racking at the LHC (Part 3):

Concepts for Track Reconstruction

Lectures given at the University of Freiburg
Markus Elsing, 12-13.April 2016
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Introduction

®in this lecture | will discuss the most complex and CPU

consuming aspect of event reconstruction at the LHC
= finding trajectories (tracks) of charged particles produced in p-p collisions

e will have to introduce various techniques for

= pattern recognition, detector geometry, track fitting, extrapolation ...
= including mathematical concepts and aspects of software design
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The Tracking Problem

eparticles produce in a p-p interaction leave a cloud of hits in
the detector

N " | I I/V4
\ LN R I
‘1\!\\’“\“ I\|II . My . I )]"Ir oo //|I
\ |\\\\\\\ \\ | 1 IlJ| # | I ! |
NN I 1 Ny . 7
M\\\\\IQ " oy ! i_I/I/I// ! K //I/I// _
[RVIN A AR L Wy [N P et
N NN \ \‘\K\\ v N I - b 7
W T G Tyt of
A N T LN i\ L IIII/'// 7 1 %, A
N ! QNI N AR k|fllll/lﬂ K ,4 7 /- F.
- s N Y L. 4 vy Vs
AN NN R L S N R ot
SN WY Y o h U A Y ///'//} 7 S
N N N \ Ve '}fl
~ | N AN am = " 7 L It w4
N NN N \ \\l\\r\ PER " . N/;,’/;f ,//_//—
-~ N s Lor p 2
LR . P . /% v 4%
. N N \’:\§_¢\ \\\Q - M,,ﬂ——%ﬁ“.?_\ . /é;;’;f/g’///f '7_){ A
i RN W w87 —_— ¥ — -
N \.\§ N WS __-———-g.. - LY 7

BN N ’ - N > -\' - /// //a -
< X e x /g M- -
s ’ //‘;;:" ‘iﬁi% N R Lo e
S Y XN

N Y

=
- — 7/
u Qe = -~
&7 L S - =

= = @ LA L ade ~e
S 7 "R - = oy’

< ¢ ! ~
=

-
'n

- = - =
-_ " Tz
- — - - -——_=
z _ = =
= = - —
_ - K z= -
— I - ~Z L
- = > N VY,
Te— =7 _ % o
7 = —
o - - Al &=

- oy
- Sems a3 g
=, 7 - s ‘&.\ e — g
£ - “‘- J
= s s ’ . . /%.“-/ i
s - - e g =
¥ A o gn et H .. == -
Z 0z G0 % Ay . . -
- , s 4 Ll PO B
7 - "
0 e e S /// - e N
75, - I » V
- 4 , /// | //I { b \\
z A /

- N
14, ! ! N N
- s , /e W/ I N \|\\\§
P I V4 h 2| /// 41 " Iléq{lllu:?’”%‘II IIIII | }“ 3w
!

e I !
i I 1 |
/;|—/ ///// /I,,{,I/%II; _/

i oov oy
I [T N
! | |,,IV||I|||I |",“J|,,|| UM
e o] AN
24 ,/////Il, (N (A I
P TNV ", 1 N
}'I it AR
/ b X U oo D
;1 I/ \ | [ il N
i !I'I P th P! \II | 'I\' i
f i I|III | I AT

CERN

Markus Elsing



The Tracking Problem

eparticles produce in a p-p interaction leave a cloud of hits in
the detector
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e tracking software
is used to

reconstruct their
trajectories
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Role of Tracking Software

eoptimal tracking software

= required to fully explore performance of detector

@ example: DELPHI Experiment at LEP

= silicon vertex detector upgrade

e initially not used in tracking to resolve dense jets
e pattern mistakes in jet-chamber limit performance
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Role of Tracking Software

eoptimal tracking software
= required to fully explore performance of detector

@ example: DELPHI Experiment at LEP

= silicon vertex detector upgrade
e initially not used in tracking to resolve dense jets
e pattern mistakes in jet-chamber limit performance

= 1994: redesign of tracking software
e start track finding in vertex detector
= factor ~ 2.5 more D* signal after reprocessing
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Tracking at the LHC ?

ereminder: ’ - e
= LHC is a high luminosity machine =E 8/ /)
e proton bunches collide every
25 (50) nsec in experiments
e each time > 20 p-p interactions are
observed ! (event pileup)
= our detectors see hits from particles
produced by all > 20 p-p interactions
e ~100 particles per p-p interaction
e each charged particle leaves ~50 hits

ATLAS
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Tracking at the LHC ?
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e proton bunches collide every
25 (50) nsec in experiments
e each time > 20 p-p interactions are
observed ! (event pileup)
= our detectors see hits from particles
produced by all > 20 p-p interactions
e ~100 particles per p-p interaction
e each charged particle leaves ~50 hits
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Tracking at the LHC ?
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25 (50) nsec in experiments
e each time > 20 p-p interactions are
observed ! (event pileup)
= our detectors see hits from particles
produced by all > 20 p-p interactions
e ~100 particles per p-p interaction
e each charged particle leaves ~50 hits
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Tracking at the LHC ?

e®track reconstruction

= combinatorial problem grows with pileup
= naturally resource driver (CPU/memory)

.the mi”ion dO”ar queStion: ATLAS HL-LHC event in new tracker

= how to reconstruct LH-LHC events within resources ? (pileup ~ 140-200)

event display

@ more than 10 years of R&D on LHC tracking software  fromtitie page
= we knew that tracking at the LHC is going to be challenging

e building on techniques developed for previous experiments
= processor technologies will change in the future
e need to rethink some of the design decisions we did ATLAS
¢ adapt software to explore modern CPUs: ~ Run-I Software
threading, data locality... |srene preup

RAW-> ESD Reconstruction time @ 14 TeV
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Outline of Part 3

e charged particle trajectories and extrapolation

= trajectory representations and trajectory following in a realistic detector

= detector description, navigation and simulation toolkits

etrack fitting

= classical least square track fit and a Kalman filter track fit

= examples for advanced techniques

etrack finding

= search strategies, Hough transforms, progressive track finding, ambiguity solution

othe ATLAS track reconstruction (as an example)

cﬂ
\
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CERN
NG A

Trajectories and Extrapolation
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A Trajectory of a Charged Particle

= in a solenoid B-field a charged particle
trajectory is describing a helix
® a circle in the plane perpendicular to

the field (Ro)
* a path (not a line) at constant polar
angle (6) in the Rz plane

= a trajectory in space is defined by
5 parameters
* the local position (l1,12) on a plane,
a cylinder, ..., on the surface or
reference system
® the direction in 8 and ¢ plus the
curvature Q/Pt

Surface Types

= ATLAS choice:

p=1,,0.9.0/P)

Markus Elsing 9



The Perigee Parameterisation

@ helix representation w.r.t. a vertex

2 Plang

p =(dy,Az,0,¢,0/P)

@ commonly used

= ¢.g. to express track parameters near the production vertex
= alternative: e.g. on plane surface

Markus Elsing



The Perigee Parameterisation

@ helix representation w.r.t. a vertex

P Plang

p =(dy,Az,0,¢,0/P)

@ commonly used

= ¢.g. to express track parameters near the production vertex
= alternative: e.g. on plane surface

Markus Elsing
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Following the Particle Trajectory

@ basic problems to be solved in order

to follow a track through a detector:

= next detector module that it intersects ?
= what are its parameters on this surface ?

e what is the uncertainty of those parameters ?
= for how much material do | have to correct for ?

