Markus Elsing

ATLAS Upgrades Towards the High Luminosity LHC

extending the discovery potential

Motivation

expectations and present status

motivations for higher luminosity

- → perform measurements of Higgs properties
- → observe/measure rare (SM and BSM) processes that occur at rates below the current sensitivity
- ⇒ extend exploration of the energy frontier to increase the discovery reach

LHC is doing fantastically well

- 2012 operation
 - → peak event pileup routinely exceeding design values
- event pileup and other induced effects (e.g. radiation damage)
 - → challenge for the detector, T/DAQ and offline
 - so far ATLAS is doing very well
 - → aim of the ATLAS upgrade program:
 - preserve and improve physics performance to fully benefit from increasing luminosity

LHC is doing fantastically well

- 2012 operation
 - → peak event pileup routinely exceeding design values
- event pileup and other induced effects (e.g. radiation damage)
 - → challenge for the detector, T/DAQ and offline
 - so far ATLAS is doing very well
 - ⇒ aim of the ATLAS upgrade program:
 - preserve and improve physics performance to fully benefit from increasing luminosity

Upgrade Schedule Assumptions

Upgrade Schedule Assumptions

... outline for the following

Phase-0: 2013/14 Shutdown (LS1)

detector consolidation:

- → new tracker evaporative cooling plant
- → new Calorimeters LV power
- → magnets cryogenics consolidation
- → muon spectrometer consolidation
- → infrastructure consolidation (electronics, ventilation, radiation protection,...)
- → maintenance and repairs everywhere

detector upgrade:

- → Insertable B Layer (IBL): 4th pixel layer
 - install (?) new pixel services (nSQP), incl. new Diamond Beam Monitor
- → new small radius central Be pipe
 - new forward aluminum beam pipes
- → new chambers in the muon spectrometer to improve geometrical coverage

Insertable B Layer (IBL)

4th pixel layer

- → add low mass layer closer to beam, with smaller pixel size
 - improve tracking, vertexing, b-tagging and τ-reconstruction
- → recovers from defects, especially in present b-layer
- → FE-I4b overcomes bandwidth limitations of present FE-I3

• IBL key specifications:

- \rightarrow 14 staves, $\langle R \rangle = 33.25 \, mm$
- → CO2 cooling, T < -15°C @ 0.2 W/cm²
- → X/X0 < 1.5 % (B-layer is 2.7 %)
- \rightarrow 50 μ m x 250 μ m pixels (**planar** and **3D** sensors)
- ⇒ 1.8° overlap in ϕ , < 2% gaps in Z
- → 32/16 single/double FE-I4 modules per stave
- → radiation tolerance 5·10¹⁵ neq/cm²

mounted on new beam pipe

- → installation options still to be decided
- → may extract present Pixel Detector to replace nSQPs (decision this year)

talk by ella Volpe

Phase-1: Installation in or before LS2

- pileup up to 80 at luminosities up to 3·10³⁴cm⁻²s⁻¹
 - ⇒ challenge: keep trigger threshold around 20-25 GeV
 - \rightarrow raising muon p_T thresholds not effective in the forward
 - → higher EM E_T thresholds eat into physics acceptance
- trigger and related upgrades
 - → new muon small wheels for forward trigger and tracking
 - → high granularity calorimeter Level-1 trigger electronics
 - → fast tracker trigger (FTK) using Pixel and SCT information
 - → topological trigger processor for Level-1 (starts before LS2)
 - → High Level Trigger farm upgrade, especially network
 - → new Tiles crack-gap scintillators and trigger electronics
- ATLAS Forward Physics (AFP)
 - → new forward detectors installed at 210 *m*, start before LS2

Granularity LVL1 Calorimeter Trigger

- explore LAr lateral show shapes to improve trigger rejection
 - → super-cells formed in 2nd layer of EM calorimeter
 - → goal: reduced Level-1 trigger rate and preserve un-prescaled threshold at ~25 GeV

