

Outline

- short introduction
 - → motivation, present technology and recent improvements
- ATLAS upgrade program
 - → summary of Inner Detector updates
- CPU performance vs Pileup
 - → tracking software development program to tackle the CPU limitations
- few words on (fast track) simulation
- trigger upgrade and tracking

Introduction

requirements on ATLAS Inner Detector

- precision tracking at LHC luminosities (central heavy ion event multiplicities) with a hermitic detector covering 5 units in η
- → precise primary/secondary vertex reconstruction and to provide excellent b-tagging in jets
- → reconstruction of electrons (and converted photons)
- → tracking of muons combined with muon spectrometer, good resolution over the full accessible momentum range
- ⇒ enable (hadronic) tau, exclusive b- and c-hadron reconstruction
- **→** provide **particle identification**
 - transition radiation in ATLAS TRT for electron identification
 - as well dE/dx in Pixels or TRT
- → not to forget: enable fast tracking for (high level) trigger

constraints on detector design

- minimize material for best precision and to minimize interactions before the calorimeter
- ⇒ increasing sensor granularity to reduce occupancy
 - increase number of electronics channels and heat load
 - leading to more material

ATLAS Inner Detector Layout

• 3 subsystems:

- → 3 layer Pixel system, 3 endcap disks
 - 1744 Pixel modules
 - 80.4 million channels
 - pitch 50 μ m \times 400 μ m
 - total of 1.8 m²
- → 4 layers of small angle stereo strips,9 endcap disks each side (SCT)
 - 4088 double sided modules
 - 6.3 million channels
 - pitch 80 μm, 40 mrad stereo angle
 - total of 60 m²
- → Transition Radiation Tracker (TRT)
 - typically 36 hits per track
 - transition radiation to identify electrons
 - total of 350K channels

pre-precessing

- → Pixel+SCT clustering
- → TRT drift circle formation
- → space points formation

pre-precessing

- → Pixel+SCT clustering
- → TRT drift circle formation
- → space points formation

combinatorial track finder

- **→** iterative:
 - 1. Pixel seeds
 - 2. Pixel+SCT seeds
 - 3. SCT seeds
- → restricted to roads
- bookkeeping to avoid duplicate candidates

ambiguity solution

- precise least square fit with full geometry
- selection of best silicon tracks using:
 - 1. hit content, holes
 - 2. number of shared hits
 - 3. fit quality...

extension into TRT

- progressive finder
- → refit of track and selection

pre-precessing

- → Pixel+SCT clustering
- → TRT drift circle formation
- ⇒ space points formation

combinatorial track finder

- → iterative:
 - 1. Pixel seeds
 - 2. Pixel+SCT seeds
 - 3. SCT seeds
- → restricted to roads
- bookkeeping to avoid duplicate candidates

standalone TRT

→ unused TRT segments

ambiguity solution

- → precise fit and selection
- → TRT seeded tracks

TRT seeded finder

- → from TRT into SCT+Pixels
- → combinatorial finder

- precise least square fit with full geometry
- selection of best silicon tracks using:
 - 1. hit content, holes
 - 2. number of shared hits
 - 3. fit quality...

TRT segment finder

→ uses Hough transform

extension into TRT

- progressive finder
- → refit of track and selection

vertexing

- primary vertexing
- → conversion and V0 search

standalone TRT

→ unused TRT segments

ambiguity solution

- → precise fit and selection
- → TRT seeded tracks

TRT seeded finder

- → from TRT into SCT+Pixels
- → combinatorial finder

pre-precessing

- → Pixel+SCT clustering
- → TRT drift circle formation
- → space points formation

TRT segment finder

- → on remaining drift circles
- → uses Hough transform

combinatorial track finder

- → iterative:
 - 1. Pixel seeds
 - 2. Pixel+SCT seeds
 - 3. SCT seeds
- → restricted to roads
- bookkeeping to avoid duplicate candidates

ambiguity solution

- precise least square fit with full geometry
- selection of best silicon tracks using:
 - 1. hit content, holes
 - 2. number of shared hits
 - 3. fit quality...

extension into TRT

- progressive finder
- → refit of track and selection

Neural Net Pixel Clustering

- novel technique, motivation:
 - → high track density in jets leads to cluster merging
 - → limits tracking in jets and b-tagging performance
- algorithm to split merge clusters
 - → neural network (NN) based technique
 - explores analog Pixel information
 - → run 5 networks:
 - NN1: probability a cluster is 1/2/>2 tracks
 - NN2: best position for each (sub)cluster
 - NN3: error estimate for cluster
 - NN4+5: redo NN2+3 using track prediction
 - → adapt pattern recognition
- performance improvements
 - → improved cluster resolution
 - dramatic reduction in rate of shared B-layer hits and therefore improved tracking in core of jets

r-φ residual [μm]