@requires:

= a detector geometry »
e surfaces for active detectors <> parameters
. ] with uncertainty
e passive material layers
= a method to discover which is the next surface (navigation)

= a propagator to calculate the new parameters and its errors
e often referred to as “track model”

track

cw
.

Markus Elsing
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Following the Particle Trajectory

@ basic problems to be solved in order

to follow a track through a detector:

= next detector module that it intersects ? g
= what are its parameters on this surface ?

e what is the uncertainty of those parameters ?
= for how much material do | have to correct for ?

®requires:

= a detector geometry

: }parameters
° surfgces {e] ac.tlve detectors with uncertainty
e passive material layers

= a method to discover which is the next surface (navigation)

= a propagator to calculate the new parameters and its errors
e often referred to as “track model”

\]\0
track

cﬁw
\
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Following the Particle Trajectory

@ basic problems to be solved in order

to follow a track through a detector:

= next detector module that it intersects ? g
= what are its parameters on this surface ?

e what is the uncertainty of those parameters ?
= for how much material do | have to correct for ?

®requires:

= a detector geometry

: }parameters
° surfgces {e] ac.tlve detectors with uncertainty
e passive material layers

= a method to discover which is the next surface (navigation)

= a propagator to calculate the new parameters and its errors
e often referred to as “track model”

N\O
track

efor a constant B-field (or no field)

= an analytical formula can be calculated for an intersection of a helix

(or a straight line) on simple surfaces (plane, cylinder, vertex,...)
CE/RW

Markus Elsing 11



C

Track Propagation in realistic B-Field

efor inhomogeneous B-field there is no analytical solution
= start from equation of motion for a particle with charge g in magnetic field B:

q
dz? p |dzdz

d*y
Py _ap
dz? p

¢ no analytical solution forinhomogeneous B-field, requires numerical integration
along the path of the trajectory

= numerical integration done using Runge-Kutta technique
e in ATLAS a 4th order adaptive Runge-Kutta-Nystrom approach is used,
propagates covariance matrix in parallel (Bugge, Myrheim, 1981, NIM 179, p.365)

Markus Elsing



Track Propagation in realistic B-Field

e®numerical integration of y(z)

in a nutshell:

= examples for integration methods
e Euler’s method
e Midpoint method
e Runge-Kutta integration

céw
\
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Track Propagation in realistic B-Field

e®numerical integration of y(z)

in a nutshell:

= examples for integration methods
e Euler’s method
e Midpoint method
e Runge-Kutta integration

= Euler's method:
e whatisthevalueyatz,,1=z,+h?
e starting pointis y, at z,
e use derivative f=0y/0z at z, to
approximate yn.1

Yn+1=Yn Tt h-f(zn, Yn)

with
f(zn,yn)=0Y/0Z|z=2n

C

E/RW

A Markus Elsing




Track Propagation in realistic B-Field

e®numerical integration of y(z)

in a nutshell:

= examples for integration methods
e Euler’s method

e Midpoint method
e Runge-Kutta integration

= Euler's method:
e whatisthevalueyatz,,1=z,+h?
e starting pointis y, at z,
e use derivative f=0y/0z at z, to
approximate yn.1

= Midpoint method: ki=h-f(zn, yn)

e evaluate fat z, this time to stop at ko=h-f(zn+h/2 , yntki/2)
midpoint z, + h/2 and evaluate f again

Yn+1=Yn + ko + O(h3)

céw
\
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e®numerical integration of y(z)

Track Propagation in realistic B-Field

4th order
Runge-Kutta

in a nutshell:

= examples for integration methods
e Euler’s method
e Midpoint method
e Runge-Kutta integration

= Euler's method:
e whatisthevalueyatz,,1=z,+h?
e starting pointis y, at z,
e use derivative f=0y/0z at z, to
approximate yn.1

= Midpoint method: k1 =hf(zn yn)
. . h k
oev.alua’.ce f at z, this time to stop at | by = hf(Zn + =, yn + 1)
midpoint z,+ h/2 and evaluate f again 2 2
B h ko
= 4th order Runge-Kutta integration: ks =hf(zn+ 5,yn + 3)
e evaluate f at 4 different points: ks = hf( Zn+ h,yn + k3)
at starting point, twice at midpoint and ki ko ks kg -
at endpoint to compute yn+ Yl =Un T T g T T T LT OR’)
D)
P Markus Elsing




Track Propagation in realistic B-Field
® ATLAS Runge-Kutta propogator:

= parameter propagation is 4th order

= adaptive: use 3rd order result to monitor step precision
and adapt step size (h)

= monitor the remaining distance to the target surface, if
a few um, use Taylor approximation to reach surface

= Nystrom technique: does as well numerical integration
of Jacobian for error propagation (fast & precise)

Markus Elsing
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Track Propagation in realistic B-Field

® ATLAS Runge-Kutta propogator:

= parameter propagation is 4th order
= adaptive: use 3rd order result to monitor step precision

and adapt step size (h)

= monitor the remaining distance to the target surface, if
a few um, use Taylor approximation to reach surface

= Nystrom technique: does as well numerical integration

of Jacobian for error propagation (fast & precise)
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®need to allow for material effects

= cnergy loss
e use most probably energy loss for x/Xo
e correct momentum (curvature) and its covariance

= multiple scattering
e increases uncertainty on direction of track

e for given x/Xo traversed add term to covariances of
0 and ¢ on a material “layer”

multiple
scattering

CE/RW
\

>~ Markus Elsing




The Track Extrapolation Package

---------------------------------------

@®a transport engine Used ¥ parameters + covariance

in tracking software * -
= central tool for pattern

geometry
material

recognition, track fitting, etc.
engine
k propagator
effects

= parameter transport from
new parameters + covariance

surface to surface, including
Extrapolation Package

covariance

= encapsulates the track model,
geometry and material
corrections

track following in mathematical terms:

qx ka|i(%') convariance: Ck - Fk|iCin

i

with: fk|i ~ track model

Fy;= ' L3 Jacobi matrix
oq;

Markus Elsing
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Detector Geometry

®interactions in detector
material limiting tracking

performance

= | HC detectors are complex
e require a very detailed description
of their geometry
= experiments developed geometry
models (translation into G4 simulation)
e huge number of volumes

@ physics requirement to\k

reach LHC goals
(e.g. W mass)

= control material close to beam pipe
at % level

G4 simulation

: “picture” of the ATLAS Pixels

model placed volumes
ALICE Root 43 M
ATLAS GeoModel 48 M
CMS DDD 2.7 M
LHCb LHCb Det.Des. 18.5 M

Markus Elsing
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Weighing Detectors during Construction

@ huge effort in experiments

= important to reach good description in
simulation and reconstruction

= cach individual detector part was put on
balance and compare with model
e CMS and ATLAS measured weight of

their tracker and all of its components

= correct the geometry implementation in

simulation and reconstruction

: - J/-
N _
= - \
. A o= ? e
-z ’
== = /
== 7,
A .