- requires new front end digital chain
 - → super-cells with higher granularity are formed in the front end shaper sum ASIC and individually digitized
 - → Level-1 uses ratio of energies of different size clusters

New Muon Small Wheel

- improve forward muon trigger
 - → < 1 mrad angular resolution on track segments at Level-1
 - → trigger studies demonstrate Level-1 rate reductions
- 2 multilayers per sector, each with
 - → 4 layers sTGC (Thin Gap Chambers) for trigger
 - reduced cathode resistivity, rates > 30 kHz/cm²
 - → 4 layers of MicroMegas for a total of 2 *M* channels
 - both coordinates, direction information, ~ 70 um
- TDR planned for 2013

The Fast Tracker (FTK)

- current ATLAS trigger chain
 - → Level-1: hardware based (~50 kHz)
 - → Level-2: software based with Rol access to full granularity data (~5 kHz) tracking enters here
 - ⇒ Event Filter: software trigger (~500 Hz)

- → descendent of the CDF Silicon Vertex Trigger (SVT)
- → inputs from Pixel and SCT
 - data in parallel to normal read-out
- → two step reconstruction
 - associative memories for parallel pattern finding
 - linearized track fit implemented in FPGAs
- \rightarrow provides track information to Level-2 in \sim 25 μ s

major Level-2 improvement for

- ⇒ b-tagging, τ-reconstruction
- → lepton isolation

primary and pileup vertex reconstruction Markus Elsing

 $F(x_1, x_2, x_3, ...) \sim a_0 + a_1 \Delta x_1 + a_2 \Delta x_2 + a_3 \Delta x_3 + ... = 0$

ATLAS Forward Physics (AFP)

- study tagged color singlet or photon exchange processes
 - → p-p tagged high mass central system
 - → anomalous WW couplings, diffractive jet production, new physics?

- system of timing and silicon detectors
 - → installed in movable beam pipe to move detectors in while stable beams
 - → at 210 *m* away from P1
 - ⇒ 2x6 layer 3D pixel detector (IBL) to measure proton position ~15 μm
 - radiation few *mm* from beam
 - → array of 4x8 quartz bars to measure proton timing ~10 psec to separate signal and pileup interactions

Phase-2: Installation 2022/23

- by end of Phase-1 LHC will have delivered 300-500 fb⁻¹
 - → LHC will be made ready for 5·10³⁴cm⁻²s⁻¹ with luminosity leveling
- ATLAS Phase-2 upgrade program is taking shape
 - → main activity is construction of a new Inner Detector
 - already ongoing major R&D, prototyping and engineering effort
 - including feasibility studies for a Level-1 hardware track trigger (Level-0 seeded)
 - → Phase-2 conditions mays require to replace FCAL (Forward Calorimeter) and change HEC (Hadronic EndCap) electronics
 - muon spectrometer will be upgraded, in particular in the big wheel region
 - → existing electronics/computing/TDAQ will need to be upgraded and modernized to face additional 8-10 years of running in extreme conditions
- plan is to be ready for installation in 2021
 - → will need a 2 year shutdown to prepare ATLAS for its new phase
- Letter of Intent to be presented in December

Inner Tracker Upgrade

- to keep ATLAS running requires tracker replacement
 - ⇒ current tracker designed to survive up to 10 MRad in strip detectors (\leq 700 fb⁻¹)
 - ⇒ replace with an all silicon tracker to match the challenge of 140-200 pileup events
- main ITK design parameters
 - **→ Inner Pixels:**
 - 2 replaceable layers close to enlarged Phase-2 beam pipe
 - smaller pixel pitch to improve b-tagging (FE-I5)
 - **→** Outer Pixels:
 - 2 barrel layers at increased radii to improve tracking in jets
 - pixel endcaps ensure full tracking coverage to $\eta=2.5$
 - some standalone tracking capability to $\eta=2.7$ (muons)
 - **→** Strip Detector:
 - maximize momentum resolution (*B*·*dl*)
 - double sided strips in 5 layer, 7 disk, plus stub
 - shorter strips close to PST to limit occupancy
 - \rightarrow overall a 14 hit system down to $\eta=2.5$
 - robustness, avoid fakes at high pileup
 - overall much reduced material budget