Tracking with Electron Brem. Recovery

- bremsstrahlung in material
 - ⇒ significant inefficiency in electron tracking
 - ⇒ especially at low p_T (< 15 GeV)
 - limiting factor for H→ZZ*→4e
- strategy for brem. recovery
 - → restrict recovery to regions pointing to electromagnetic clusters
 - → pattern: allow for large energy loss in combinatorial Kalman filter
 - adjust noise term for electrons
 - \rightarrow global- χ^2 fitter allows for brem. point
 - → adapt ambiguity processing (etc.) to ensure e.g. b-tagging is not affected
 - → use full fledged Gaussian-Sum Filter in electron identification code
- most recent tracking updatedeployed in 2012
 - ⇒ significant efficiency gain for Higgs discovery

LHC is doing fantastically well

- 2012 operation
 - → peak event pileup routinely exceeding design values
- event pileup and other induced effects (e.g. radiation damage)
 - → challenge for the detector, T/DAQ and offline
 - so far ATLAS is doing very well

LHC is doing fantastically well

- 2012 operation
 - → peak event pileup routinely exceeding design values
- event pileup and other induced effects (e.g. radiation damage)
 - ⇒ challenge for the detector, T/DAQ and offline
 - so far ATLAS is doing very well

High Luminosity comes at a Price

- typical LHC event in 2012
 - → high level of event pileup
- challenge for the experiments
 - → <u>trigger:</u> select interesting interactions, keeping acceptable total rate
 - → data volume: from the detector recorded on tape and to be processed/analyzed on computing GRID worldwide
 - → reconstruction and analysis: make sense out of these very complex events and extracting interesting physics information
- huge development effort
 - → already during shutdown 2011/2012
 - → reconstruction resource driver: tracking!
- motivation for upgrade program:
 - preserve and improve physics and technical performance to fully benefit from increasing luminosity

Upgrade Schedule Assumptions

→ several tracking related updates planned

Upgrade Schedule Assumptions

→ several tracking related updates planned

Insertable B Layer (IBL)

4th pixel layer for Phase-0

- → add low mass layer closer to beam, with smaller pixel size
 - improve tracking, vertexing, b-tagging and τ-reconstruction
- → recovers from defects, especially in present b-layer
- → FE-I4b overcomes bandwidth limitations of present FE-I3

• IBL key specifications:

- 14 staves, $\langle R \rangle = 33.25 \, mm$
- CO2 cooling, T < -15°C @ 0.2 W/cm²
- X/X0 < 1.5 % (B-layer is 2.7 %)
- 50 μm x 250 μm pixels (**planar** and **3D** sensors)
- 1.8° overlap in ϕ , < 2% gaps in Z
- 32/16 single/double FE-I4 modules per stave
- → radiation tolerance 5·10¹⁵ neq/cm²

mounted on new beam pipe

- → installation options still to be decided
- → may extract present Pixel Detector to replace nSQPs (decision this year)

The Fast Tracker (FTK)

- current ATLAS trigger chain
 - → Level-1: hardware based (~50 kHz)
 - → Level-2: software based with Rol access to full granularity data (~5 kHz) tracking enters here
 - ⇒ Event Filter: software trigger (~500 Hz)

- → descendent of the CDF Silicon Vertex Trigger (SVT)
- → inputs from Pixel and SCT
 - data in parallel to normal read-out
- → two step reconstruction
 - associative memories for parallel pattern finding
 - linearized track fit implemented in FPGAs
- \rightarrow provides track information to Level-2 in \sim 25 μ s

FTK: trigger goals

- → lepton isolation, b-tagging, τ-reconstruction
- ⇒ primary vertex reconstruction, vertex counting
- → pileup robustness of (track based) MET and jet triggers

 $F(x_1, x_2, x_3, ...) \sim a_0 + a_1 \Delta x_1 + a_2 \Delta x_2 + a_3 \Delta x_3 + ... = 0$