C M S estimated from simulation - ' — —
measurements o example:ATLAS TRT
active Pixels 2598 g 2455 |3 measured before and
5 after insertion of the SCT
full detector 6350 kg 6173 kg
AT L AS estimated from : :
simulation
measurements
Pixel package 201 kg 197 kg '1)9;4 —
ecnnical rroposals
SCT detector | 672 +15 kg 672 kg B e P
TRT detector | 2961 14 kg 2962 kg

Markus Elsing 17




Full and Fast (Tracking) Geometries

@ complex G4 geometries not

optimal for reconstruction

= simplified tracking geometries
= material surfaces, field volumes

®reduced number of

volumes

= blending details of material onto
simple surfaces/volumes

= surfaces with 2D material density
maps, templates per Si sensor...

G4 tracking
ALICE 43 M same *!
ATLAS 48 M 10.2K *2
CMS 2.7 M 3.8K *2
LHCDb 18.5 M 30
CERN
\ *I ALICE uses full geometry (TGeo)
Do A *2plus a surface per Si sensor Markus Elsing




Embedded Navigation Schemes

@cmbedded navigation scheme in ASalzburger

tracking geometries

= G4 navigation uses voxelisation as generic
navigation mechanism
= embedded navigation for simplified models
e used in pattern recognition, extrapolation,
track fitting and fast simulation

Volume

e@cxample: ATLAS Voluine

= developed geometry of connected volumes :
= boundary surfaces connect neighbouring

I .
. ! o ,
volumes to predict next step A (0 S
N -
| S —
ATLAS G4 | tracking | ratio -
1 1
1 1
cro§sed volumes 474 95 5 / .
in tracker A
4 4
time in ’ 4
e i EX 2.3 8.4 ;
C\ﬂ (neutral geantinos, no field lookups)
S~ Markus Elsing 19




Detour: Simulation (Geant4)

®Geant4 is based upon
= stack to keep track of all particles produced and stack manager

= extrapolation system to propagate each particle:
e transport engine with navigation same concept as for
e geometry model track reconstruction
e B-field

= set of physics processes describing interaction of particles with matter
= a user application interface, ...

k
J stac
manager

loop
over

particle =xlgdlel[s

user
application

/ '

add secondaries produced

push
primaries

‘-------------
S _ E E E E E E EH E B EE NN NN NN NN NN E .

< physics \

l rocesses " ‘
and record hits N

i) _Geant4, . Mdrecedhs T ——

>~ Markus Elsing
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Fast Simulation

® CPU needs for full G4

exceeds computing models

= simulation strategies of experiments
mix full G4 and fast simulation

G4 fast sim. .
- CMS Full Simulation
CMS 360 0.8
ATLAS 1990 7.4

ttbar events, in kSI2K sec
G4 differences: calo.modeling, phys.list, n cuts, b-field

efast simulation engines

= fast calo. simulation
(parameterisation, showers libraries, ...) —
= simplified tracking geometries
= simplify physics processes w.r.t. G4 i
= output in same data model as full sim. CMS Fast Simulatio

(ﬁw = able to run full reconstruction (trigger)
\

A Markus Elsing




Track Fitting

Markus Elsing



From Measurement Model to Track Fitting

® measurements myg of a track
= in mathematical terms a model:
my =h,(q.)+ Vi

with: f; ~ functional dependency of
measurement on e.g. track angle

Yk ~ error (noise term)

om : :
H, = ——k ~ Jacobian, often contains only

dqr  rotations and projections

= in practice those my are clusters, drift circles, ...

cﬁw
\
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From Measurement Model to Track Fitting

® measurements mg of a track
= in mathematical terms a model:

my = hi(qi)+ Vi
with: f; ~ functional dependency of

measurement on e.g. track angle

Yk ~ error (noise term)

om : :
H, = ——k ~ Jacobian, often contains only

dqr  rotations and projections

= in practice those my are clusters, drift circles, ...

e®task of a track fit

= estimate the track parameters from a set
measurements

e@examples for fitting techniques
= | east Square track fit or Kalman Filter track fit

= more specialised versions: Gaussian Sum Filter or Deterministic Annealing Filters

céw
\

A Markus Elsing




Classical Least Square Track Fit

® construct and minimise the x2 function:

Carl Friedrich Gauss is credited with developing the fundamentals of
the basis for least-squares analysis in 1795 at the age of eighteen.
Legendre was the first to publish the method, however.

=Write down Least Square function:

x° =Y Am!Gi!Am,  with:  Am, =m,-d(p)
k

dx contains measurement model and propagation of

the parameters p : di=hiofi-1° - °San oS
Gk is the covariance matrix of my.



http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
http://en.wikipedia.org/wiki/Adrien-Marie_Legendre

Classical Least Square Track Fit

® construct and minimise the x2 function:

Carl Friedrich Gauss is credited with developing the fundamentals of
the basis for least-squares analysis in 1795 at the age of eighteen.
Legendre was the first to publish the method, however.

=Write down Least Square function:

x° =Y Am!Gi!Am,  with:  Am, =m,-d(p)
k

dx contains measurement model and propagation of

the parameters p : di=hiofi-1° - °San oS
Gk is the covariance matrix of my.

= | inearise the X? with a Taylor expansion:

dk(po +c3p) = dk(p0)+Dk 0p
with Jacobian: Dy =HFy_ " Fy Fy
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Classical Least Square Track Fit

® construct and minimise the x2 function:

Carl Friedrich Gauss is credited with developing the fundamentals of
the basis for least-squares analysis in 1795 at the age of eighteen.
Legendre was the first to publish the method, however.

=Write down Least Square function:

x° =Y Am!Gi!Am,  with:  Am, =m,-d(p)
k

dx contains measurement model and propagation of

the parameters p : di=hiofi-1° - °San oS
Gk is the covariance matrix of my.