Computing and Offline

- vital part of the upgrade program
 - → support upgrade with detector simulation
 - → upgrade of the computing and offline software infrastructure
- many challenges ahead
 - → computing infrastructure is constantly evolving
 - GRID middleware, cloud computing, storage systems, networking...
 - ⇒ increasing integrated luminosity, trigger rates and event sizes
 - ATLAS Production System and Data Management needs to scale
 - GRID luminosity for simulation is becoming rapidly a factor
 - → reconstruction needs to cope with even higher levels of event pileup
- upgrade on the fly, while experiment is operating
- industry may move to new technologies
 - ⇒ many-core architectures may replace present X86 boxes (*a la* Intel MIC)
 - → need to be prepared to adapt or re-implement large parts of framework as well as offline (and high level trigger) software chain
- part of Phase-2 Letter of Intent

global access/data federation

Summary of ALTAS Upgrade Program

- preserve excellent detector performance to take full benefit of increasing luminosity to fully explore the ATLAS physics potential
 - → adapt and upgrade detector, electronics, TDAQ and offline computing to match challenges ahead
- Phase-0: preparation advancing well
 - → IBL approaches construction phase
- Phase-1: Letter of Intent
 - \rightarrow various upgrades to cope with luminosities up to 3.10^{34} cm⁻²s⁻¹
 - → next year(s) to prepare TDRs
- Phase-2: ensure ATLAS operation until the end of the next decade for a total of 3000 fb⁻¹
 - → Lol in preparation

BACKUPS...

10 year plan (not yet approved)

Mike Lamont (CERN BE-OP) 21.5.2012 at CMS Upgrade week

Improve Muon Spectrometer Coverage

Endcap Extension (EE) Chambers

- ⇒ improve coverage in $1.0 < |\eta| < 1.3$
- → will install missing 52 chambers (out of 62)
- → address low tracking efficiency in the region

new shielding at 7 m

- cover gap between forward calorimeter and shielding disk
- → reduce forward hit occupancy in Muon Small Wheel region

New Evaporative Cooling Plant The thermosiphon is the **baseline solution** for the consolidation of the ATLAS ID evaporative cooling system. The new cooling system will increase the present performances of the existing compressor system to 60 kW @ -30° C (gaining 10 K), to guarantee these temperatu performances we shall manage fluid blends C₃F₈-C₂F₆. Chiller condenser The present compressor system will remain as full power back up cooling source liquid -70 °C tank Procurement and installation are advancing as part of M&O A! pneumatic valve Surface pneumatic USA15 others manual 4 liquid lines valve Heater USA15 UX 15 compressors dummy pixel manual valve 4 gas lines 6 X SCT valve

FE chip

Hybrid Pixel Chip Assembly:

- sensor and FE chip are produced separately
- connected via bump bonding

Planar Sensor

- "classic" sensor design
- oxygenated n-in-n
- 200µm thick
- Minimize inactive edge by shifting guard-ring underneath pixels (215 µm)
- Radiation hardness proven
 up to 2.4 10¹⁶ p/cm²
- Problem: HV might need to exceed 1000V

3D Silicon

- Both electrode types are processed inside the detector bulk
- Max. drift and depletion distance set by electrode spacing
- Reduced collection time and depletion voltage
- Low charge sharing

IBL baseline:

- 75 planar sensors
- 25 (3D sensors@large eta)

- Reasons for a new front-end chip
 - Increased radiation hardness (> 250 MRad)
 - Greater fraction of the footprint devoted to pixel array
 - Move the memory inside the array
 - Lower power
 - Don't move the hits around unless triggered
 - Able to take higher hit rate
 - Store the hits locally and distribute the trigger
 - Still able to resolve the hits at higher rate
 - Smaller pixels and faster recovery time
 - No need for extra control chip
 - Significant digital logic blocks on array periphery

