Markus Elsing

Tracking at the LHC (Part 5)

 Commissioning, Alignment and Performance

Outline of Part 5

- recap expectations on tracking performance
- commissioning of detector and tracking
 - ➡ material studies, alignment
 - vertexing and b-tagging performance

Expected Performance

excellent preparation before startup

- → more than 10 years of simulation and test beam
- ➡ cosmics data taking in 2008 and 2009
- ➡ payed off last year !

detailed simulation studies

- ➡ document expected performance in TDRs
- ➡ few of the known critical items:
 - material effects limit efficiency and resolution at low pt
 - good (local) alignment for b-tagging
 - momentum scale and alignment "weak modes"
- ➡ focus for commissioning of tracking and vertexing

performance with event pileup

Expected Difficulties ?

• Detector Paper MC study:

- → ideal Z mass resolution 2.6 GeV
- \rightarrow misalign MC by 100 µm, re-align using:
 - high-p_T muons and cosmics
- ➡ Z mass resolution degraded to 3.9 GeV (!)
 - need to use external constraints to improve

cosmics study using split tracks

- ➡ good performance overall
 - cosmics are mostly in the barrel (!)
 - done with the alignment at the time...
- ⇒ but: at higher p_T the data starts to diverge from MC

• what was the reason ?

Alignment and Weak Modes

• global-χ² alignment

- → diagonalize alignment matrix (36k x 36k)
- enables studies of Eigenvalue spectrum
 - well constraint : local movements
 - less well constaint : overall deformations
 - not constraint : global transform

• weak modes affect p_T-scale:

- \rightarrow overall deformations that leave $\Delta \chi^2 \sim 0$
- ➡ examples

• b-tagging:

mostly sensitive to local movements
Jeam spot constraint in alignment

Monte Carlo Study of Weak Modes

use ad-hoc alignment sets with weak modes

- ⇒ 9 'easy' modes introduced by hand
- \rightarrow rerun reconstruction to study effect on Z and J/ ψ mass
- ➡ compare against nominal Monte Carlo

• qualitatively one sees clear effects...

- ➡ some modes affect the mass resolution
- \rightarrow relative effect on J/ ψ much smaller, much larger effect on Z

Material vs Momentum Resolution

• resolution model: $\sigma(q/p_T) = a \oplus b/p_T$

- ➡ a describes intrinsic resolution
- ➡ material dominated
 - huge multiple scattering term
- at ~50 GeV the intrinsic resolution equals the multiple scattering term
 - ➡ similar effects for CMS, but 4T B-field helps
 - important to understand tracking performance

Excitement with first beams...

... and first Collisions

Commissioning with Collision Data

- LHC has done fantastic since !
 - → luminosity increase almost exponential
- a long way from first collisions to physics
 - commission full readout chain (detector, trigger, DAQ)
 - ➡ calibrate and align the detector
 - optimize the tracking performance, allow for changing levels of pileup

➡.

 basis of commissioning the tracking is excellent work done on the detector !

→ let's briefly discuss a few examples...

Timing in the Detector

• timing in the detector is crucial

- → to be ready for 50/25 nsec operation
- → time of flight is large compared to LHC event rate
- → precise timing required to be fully efficient (time walk in silicon detectors, etc.)

work started before collisions

- → cosmics and beam splash events were extremely useful
- \rightarrow fine tuning with collision events

ATLAS preliminary

[ns]

P

board

Е

2

-2

-3

Detector Calibration

careful calibration of detectors

- → required to reach design performance
- ➡ online (thresholds,...) and offline
- ➡ monitoring of variations with time

• examples:

- ➡ TRT: R-t relation and high threshold probability
- ➡ analog information from silicon detectors
 - allows to measure dE/dx
 - required to explore power of analog clustering

Detector Calibration

• measure Lorentz angle

➡ cluster sizes vs track incident angle

study cluster properties

- ➡ resolutions
- ➡ charge sharing...

study dead and noisy channels

 excellent performance after masking known noisy channel

Detector Calibration

- study detector efficiencies
 - → identify dead channels, chips, modules
 - ➡ typically > 95% of detectors are operational
- in general, detectors are behaving excellent
 - → very high efficiencies of the sensors (>98%) and very low noise
 - ➡ CMS sees small efficiency loss (0.2-0.4%) with increasing luminosity
 - occupancy increase effecting readout

not limiting tracking performance

- correct simulation to reproduce calibrated detector performance
- → allow for known defects and inefficiencies in reconstruction

Beam Backgrounds and Radiation Effects

• CMS sees backgrounds in Pixels

- → induced by low level beam loss into detector
 - consistent with beam-gas interactions
- ➡ risk for desynchronization of readout

radiation effects on silicon

- monitor leakage current and cross talk
- ➡ example: ATLAS

Al_{leak} [µA] @ -10[°]C

- $\phi = 2.43 \cdot 10^{12} \cdot (1 \text{ MeV neq})/\text{fb-1}$ at b- Layer
- expect type inversion at ~10 fb⁻¹