= | inearise the X? with a Taylor expansion:

dk(po +c3p) = dk(p0)+Dk 0p
with Jacobian: Dy =HFy_ " Fy Fy

= Minimising linearised X’ yields system of linear equations:
(" )

1
2
a(;( -0 = 6p=(szTG;1Dk) EDZG;l(mk—dk(pO))
P k k

-1

and covariance of Op is: C = (EDZleDk)
\_ k

J
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http://en.wikipedia.org/wiki/Adrien-Marie_Legendre

Classical Least Square Track Fit

®allowing for material effects in fit:

= can be absorbed in track model fyi, provided effects are small
= for substantial multiple scatting, allows for scattering angles in the fit

CE/RW
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Classical Least Square Track Fit

®allowing for material effects in fit:

= can be absorbed in track model fyi, provided effects are small
= for substantial multiple scatting, allows for scattering angles in the fit

e®introduce scattering angles on material surfaces

= on each material surface, add 2 angles 66; as fee parameters to the fit
= expected mean of those angles is 0 (!), their covariance Q; is given by
multiple scattering in x/Xo
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Classical Least Square Track Fit

®allowing for material effects in fit:

= can be absorbed in track model fyi, provided effects are small
= for substantial multiple scatting, allows for scattering angles in the fit

e®introduce scattering angles on material surfaces

= on each material surface, add 2 angles 66; as fee parameters to the fit
= expected mean of those angles is 0 (!), their covariance Q; is given by
multiple scattering in x/Xo

eresults in additional term in ¥?
equations:

x° =Y Am!G'Am, + Y 66,0766
k i

with: Am, =m, —-d, (p,(SHi)

= computationally expensive
(invert a dimension 5+2*n matrix)




Classical Least Square Track Fit

®allowing for material effects in fit:

= can be absorbed in track model fyi, provided effects are small
= for substantial multiple scatting, allows for scattering angles in the fit

e®introduce scattering angles on material surfaces

= on each material surface, add 2 angles 66; as fee parameters to the fit
= expected mean of those angles is 0 (!), their covariance Q; is given by
multiple scattering in x/Xo

eresults in additional term in ¥?
equations:

x° =Y Am!G'Am, + Y 66,0766
k i

with: Am, =m, —-d, (p,(SHi)

= computationally expensive
(invert a dimension 5+2*n matrix)

= advantage is that the fitted track follows

precisely the particle trajectory

(e.g. for ATLAS muon reconstruction)
Markus Elsing




The Kalman Filter Track Fit

®a Kalman Filter is a progressive way of performing a least

square fit
= can be shown that it is mathematically equivalent

®how does the filter work 7 | surface k

= estimate starting parameters pojo

= jterate over all hits 1..K:

1. take trajectory parameters pi-1|k-1
at point k-1
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The Kalman Filter Track Fit

®a Kalman Filter is a progressive way of performing a least

square fit
= can be shown that it is mathematically equivalent

® how does the filter work ?

= estimate starting parameters pojo

= jterate over all hits 1..K:

1. take trajectory parameters pi-1|k-1
at point k-1

2. propagate to point k to get
predicted parameters pi|k-1

surface k

surface k-1
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The Kalman Filter Track Fit

®a Kalman Filter is a progressive way of performing a least

square fit
= can be shown that it is mathematically equivalent

® how does the filter work ?

= estimate starting parameters pojo

= iterate over all hits 1..K:

1. take trajectory parameters pi-1|k-1
at point k-1

2. propagate to point k to get
predicted parameters pi|k-1

3. update predicted parameters with

measurement mg to obtain Pk|k
(simple weighted mean or gain matrix update)

surface k

surface k-1

CE/RW
\
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The Kalman Filter Track Fit

®a Kalman Filter is a progressive way of performing a least

square fit
= can be shown that it is mathematically equivalent

® how does the filter work ?

= estimate starting parameters pojo

= iterate over all hits 1..K:

1. take trajectory parameters pi-1|k-1
at point k-1

2. propagate to point k to get
predicted parameters pi|k-1

3. update predicted parameters with

measurement my to obtain pik

(simple weighted mean or gain matrix update)
4, and start over with 1.

surface k

surface k-1

CE/RW
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The Kalman Filter Track Fit

®a Kalman Filter is a progressive way of performing a least

square fit
= can be shown that it is mathematically equivalent

surface k

® how does the filter work ?

= estimate starting parameters pojo

= iterate over all hits 1..K:

1. take trajectory parameters pi-1|k-1
at point k-1

2. propagate to point k to get
predicted parameters pi|k-1

3. update predicted parameters with

measurement mg to obtain Pk|k
(simple weighted mean or gain matrix update)
4, and start over with 1.

surface k-1

e material effects (multiple scattering and energy loss)

CE/RW
\
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The Kalman Filter Track Fit

®a Kalman Filter is a progressive way of performing a least

square fit
= can be shown that it is mathematically equivalent

® how does the filter work ?

= estimate starting parameters pojo

= iterate over all hits 1..K:

1. take trajectory parameters pi-1|k-1
at point k-1

2. propagate to point k to get
predicted parameters pi|k-1

3. update predicted parameters with

measurement my to obtain pik

(simple weighted mean or gain matrix update)
4, and start over with 1.

surface k

surface k-1

e material effects (multiple scattering and energy loss)
= incorporated in the propagated parameters px-1 (extrapolated prediction)

CE/RW = and therefore enters automatically in the updated parameters pik at point k

Markus Elsing




The Kalman Filter Track Fit

eforward filter
= in mathematical terms:
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The Kalman Filter Track Fit

eforward filter
= in mathematical terms:

|. propagate p«.; and its covariance Cy.j :

9|k :fk|k—1(qk—1|k—1)
Crlk-1= Fk|k—1Ck—1|k—1Fz|k_1 + Oy

with Qx~ noise term (M.S.)

Markus Elsing



The Kalman Filter Track Fit

eforward filter
= in mathematical terms:

|. propagate p«.; and its covariance Cy.j :

9|k :fk|k—1(qk—1|k—1)
Crlk-1= Fk|k—1Ck—1|k—1Fz|k_1 + Oy

with Qx~ noise term (M.S.)

2. update prediction to get gk and Cy(k:
Gk = Grli-1 + Kilmy — hi(qpe-1) ]
Ci=U - K H;)Cpic

with K¢~ gain matrix :

K, =Cyy H(G,+ H,Cppy_Hp) ™
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The Kalman Filter Track Fit

eforward filter
= in mathematical terms:

|. propagate p«.; and its covariance Cy.j :

9|k :fk|k—1(qk—1|k—1)
Crlk-1= Fk|k—1Ck—1|k—1Fz|k_1 + Oy

with Qx~ noise term (M.S.)

2. update prediction to get gk and Cy(k:
qii = Qi1 + Kilmy — hi(qpr-1) ]
Crp =T - K H ;) Cipy

with K¢~ gain matrix :

K, =Cyy H(G,+ H,Cppy_Hp) ™

= precise fit result gk at end of fit
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The Kalman Filter Track Fit

eforward filter
= in mathematical terms:

|. propagate p«.; and its covariance Cy.j :

9|k :fk|k—1(qk—1|k—1)
Crlk-1= Fk|k—1Ck—1|k—1Fz|k_1 + Oy

with Qx~ noise term (M.S.)