Phase-2 Inner Tracker Upgrade

- to keep ATLAS running requires tracker replacement
 - ⇒ current tracker designed to survive up to 10 MRad in strip detectors (\leq 700 fb⁻¹)
 - ⇒ replace with an all silicon tracker to match the challenge of 140-200 pileup events
- main ITK design parameters
 - **→ Inner Pixels:**
 - 2 replaceable layers close to enlarged Phase-2 beam pipe
 - smaller pixel pitch to improve b-tagging (FE-I5)
 - **→** Outer Pixels:
 - 2 barrel layers at increased radii to improve tracking in jets
 - pixel endcaps ensure full tracking coverage to $\eta=2.5$
 - some standalone tracking capability to $\eta=2.7$ (muons)
 - **→** Strip Detector:
 - maximize momentum resolution (*B*·*dl*)
 - double sided strips in 5 layer, 7 disk, plus stub
 - shorter strips close to PST to limit occupancy
 - \rightarrow overall a 14 hit system down to $\eta=2.5$
 - robustness, avoid fakes at high pileup
 - overall much reduced material budget
 - → plan is to add Level-1 track trigger
 - in a Level-0/Level-1 scheme
 - FTK like hardware tracking

Computing and Offline

- vital part of the upgrade program
 - → support upgrade with detector simulation
 - → upgrade of the computing and offline software infrastructure
- many challenges ahead
 - → computing infrastructure is constantly evolving
 - GRID middleware, cloud computing, storage systems, networking...
 - ⇒ increasing integrated luminosity, trigger rates and event sizes
 - ATLAS Production System and Data Management needs to scale
 - GRID luminosity for simulation is becoming rapidly a factor
 - → reconstruction needs to cope with even higher levels of event pileup
- upgrade on the fly, while experiment is operating
- industry may move to new technologies
 - → many-core architectures may replace present X86 boxes (*a la* Intel MIC)
 - → need to be prepared to adapt or re-implement large parts of framework as well as offline (and high level trigger) software chain
- formally part of Phase-2 Letter of Intent
 - ⇒ but LS1 shutdown is unique window of opportunity

global access/data federation

CPU Performance vs Pileup

- tracking is driving CPU requirements
 - → scaling with pileup is fastest on average
- LS1 preparation for Phase-0
 - → need to significantly gain in CPU
 - <u>tension</u>: physics vs technical performance and tendency to use more fancy tools (e.g. GSF)
 - → only last resort is cutting harder on tracks

started development program

- → review event data model (EDM) and use of malloc
 - present EDM and algorithm design is very OO centric, causing overheads
 - EDM objects are often scattered in memory, causing cache faults
- → explore (auto-)vectorization and multithreading
 - <u>vectorization:</u> expect factors > 2 for mathematical algorithms
 - multithreading: allows to use more cores with less total memory
 - but: precision tracking is a lot about decide and branch...
- → another iteration in algorithmic optimization
 - try to identify and replace inefficient algorithmic code (but its already optimized)

ATLAS Tracking Event Data Model

- current EDM dates back ~ 8 years
 - → very much influenced by OO design ideas
 - strong typing, heavily polymorph
 - → needed to support all existing applications
 - Inner Detector, Muon Spectrometer, Trigger
 - → functionality added since
 - especially persistency with schema support
- most CPU demanding algorithms
 - → internally use data pools and simplified EDM

- EDM redesign for LS1
 - → remove EDM layers to support unused reconstruction functionality
 - ⇒ extrapolation engine migrates fully to curvilinear representation
 - → deduce inheritance and optimize memory layout
 - enable (more) general use of data pools
 - arrange private data to better support e.g. GPUs or vectorization (?)
 - → replace CLHEP with vector, geometry and math library that fully supports vectorization (needs R&D)