=> 19 x 20 mm² 130 nm CMOS process, based on an array of 80 by 336 pixels (each 50 x 250 μ m²)

FE-I4B Threshold scan

Improved version B was received and used for various tests

New Service Quater Panel

- New service layout for all pixel service (nSQP)
- Redundant and safer location for fibers transmitters
- Doubling of the readout bandwidth in view of Phase 1 upgrade
- Diamond Beam Monitor attached to nSQP
 - Uses Diamond Si detectors produced for IBL trials
 - Will provide very fast monitoring of beam in high rate environment

Installed ER wire bundles
(data, command, clock wires)

PPO support plate
material reduction:
Al to GF 30 PEEK

Cable boards terminate
ER bundles and connect
to E-board

Replaced opto-board by
LVDS repeater E-board
Removed cooling loop

Be ready to take the final decision if to extract and repair or not the pixel detector on the surface during 2012 (first half)

Phase 1: Trigger & DAQ Upgrades

- Incorporate Muon Small Wheels, L1Calo higher granularity, FTK
- L1 (including topological trigger) -> FTK -> L2 & EF
 - Greater integration of Level-2 and Event Filter selections + Event Builder

3000fb⁻¹: Inner Pixel Charge Collection

p-type (n-in-p) and n-in-n pixel and miniature strip planar silicon detectors irradiated to HL-LHC inner layer doses of 2×10¹⁶n_{ea}cm⁻² (D. Muenstermann)

FE-I4 thresholds down to 1600e (even lower

for diamond)

3D strip read-out detector signal vs dose

Diamond detector charge collection distance vs dose (*H. Kagan*)

Phase 2: Calorimeters

- EM LAr Barrel & Tile Calorimeter will work fine: no upgrade.
- Full upgrade of FE and BE electronics (radiation, lifetime, performance ...)
 - **Both LAr and Tiles**
- Hadronic EndCap electronics designed for 1000 fb⁻¹ possible replacement
- Forward Calorimeter @ HL-LHC instantaneous luminosity: overheating / ion build-up / HV drop / signal loss...

Option1:

Complete replacement of the FCal Smaller LAr gaps (to reduce ion build-up/HV drop) + better cooling (avoid overheating)

Option2:

Installation of a small calorimeter in front of the current FCal: Mini-FCal => Reduce energy and ionization @ FCal

Radiation Background Simulation

1 MeV neutron eq fluence

At inner pixel radii - target survival to $2-3\times10^{16}\,n_{eq}/cm^2$

Strip barrel 1 (SS) (r=38cm; z=0cm)		4.4x10^14	
	(r=38cm; z=117cm)	4.9x10^14	
Strip barrel 4 (LS)	(r=74.3cm; z=0.0cm)	1.6x10^14	
	(r=74.3cm; z=117cm)	1.8x10^14	
			For strips 3000fb ⁻¹
Strip Disc 1 (z=137.1, Rinner=33.6)		6.0x10^14	
Strip Disc 2 (z=147.6, Rinner=33.6)		6.2x10^14	×2 implies survival
Strip Disc 3 (z=174.4, Rinner=33.6)		5.8x10^14	14 ·· 2 implies sur vivar
Strip Disc 4 (z=214.1, Rinner=33.6)		6.1x10^14	required up to
Strip Disc 5 (z=279.1, Rinner=44.4)		5.8x10^14	required up to
Strip Disc 5 (z=279.1, Rinner=54.1)		4.4x10^14	$\sim 1.3 \times 10^{15} n_{eq} / cm^2$
Strip Disc 5 (z=279.1, Rinner=61.7)		3.9x10^14	~1.5×10 · H _{eq} /cm
new			•
Strip Disc 5 (z=279.1, Rinner=73.6)		3.0x10^14	
Strip Disc 5 (z=279.1, Rinner=84.9)		2.7x10^14	

