data members or the base classes for performance reasons (to
avoid costly string comparisons). The ids should be class-wise and should not depend on
the version of the class being read (ie. data member m mem1 should correspond to id 1, no
matter if we are reading class ClassA in version 1 or 2 even though the class shape could
change dramatically from one version to the other). The Load method is supposed to load
the proxified data to the memory shape of an object of some existing type is it is possible.
Other methods provide information about what hides behind the proxy.

3.6.9 The prototype

The actual prototype that has been implemented by the author of this document and by
Philippe Canal provides a large part of the functionality described in the previous sections.
The facilities for calling custom conversion methods are in present, but some of them are
still missing in the split-mode. The buffering is done in a simplified way: ids are replaced
with offsets of the data members and the Load facility that was meant to ultimately break
the chain-effects as seen in the T/P separation is missing.

The results of the tests that has been done show that the time overhead caused by the
new code for the case when the new schema evolution is not used is negligible and amounts
to around 0.5%.

3.7 Outlook

The author’s work with ROOT has shown that the system is able to successfully support
the persistence of the data models used by the ATLAS experiment but that there are still
many fields where the IO system can be tweaked to do the job in a more optimal way.



3 The ROOT Framework 45

The algorithm used to handle the pointers is very general and able to handle the broadest
spectrum of cases but, given the ATLAS specifics, it could be updated/extended to let the
user choose if he wants to track the pointers pointing to the same objects or the pointer
structures with cycles. Compression of the floating point numbers could also be enhanced,
the data members of floating point types within one class could be grouped together so that
only a user specified amount of bits in the base and the exponent could be stored in the
optimal way. For reading back maps the insertion with hinting could be used when possible
instead of doing searches every time when a new element is read back and the std::bitset
class could be supported. These are all relatively small but necessary drops in the sea of the
work that already has already been done.
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4 Conclusions
As the reader could observe, the ATLAS data persistence system is very sophisticated. A

lot of effort has been done to make it capable of handling very complex data structures. There
are still some problems to be solved and the attempts are being made to provide the right
solutions. The ATLAS solution to the schema evolution problem is fully operational and, as
a side effect, makes the IO system working in more efficient way. All those improvements
come for very high price though. It involves a lot of effort, mindless typing and arduous
debugging resulting with a huge amount of code containing many redundant blocks.

This project has shown that the ROOT framework provides facilities on which a system
providing similar functionality to that of the T/P separation can be built. In most of the
cases such a system is or would be capable of performing the same or equivalent optimizations
automatically. In the cases when the user code is required the system is flexible enough to
make this code less redundant since one conversion rule can be applied to many versions of
the input class.

There is still a lot of effort to be made to make the system functioning in the optimal
way by enhancing the storage technology (the ROOT IO) to do what it is expected to do
instead of trying to apply unmaintainable workarounds elsewhere that may lead to serious
maintenance troubles in the future.
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