2. update prediction to get gk and Cy(k:
qii = Qi1 + Kilmy — hi(qpr-1) ]
Crp =T - K H ;) Cipy

with K¢~ gain matrix :

K, =Cyy H(G,+ H,Cppy_Hp) ™

= precise fit result gk at end of fit

= alternative to gain matrix approach is
a weighted mean to obtian pi«
e but requires to invert 5x5 matrix
instead of a matrix of rank(Gy)

Markus Elsing




The Kalman Filter Track Fit

eforward filter = Smoother in mathematical terms:

= in mathematical terms:

proceeds from layer k+/ to layer k :
Qiln = 9ilk T Ak(qk+1|n ~ qk+1|k)
T
Cijn = Cie = Ar(Crpajk — Crinjn) A

with Ax~ smoother gain matrix :

Aj= CiFy i (Cran)™

|. propagate p«.; and its covariance Cy.j :

9|k :fk|k—1(qk—1|k—1)
Crlk-1= Fk|k—1Ck—1|k—1Fz|k_1 + Oy

with Qx~ noise term (M.S.)

2. update prediction to get gk and Cy(k:
Gk = Grli-1 + Kilmy — hi(qpe-1) ]
Ci=U - K H;)Cpic

with K¢~ gain matrix :

K, =Cyy H(G,+ H,Cppy_Hp) ™

= precise fit result gk at end of fit

@ Kalman Smoother:

= provides full information along track
= cquivalent: average forw./back. filter

Markus Elsing
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Fitting for Electron Bremsstrahlung

® material in tracker electron

trajectory

= e-Bremsstrahlung and y-conversions

electron tracks
®clectron efficiency limited

= momentum loss due to Bremsstrahlung leads /
to sudden large changes in track curvature // Bremsstrahlung
= |0osing hits after Brem. leads to inefficiency '

conversion

= fit either biased towards small momenta or

i true trajector
fails completely because of bad x2 J y

ex’ErapoIation

Bremsstrahlung




Fitting for Electron Bremsstrahlung

® material in tracker electron

trajectory

= e-Bremsstrahlung and y-conversions

electron tracks
®clectron efficiency limited

= momentum loss due to Bremsstrahlung leads /
to sudden large changes in track curvature // Bremsstrahlung
= |0osing hits after Brem. leads to inefficiency '
= fit either biased towards small momenta or
fails completely because of bad x2

conversion

true trajectory

ex’ErapoIation

e®techniques to allow for

Bremsstrahlung in track fitting

= for Least Square track fit
e allow Brem. effect to change curvature,
additional term similar is to scattering angle
= for Kalman Filter Bremsstrahlung
e increase correction for material effects in

propagation to allow for Brem.
CE/RW = better: Gaussian Sum Filter




The Gaussian Sum Filter

Bethe-Heitler

final energy

@ approximate Bethe-Heitler
distribution as Gaussian mixture ol "~ initial energy

Bremsstrahlung

CE/RW
\




The Gaussian Sum Filter

Bethe-Heitler

@ approximate Bethe-Heitler nal eneres

distribution as Gaussian mixture o  inialenergy

= state vector after material correction becomes

sum of Gaussian components
o relative weights from Bethe-Heitler distribution

e GSF step resembles set of parallel Kalman Filters
e computationally expensive !

Bremsstrahlung

CE/RW
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The Gaussian Sum Filter

@ approximate Bethe-Heitler

distribution as Gaussian mixture

= state vector after material correction becomes
sum of Gaussian components
o relative weights from Bethe-Heitler distribution
e GSF step resembles set of parallel Kalman Filters
e computationally expensive !

= component reduction to avoid combinatorial
explosion after several material layers
e re-evaluate weights of components based on

compatibility with hits

e drop components with too low weights

C

E/RW

Bethe-Heitler

final energy

initial energy

1
1
"
o
o
o
o
o
g
3

Bremsstrahlung




The Gaussian Sum Filter

@ approximate Bethe-Heitler

distribution as Gaussian mixture

= state vector after material correction becomes
sum of Gaussian components
o relative weights from Bethe-Heitler distribution
e GSF step resembles set of parallel Kalman Filters
e computationally expensive !

= component reduction to avoid combinatorial
explosion after several material layers
e re-evaluate weights of components based on

compatibility with hits

e drop components with too low weights

= GSF improves fit
performance w.r.t. -
Kalman Filter Corymrwe

Residuals

. . . . Mean: 0.013
Simplified simulation RMS: 0.133
GeV/c

Tracks / bin

KF

Mean: 0.015

RMS: 0.152
CE/RW

Bethe-Heitler

final energy

initial energy

1
1
"
o
o
o
o
o
g
3
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Deterministic Annealing Filters

e®robust technique
= developed for fitting with high occupancies | competior 2
e e.g. ATLAS TRT with high event pileup
e reconstruction of 3-prong T decays
= can deal with several close by hits on a layer

Ferm| functlon / =

N -
LN\ equwalent to

. —__atemperature

Standardized distance

=
=
(4]
o]
(@]
-
o
C
.S
=
@
(&)
(@]
()]
[72]
<

® adaptive fit

= multiply weight of each hit in layer with
assignment probability:

with:

A.Strandli

normalised distance
Boltzman factor

noise level = 50%

Markus Elsing



Deterministic Annealing Filters

®robust technique
= developed for fitting with high occupancies | compettor 2
e e.g. ATLAS TRT with high event pileup

e reconstruction of 3-prong T decays

Ferm| functlon / =
= can deal with several close by hits on a layer —

K ~i o equwalent,to
~a temperature

=
=
(4]
o]
(@]
-
o
C
.S
=
@
(&)
(@]
()]
[72]
<

® adaptive fit

= multiply weight of each hit in layer with
assignment probability:

A.Strandli

Boltzman factor

= process decreasing temperature T is called
annealing (iterative)
e start at high T ~ all hits contribute same
e atlowT ~ close by hits remain

noise level = 50%

85 90 95
Radius [cm]
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Deterministic Annealing Filters

®robust technique
= developed for fitting with high occupancies | compettor 2
e e.g. ATLAS TRT with high event pileup

e reconstruction of 3-prong T decays

Ferm| functlon / =
= can deal with several close by hits on a layer —

K ~i o equwalent,to
~a temperature

=
=
(4]
o]
(@]
-
o
C
.S
=
@
(&)
(@]
()]
[72]
<

® adaptive fit

= multiply weight of each hit in layer with
assignment probability:

A.Strandli

Boltzman factor

= process decreasing temperature T is called
annealing (iterative)
e start at high T ~ all hits contribute same
e atlowT ~ close by hits remain

noise level = 50%

= can be written as a Multi Track Filter | redeom

Markus Elsing
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Track Finding
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Track Finding: Can you find the 50 GeV track?

ct Aaron Dominguez

global y (cm)

] ] I ] ]
100
alobal x (cm)
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Track Finding: Can you find the 50 GeV track?

ct Aaron Dominguez

global y (cm)

here it is...