CERN

Vectorizing Tracking SW

- algorithmic tracking code
 - → lots of vector algebra, trigonometric functions, floating point operations, ...
 - → natural candidates for (auto-)vectorization
- ATLAS has complex B-field
 - → field transport is hot-spot
 - in simulation and reconstruction
 - developed state of the art modified Runge-Kutta-Nystrom techniques
 - some variants are part of recent G4 releases

```
for(int i=0; i<42; i+=7) {
double* dR
             = &P[i];
double* dA
             = &P[i+3];
double dA0
             = H0[2]*dA[1]-H0[1]*dA[2];
             = H0[0]*dA[2]-H0[2]*dA[0];
             = H0[1]*dA[0]-H0[0]*dA[1];
if(i==35) \{dA0+=A0; dB0+=B0; dC0+=C0;\}
             = dA0+dA[0];
double dA2
              = dB0+dA[1];
double dB2
double dC2
             = dC0+dA[2];
             = dA[0]+dB2*H1[2]-dC2*H1[1];
double dA3
             = dA[1]+dC2*H1[0]-dA2*H1[2];
double dB3
             = dA[2]+dA2*H1[1]-dB2*H1[0];
if(i=35) \{dA3+=A3-A00; dB3+=B3-A11; dC3+=C3-A22;\}
double dA4
             = dA[0]+dB3*H1[2]-dC3*H1[1];
             = dA[1]+dC3*H1[0]-dA3*H1[2];
double dB4
             = dA[2]+dA3*H1[1]-dB3*H1[0];
if(i==35) {dA4+=A4-A00; dB4+=B4-A11; dC4+=C4-A22;}
              = dA4+dA4-dA[0];
double dB5
              = dB4+dB4-dA[1];
double dC5
              = dC4+dC4-dA[2];
              = dB5*H2[2]-dC5*H2[1];
double dA6
             = dC5*H2[0]-dA5*H2[2];
double dB6
             = dA5*H2[1]-dB5*H2[0];
double dC6
if(i==35) \{dA6+=A6; dB6+=B6; dC6+=C6;\}
dR[0] += (dA2 + dA3 + dA4) *S3; dA[0] = (dA0 + dA3 + dA3 + dA5 + dA6) *.33333333;
dR[1] += (dB2+dB3+dB4)*S3; dA[1] = (dB0+dB3+dB3+dB5+dB6)*.33333333;
dR[2] += (dC2+dC3+dC4)*S3; dA[2] = (dC0+dC3+dC3+dC5+dC6)*.33333333;
```

- gcc 4.7 failed to auto-vectorize Runge-Kutta::Step
 - → manual vectorization gave speedup by factor 2.4 (SSE) on Sandy Bridge
- underlines importance of new math/vector library
 - ⇒ will ease (auto-)vectorization of code

Multithreading

- make use of many core architectures
 - → reduce required memory per core
 - → future algorithm level concurrency support (Gaudi?)

full offline combinatorial track finder

R&D for parallel (GPU) tracking algorithms

- ⇒ aim is GPU replacement of CPU intensive algorithms
 - usually significant approximations are required
- → Level-2 tracking most complex prototype so far
 - better suited for this approach, see later...

• full fledged offline tracking?

- ⇒ so no shortcuts
 - much more difficult problem
 - especially, same physics performance!
- → first prototype to run full tracking chain

Number threads vs time in sec	0 pileup	10 pileup	20 pileup	30 pileup	40 pileup
1	.0873	.4717	1.086	2.037	3.837
2	.0503 (1.74)	.2611 (1.81)	.5883 (1.85)	1.092 (1.87)	2.069 (1.85)
3	.0407 (2.14)	.1898 (2.48)	.4341 (2.50)	.7928 (2.57)	1.476 (2.60)
4	.0349 (2.50)	.1626 (2.90)	.3546 (3.05)	.6688 (3.05)	1.265 (3.03)

- using POSIX or TBB, in future will have framework support
- ⇒ first experimental results encouraging, but a long way still to go

A few Words on Simulation

- GRID Monte Carlo "luminosity"
 - → limited by CPU needs for G4 in ATLAS
- full fledged G4 based simulation
 - → yields best description of detector response
 - → GRID "luminosity" will not scale with MC needs

- → huge potential CPU gains, less accuracy
- → frozen shower libraries:
 - give large gains, still relatively detailed
- → parametric detector simulation:
 - usually not precise enough for physics
- → alternative methods of fast simulation:
 - ▶ fast calorimeter simulation
 - ▶ fast track simulation based on track reconstruction software framework

embedded navigation:

Fast Track Simulation and the ISF

- track reconstruction framework
 - ⇒ contains a transport engine, b-field and material geometry
 - → naturally basis for fast simulation engine:
 - add particle stack and (fast) physics processes
 - ⇒ benefit from fast track reconstruction techniques (e.g. navigation)

ATLAS Integrated Simulation Framework (ISF)

- → within one event, choose simulation engines for different event aspects
 - i.e. use full simulation e.g. for a high-p_T b-jet and fast for underlying event
- → in fastest version digitization and reconstruction becomes bottleneck
 - extend scheme to cover full chain (fast digi. and fast reco. in regions)
 - possibly huge gains in overall CPU needs!