Tracking Commissioning

at startup

- ➡ use commissioning settings
 - ensure "robustness"
 - allow for dead/noise modules
 - error scaling to reflect calibration + alignment
- ➡ first physics was minimum bias
 - tracking with very low p_T thresholds, no pileup

study behavior of reconstruction

- ➡ seeding / candidate fitting / ambiguity / etc.
- ➡ compare simulation to data

Tracking Commissioning

detailed studies of properties of reconstructed tracks

- → hit associations, fit quality, etc.
- → leading towards first publications
 - tracking systematics driven by material uncertainties

Material Studies using K⁰s

- crucial to understand tracking performance
- mass and width of K⁰_s is sensitive to material description
 - ➡ one of the first signals people looked at
 - → can study effects vs η , ϕ , p_T and decay radius
 - ➡ sensitive to integrated effects in data/MC
 - ➡ can simulate effect of wrong material in MC (10%/20%)

Material Studies using J/ψ

\bullet J/ ψ still mostly sensitive to material

- → similar studies as with K⁰s possible
- \Rightarrow example: CMS study of momentum resolution from fit to J/ $\psi \rightarrow \mu\mu$ signal

excellent CMS mass resolution seen as well in resonances near Y (thanks to 4 T field)

Conversions

detailed tomography of material with γ conversions

- → able to map details in material distribution
 - measure difference in data/MC, e.g. PP0
- ultimately should result in a very precise estimate of material
 - need to control reconstruction efficiency
 - calibrate measurement e.g. on "known" beam pipe
 - needs huge statistics

ATLAS Pixel PP0 region

Hadronic Interactions

- 2nd method for a precise tomography of detector material
 - → good vertex resolution allows to study fine details
- material uncertainty in simulation
 - → better than ~5% in central region
 - \rightarrow at the level of ~10% in most of the endcaps
 - → study of systematics ongoing in experiments

Pixel Module

R and Φ sensors

Track-based alignment

• alignment is based on the minimization of track-hit residuals *r*

- single large matrix including all the correlations
 - huge number of DoF for the ATLAS Inner Detector (and in for CMS !)
- requires usage of fast solving techniques
- convergence within few iterations

Local χ^2

- solving of a small linear system independently for every aligned structure, ignoring explicit correlations between structures
- correlations are restored via iterations
- many iterations needed

Detector Alignment

alignment strategy

- ➡ starting point is detailed survey
- ➡ hardware alignment systems
 - e.g. CMS tracker, ALTAS muons
- → alignment stream with high-pt tracks
- define different levels of granularity level 1 (e.g.SCT barrel) to level 3 (module)
- \Rightarrow global- χ^2 and local alignment

also allow for

- ➡ Pixel model deformations
 - survey data or fit
- ➡ Pixel stave bowing
- ➡ TRT wire alignment
- movements of the detector

Local Misalignments

module to module misalignments

- ➡ very good constraint from overlapping modules
- drives residuals and impact parameter resolutions

 alignment is sensitive to module distortions (not a flat shape)
ATLAS is using survey data for Pixels

➡ CMS will allow for module bowing soon

24

Impact Parameter Resolution

• driven by local misalignments

- ➡ quickly approaching design resolutions
- → some small problems still visible
 - hence apply some error scaling in fit
- vertexing and b-tagging
 - ➡ fast commissioning helped by well constraint local alignment

B-Field Tilt vs Nominal?

• field tilt in ATLAS visible in $K^{0}_{s} + J/\psi$ mass bias vs φ

- results in a sine modulation in mass in opposite directions in both endcaps
- corrected by 0.55 *mrad* field rotation around y axis
- ➡ consistent with survey constraints

Evidence for Weak Modes ?

• "weak modes" are global deformations

- → leave fit- χ^2 nearly unchanged
- → affect momentum scale, e.g. Z-mass resolution
- ➡ several techniques to control weak modes
 - electron E/p using calorimeter
 - muon momentum in tracker vs muon spectrometer
 - TRT to constrain Silicon alignment (ATLAS)

limiting performance in data

ATLAS saw modulation in Z mass vs $\phi(\mu^+)$ in endcaps

Primary Vertex Resolution from Data

- primary vertex is input to b-tagging, etc.
 - need to understand precisely the resolution in data

split vertex technique

- ➡ data driven method
- split vertex in 2 and study difference in the 2 fitted positions as function of n tracks

b-Jet Tagging

commissioning of b-tagging

➡ helped by good local alignment

initially used robust taggers

- → impact parameter (IP) significance (JetProb)
- ➡ inclusive secondary vertex tagger (SV)

data driven performance calibration

- ➡ efficiency using independent tagger, e.g. muon p_T-rel
- ➡ b-jet tagging in tt events
- 'system8' in lepton tagged di-jet events
- mis-tags using 'vtx mass' template fits or 'neg. tags'

b-Jet Tagging

towards more sophisticated

taggers

- optimal combination of IP and vertex information
- require excellent control on tracking performance
- interplay with properties of jets and fragmentation in different event topologies
- → been used for recent physics results (summer 2011)

Let's Summarize...

- gave overview of tracking and vertexing commissioning
 - how to reach design performance for calibration, tracking, alignment, vertexing
 - ➡ commissioning of b-tagging
- next is pileup tracking and upgrade