] ] I ] ]
100
alobal x (cm)
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Track Finding

ethe task of the track finding

Transition
Radiation
Tracker

Space Point

= identify track candidates in event Silicon

= cope with the combinatorial
explosion of possible hit
combinations

e different techniques

= rough distinction: local/sequential

and global/parallel methods

Track
Candidate

Silicon
Detectors

ﬁ\g\
\O\@\

= |ocal method: generate seeds and [N
complete them to track candidates JSEEIEL

= global method: simultaneous

Point

clustering of detector hits into track

candidates

®some local methods

= track road
= track following
= progressive track finding

®some global methods

= conformal mapping
®* Hough and Legendre transform
= adaptive methods

® Elastic Net, Cellular Automaton ...
(will not discuss the latter)

Markus Elsing



Image space

Conformal Mapping

eHough transform

= cycles through the origin in x-y
transform into point in u-v

8
7
6
5
> 4
3
2
1
0

e each hit becomes a straight line

céw
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Image space

Conformal Mapping T

eHough transform

= cycles through the origin in x-y
transform into point in u-v

Parameter space

8
7
6
5
> 4
3
2
1
0

o == N 0 » 01 O N

e each hit becomes a straight line

I
—_

= search for maxima (histogram)
in parameter space to find
track candidates

céw
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Image space

Conformal Mapping

eHough transform

= cycles through the origin in x-y
transform into point in u-v

Parameter space

¢ each hit becomes a straight line

ube front view

= search for maxima (histogram)
in parameter space to find
track candidates

@ egendre transform

= used for track finding in drift tubes

= drift radius is transformed into
sine-curves in Legendre space

= solves as well L-R ambiguity

CE/RW
\

>~ Markus Elsing




Local Track Finding

e Track Road algorithm
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Local Track Finding

e Track Road algorithm

= find seeds ~ combinations of 2-3 hits
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Local Track Finding

e Track Road algorithm

= find seeds ~ combinations of 2-3 hits
= build road along the likely trajectory

CE/RW
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Local Track Finding

e Track Road algorithm
= find seeds ~ combinations of 2-3 hits
= build road along the likely trajectory
= select hits on layers to obtain candidates

sufficient for
very low
occupancies

CE/RW
\
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Local Track Finding

e Track Road algorithm

= find seeds ~ combinations of 2-3 hits
= build road along the likely trajectory
= select hits on layers to obtain candidates

e Track Following
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Local Track Finding

e Track Road algorithm

= find seeds ~ combinations of 2-3 hits
= build road along the likely trajectory
= select hits on layers to obtain candidates

e Track Following
= find seeds ~ combinations of 2-3 hits
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Local Track Finding

e Track Road algorithm

= find seeds ~ combinations of 2-3 hits
= build road along the likely trajectory
= select hits on layers to obtain candidates

e Track Following

= find seeds ~ combinations of 2-3 hits
= extrapolate seed along the likely trajectory

céw
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Local Track Finding

e Track Road algorithm
= find seeds ~ combinations of 2-3 hits
= build road along the likely trajectory
= select hits on layers to obtain candidates

e Track Following

= find seeds ~ combinations of 2-3 hits
= extrapolate seed along the likely trajectory
= select hits on layers to obtain candidates

sufficient if low
number of hits
near extrapolation

céw
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Local Track Finding

e Track Road algorithm

= find seeds ~ combinations of 2-3 hits
= build road along the likely trajectory
= select hits on layers to obtain candidates

e Track Following

= find seeds ~ combinations of 2-3 hits
= extrapolate seed along the likely trajectory
= select hits on layers to obtain candidates

® Progressive Track Finder
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Local Track Finding

e Track Road algorithm

= find seeds ~ combinations of 2-3 hits
= build road along the likely trajectory
= select hits on layers to obtain candidates

e Track Following

= find seeds ~ combinations of 2-3 hits
= extrapolate seed along the likely trajectory
= select hits on layers to obtain candidates

® Progressive Track Finder
= find seeds ~ combinations of 2-3 hits
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Local Track Finding

e Track Road algorithm
= find seeds ~ combinations of 2-3 hits
= build road along the likely trajectory
= select hits on layers to obtain candidates

e Track Following

= find seeds ~ combinations of 2-3 hits
= extrapolate seed along the likely trajectory
= select hits on layers to obtain candidates

® Progressive Track Finder

= find seeds ~ combinations of 2-3 hits
= extrapolate seed to next layer, find
best hit and update trajectory
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Local Track Finding

e Track Road algorithm
= find seeds ~ combinations of 2-3 hits
= build road along the likely trajectory
= select hits on layers to obtain candidates

e Track Following

= find seeds ~ combinations of 2-3 hits
= extrapolate seed along the likely trajectory
= select hits on layers to obtain candidates

® Progressive Track Finder

= find seeds ~ combinations of 2-3 hits
= extrapolate seed to next layer, find
best hit and update trajectory
= repeat until last layers to obtain candidates

better at high
occupancies and
with lots of material
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Local Track Finding

e Track Road algorithm
= find seeds ~ combinations of 2-3 hits
= build road along the likely trajectory
= select hits on layers to obtain candidates

e Track Following

= find seeds ~ combinations of 2-3 hits
= extrapolate seed along the likely trajectory
= select hits on layers to obtain candidates

® Progressive Track Finder

= find seeds ~ combinations of 2-3 hits
= extrapolate seed to next layer, find
best hit and update trajectory
= repeat until last layers to obtain candidates

e Combinatorial Kalman Filter
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Local Track Finding

e Track Road algorithm
= find seeds ~ combinations of 2-3 hits
= build road along the likely trajectory
= select hits on layers to obtain candidates

e Track Following

= find seeds ~ combinations of 2-3 hits
= extrapolate seed along the likely trajectory
= select hits on layers to obtain candidates

® Progressive Track Finder

= find seeds ~ combinations of 2-3 hits
= extrapolate seed to next layer, find
best hit and update trajectory
= repeat until last layers to obtain candidates

e Combinatorial Kalman Filter

/w = extension of a Progressive Track Finder for dense environments
CERN
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Local Track Finding

e Track Road algorithm

= find seeds ~ combinations of 2-3 hits
= build road along the likely trajectory
= select hits on layers to obtain candidates

e Track Following

= find seeds ~ combinations of 2-3 hits
= extrapolate seed along the likely trajectory
= select hits on layers to obtain candidates

® Progressive Track Finder
= find seeds ~ combinations of 2-3 hits

best of tracking
= extrapolate seed to next layer, find in jets (ATLAS+CMS)

best hit and update trajectory
= repeat until last layers to obtain candidates

e Combinatorial Kalman Filter

= extension of a Progressive Track Finder for dense environments

(iE/RW = full combinatorial exploration, follow all hits to find all possible track candidates
A Markus Elsing




The ATLAS Track Reconstruction




...and in Practice ?