Trigger Upgrade and Tracking

- HLT algorithms share same code base as offline
 - → will benefit automatically from offline developments and code optimization, including vectorization and support for multithreading

Level-2 and Event Filter processing

- event parallelism with multiple selection processes
 - currently does not require framework and offline code to be thread safe
 - like for offline, processor technology will require algorithms to go fully multithreaded
- → T/DAQ controlled applications like e.g. data flow are already heavily multithreaded

evolution of the T/DAQ data flow architecture

- ⇒ will as well require better HLT and offline software integration
- → see next slides

Data Flow Evolution

Present architecture has many farm and network domains

- CPU and network resources have to be balanced for three different farms: L2, EB, EF
- 2 trigger steering instances (L2, EF)

Trigger Info ATLAS Data 2 separate networks (DC & EF) Considerable configuration effort Trigger DAQ ATLAS Event 2012/06/14 Calo/Muon Other Detectors <2.5 µs Detectors 1.5 MB/25 ns 40 MHz Level 1 40 MHz Detector Read-Out FE FE FE L1 Accept 75 (100) kHz ROD ROD ROD 75 kHz Regions Of Interest 112 GB/s ~40 ms ReadOut System Level 2 ROI data ROI Event ~ 3 kHz Data Collection ~4.5 GB/s Requests Builder Network L2 Accept ~4 sec ~3 kHz SubFarmInput Event Filter Event Filter EF Accept Network Data-~200 Hz SubFarmOutput Flow ~ 300 MB/s High Level Trigger ~ 200 Hz Move from the present architecture.... CERN Data

Markus Elsing

Storage

Data Flow Evolution

HLT and Offline Tracking Integration

- currently Level-2 and Event Filter run independently
 - → 40 msec Level-2 latency compared to 2 sec for Event Filter require dedicated algorithms
 - → new data flow: use Level-2 to seed Event Filter tracking in same process

- save CPU by reusing already decoded data, no need to redo seeding, but can use full fledged Event Filter algorithms to boost precision
- could even use FTK tracks with cluster information as input to Level-2 fitter to replace Level-2 track seeding and candidate finding
- → FTK/Level-2 tracking is compromise of efficiency vs technical performance
 - need to preserve e.g. Event Filter performance for b-tagging and τ-tracking

Coprocessors for HLT (GPUs, Intel MIC)?

- currently at the level of an R&D project (!)
 - → track reconstruction obvious candidate for such an architecture
- interesting proposal is client-server architecture
 - → GPU coprocessor servers
 - algorithms delegate CPU intensive processing
 - → requires messaging layer
 - with support in framework
 - → possible for our HLT farm
 - not obvious on the GRID

prototype testbed

- → fully functional Level-2 tracking chain with GPU versions of
 - data preparation: raw data decoding and cluster finding
 - GPU version of Level-2 track finding (without clone removal)
- permits to do timing studies

Data preparation: GPU vs. CPU

Rol type	Speed-up
Tau 0.6x0.6	9
B-phys 1.5x1.5	12
FullScan	26

Full data preparation from Bytestream to spacepoints in Pixel and SCT takes

- 3ms for Tau Rol
- only 12 ms for FullScan

Input data volume [MB]

"GPU-to-CPU" cluster copy test, FullScan, Pixel clusters only:

Stage	Production on GPU	Data transfer	Fill RDO and RIO IDCs	IDCs clean-up
Time, ms	6	2	14	8

ATLAS S&C week, CERN, 11-15 June 2012

12/15

GPU-accelerated track finding

LVL2-only "tauNoCut" chain, comparison with TrigSiTrack-00-07-11

• Parallel code runs 12 times faster, but the overall speed-up is only ~3 due to the sequential clone removal – Amdahl's Law in action!

ATLAS S&C week, CERN, 11-15 June 2012

13/15

GPU sharing test

LVL2-only "tauNoCut" chain, data preparation and tracking done on GPU

Processor(s)	Rate
Single CPU core	3.9
8 cores + GPU	70.0

effect of hyper-threading?

The GPU rate saturation needs further studies:

 it could be due to the GPU server process interference with another server or Athena process on the same core

14/15

 For this test, 8 cores + GPU are equivalent to ~18 cores running one job per core

ATLAS S&C week, CERN, 11-15 June 2012

Summary

- gave an overview over the future of Inner Detector track reconstruction in ATLAS
- support for Inner Detector upgrade program
- LS1 software updates to deal with technical performance with ever increasing levels of high pileup
- Integrated Simulation Framework will lead to a significant simulation speedup
- discussed new developments in the Trigger tracking