@ choice of reconstruction strategy depends on:

= detector technologies

= physics/performance requirements
= occupancy and backgrounds

= technical constraints (CPU, memory)

@ even for same detector setup one looks at

different types of events:

= test beam

= COSMICS

= trigger (regional)
= offline (full scan)

etrack reconstruction used by experiments

= usually apply a combination of different techniques
= often iterative ~ different strategies run one after the other to
obtain best possible performance within resource constraints

cw
.
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CERN

ATLAS NewTracking Software Chain

pre-precessing
= Pixel+SCT clustering

= TRT drift circle formation
= space points formation
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ATLAS NewTracking Software Chain

pre-precessing combinatorial

m Pixel+SCT cIustering track ﬁ nder
= TRT drift circle formation

= space points formation

= jterative:
1. Pixel seeds
2. Pixel+SCT seeds
3. SCT seeds
= restricted to roads
= bookkeeping to avoid
duplicate candidates

. 4

ambiguity solution
= precise least square fit
with full geometry
= selection of best silicon
tracks using:
1. hit content, holes
2. number of shared hits
3. fit quality...

)\ 4

extension into TRT

"
|
hI\NIﬂJI‘I \lul I | II{//I'"l.

I
Syve L
M\\‘\MQ\\II Jha II| ‘, l“l |I Y
/

CERN = progressive finder
\ = refit of track and selection
b Markus Elsing 41




standalone TRT

= unused TRT segments

4+

ambiguity solution
= precise fit and selection
= TRT seeded tracks

4+

TRT seeded finder

= from TRT into SCT+Pixels
= combinatorial finder

@
\

Efw

DA

pre-precessing
= Pixel+SCT clustering

= TRT drift circle formation
= space points formation
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TRT segment finder

= on remaining drift circles
= uses Hough transform
Markus Elsing

ATLAS NewTracking Software Chain

combinatorial
track finder

= jterative:
1. Pixel seeds
2. Pixel+SCT seeds
3. SCT seeds
= restricted to roads
= bookkeeping to avoid
duplicate candidates

. 4

ambiguity solution
= precise least square fit
with full geometry
= selection of best silicon
tracks using:
1. hit content, holes
2. number of shared hits
3. fit quality...

)\ 4

extension into TRT

= progressive finder
= refit of track and selection

21



vertexing

= primary vertexing
= conversion and VO search

pre-precessing
= Pixel+SCT clustering

= TRT drift circle formation
= space points formation

1

standalone TRT

= unused TRT segments

4+

ambiguity solution

= precise fit and selection
= TRT seeded tracks

4+

TRT seeded finder

= from TRT into SCT+Pixels
= combinatorial finder
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TRT segment finder

= on remaining drift circles
= uses Hough transform

Markus Elsing

ATLAS NewTracking Software Chain

combinatorial

# track finder

= |terative:
1. Pixel seeds
2. Pixel+SCT seeds
3. SCT seeds
= restricted to roads
= bookkeeping to avoid
duplicate candidates

. 4

ambiguity solution
= precise least square fit
with full geometry
= selection of best silicon
tracks using:
1. hit content, holes
2. number of shared hits
3. fit quality...

)\ 4

extension into TRT

= progressive finder
= refit of track and selection

21
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vertexing

= primary vertexing
= conversion and VO search

pre-precessing
= Pixel+SCT clustering

= TRT drift circle formation
= space points formation

1

standalone TRT

= unused TRT segments

4+

ambiguity solution

= precise fit and selection
= TRT seeded tracks

smce 2012

= |ist of selected EM clusters ,

- seed brem recovery

4+

TRT seeded finder

= from TRT into SCT+Pixels
= combinatorial finder

ATLAS NewTracking Software Chain

combinatorial

# track finder

= |terative:
1. Pixel seeds
2. Pixel+SCT seeds
3. SCT seeds
= restricted to roads
= bookkeeping to avoid
duplicate candidates

. 4

ambiguity solution
= precise least square fit

— \\é with full geometry

= selection of best silicon
tracks using:
1. hit content, holes
2. number of shared hits
3. fit quality...

)\ 4

extension into TRT

t TRT segment finder
= on remaining drift circles = progressive finder

= uses Hough transform = refit of track and selection
Markus Elsing 41
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The Iterative Tracking Strategy

etrack finding is most time

consuming reconstruction
step

= avoid combinatorial overhead !
= terative seeding approach:

C

E/RW

N/ S

Markus Elsing

42



The Iterative Tracking Strategy

etrack finding is most time

consuming reconstruction
step

= avoid combinatorial overhead!
= terative seeding approach:
e restrict seeding for combinatorial
Kalman Filter to set of layers

CE/RW
\

Markus Elsing

42



The Iterative Tracking Strategy

etrack finding is most time

consuming reconstruction
step

= avoid combinatorial overhead!
= terative seeding approach:
e restrict seeding for combinatorial
Kalman Filter to set of layers
e find initial set of tracks

CE/RW
\
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The Iterative Tracking Strategy

etrack finding is most time

consuming reconstruction
step

= avoid combinatorial overhead!
= terative seeding approach:
e restrict seeding for combinatorial
Kalman Filter to set of layers
e find initial set of tracks

e remove used hits from event

C

E/RW

Markus Elsing
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The Iterative Tracking Strategy

etrack finding is most time

consuming reconstruction
step

= avoid combinatorial overhead!
= terative seeding approach:
e restrict seeding for combinatorial
Kalman Filter to set of layers
e find initial set of tracks

e remove used hits from event

e seed tracking from different set
of layers to find more tracks

o .. etc

C

E/RW

Markus Elsing
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The Iterative Tracking Strategy

etrack finding is most time
consuming reconstruction
step

= avoid combinatorial overhead!

= terative seeding approach:
e restrict seeding for combinatorial

Kalman Filter to set of layers
e find initial set of tracks

e remove used hits from event
e seed tracking from different set
of layers to find more tracks
o .. efc
= optimal choice of iterative seeding
strategy is matter of tuning
¢ e.g. CMS did 7 iterations in Run-1

Efficiency

C

E/RW
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CMS Preliminary Simulation
¥s=8TeV, tt + <PU>=20 [ Jinitial
p,>0.8 GeV, n<2.5 [ +lowPtTriplet

[initial

[ +lowPtTriplet
“L [ +pixelPair

[ +detachTriplet
1- B +mixedTriplet

B +pixelLess

Efficiency

B +pixelPair

[] +detachTriplet
B +mixedTriplet
P +pixellLess

B +tobTec

50 60
Production Radius [cm]

CMS Preliminary Simulation

Vs = 8 TeV, tf + <PU>=20
R.x<20 cm, n|<2.5

42



Tuning the lterative Tracking Strategy

TA ATV T g

®optimal seeding strategy depends on level of pileup (ATLAS)

= fraction of seeds to give a good track candidate: .\

. ATLAS upgrade -;

Seed_triplets: pileup "PPP" "PPS" "PSS“ "SSS"
P = pixel [ 57%\| 26% | 29% |/66%\
5%

> = Strips IR 17% 6% 59 | \35%/

e hence start with SSS at 40 pileup !

4th hit seed
confirmation




Tuning the lterative Tracking Strategy

®optimal seeding strategy depends on level of plleup (ATLAS)

= fraction of seeds to give a good track candidate:

seed-triplets:

P = Pixel

S = Strips

oileup | "PPP" | "PPS" | "PSS" | "SSS"
0 57%\| 26% | 29% |/ 66%\
40 7% | 6% 5% | \35%/

e hence start with SSS at 40 pileup !
= further increase good seed fraction using 4th hit

vileup | "PPP+1" | "PPS+1" | "PSS+1" | "SSS+ 1"
0 |/79%\| 53% | 52% |/B6%
40 399 8% 16% | \70%

o takes benefit from new Insertable B-Layer (IBL)

A N 2 ATLAS upgrade '

PINY Insertable B-Layer |

4th hit seed
confirmation



Tuning the lterative Tracking Strategy

A LTRSS A

®optimal seeding strategy depends on level of plleup (ATLAS)

= fraction of seeds to give a good track candidate:

seed-triplets:

P = Pixel

S = Strips

oileup | "PPP" | "PPS" | "PSS" | "SSS"
0 57%\| 26% | 29% |/ 66%\
40 7% | 6% 5% | \35%/

e hence start with SSS at 40 pileup !
= further increase good seed fraction using 4th hit

vileup | "PPP+1" | "PPS+1" | "PSS+1" | "SSS+ 1"
0 |/79%\| 53% | 52% |/B6%
40 399 8% 16% | \70%

o takes benefit from new Insertable B-Layer (IBL)

efinal ATLAS Run-2 seeding strategy
= significant speedup at 40 pileup (and 25 ns)

C

seeding | efficiency| CPU* ?:sz'
"Run-1" 94.0% 9.5 sec
"Run-2" 94.2% 4.7 sec

E/RW

- s € ATLAS upgrade
PINY Insertable B-Layer

4th hit seed
confirmation



Ambiguity Solution

®track selection cuts

= applied at every stage in reconstruction
= still more candidates than final tracks
and too high rate of fakes

ATLAS Preliminary —¢— All
—#— Rejected Quality

\s=7TeV —i— Rejected 0
P, > 500 MeV —+— Accepted

etask of ambiguity solution:
= select good tracks and reject fakes
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e
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S
)
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£
=)
pd

e®ordered iterative procedure

= in case of ATLAS:
e precise fit with outlier removal
= construct quality function (“score”) for

each candidate:

1. hit content, holes
2. number of shared hits
3. fit quality...

= candidate with best score wins
= if too many shared hits, create sub-track

ATLAS Preliminary
Data)\s=7 TeV

Track Score

if track with remaining hits passes cuts

CE/RW
\

>~ Markus Elsing




Tracking in dense Jets

@ problem of cluster merging
' 2 Single-particle-cluster
= merging when track separation reaches single Pixel size o | [ Vlivariclo st
= during track reconstruction shared clusters are penalised " e b onyone e

to reduce fakes and duplicate tracks

2
=

>0.06 :
> ATLAS Simulation | | CCA Clustering

0.05[— \/s=7 TeV —— NN Clustering

4-pixel wide clusters

itrar

e®neural network (NN) Pixel clustering -

= identify merged clusters and splitting them residual
e identify merge clusters, split them and correct positions [ReEEis

= splitting/sharing decision done in ambiguity processing S;fzfi;g
e full track information for all candidates available

Arb
>}
>}
=

0 50 100 150
Local x resolution [um]

@crucial in many areas:

= b-tagging (especially at high momenta)
= jet calibration and particle flow
= 3-prong T identification

ATLAS Preliminary

Simulation, t—v 3r*
< 2 Shared SCT Clusters
No Secondaries

—

t Algorithmic Efficiency

Baseline

= TIDE _+_ |
_T__I

shared . i high pT taus
CE{W Pixel clusters
\ 7 > ) 200 400 600 800 1000
~7 | © p, [GeV]




Tracking with Electron Brem. Recovery

estrategy for brem. recovery s

= restrict recovery to regions pointing to
electromagnetic clusters (Rol)

= pattern: allow for large energy loss in
combinatorial Kalman filter
e adjust noise term for electrons

= global-x2 fitter allows for brem. point Electron tracks
= adapt ambiguity processing (etc.) to ensure Electron track
e.g. b-tagging is not affected
= use full fledged Gaussian-Sum Filter in
102

electron identification code

Brem point

Conversion point

o

ATLAS Preliminary
100
\4

etracking update deployed in 2012

= improvements especially at low pr (< 15 GeV)
e limiting factor for H=>ZZ*—4e
= significant efficiency gain for Higgs discovery

by

2011 2012
_ 4 Data| Ldt~4.7fb" _w_Data | Ldt~770pb"

Electron reconstruction efficiency [%]

—— MC —v— MC

C

E/RW
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Let’'s Summarise...

ediscussed concepts for track reconstruction
@ have overview of strategies and mathematical tools

ediscussed an example of a track reconstruction package
(ATLAS NewTracking)

enext is to talk about vertexing and its applications

Markus Elsing
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ATLAS HL-LHC event in new tracker

Bonus Slides...
|.S-1 Tracking Upgrades

RAW-> ESD Reconstruction time @ 14 TeV

ATLAS
Run-| Software
CPU vs pileup

...50 what did we do about this so far ?

sec/event
N
<

150

CERN

Markus Elsing " ‘- " pile-up (mu)




Tracking Developments towards Run-2

® ATLAS and CMS focus on technology and

strategy to improve CURRENT algorithms ctioved specd
= improve software technology, including: CLHEP in 55 matrix

multiplication testbed

e simplify EDM design to be less OO (“hip” 10 years ago)

e ATLAS migrated to Eigen - faster vector+matrix algebra
(CMS was already using SMatrix)

e vectorised trigonometric functions
(CMS: VDT or ATLAS: intel math lib)

e work on CPU hot spots

(e.g. ATLAS replaced F90 by C++ for B-field service)
= tune reconstruction strategy (very similar in ATLAS and CMS):

e optimise iterative track finding strategy for 40 pileup
e ATLAS modified track seeding to explore 4th Pixel layer
e CMS added cluster-shape filter against out-of-time pileup

®hence, mix of SIMD and algorithm tuning

= CMS made their tracking as well thread-safe




CPU time vs release

ATLAS Simulation Preliminary
RDO to ESD

Vs =14 TeV
<u>=40

25 ns bunch spacing
Run 1 Geometry

pp — ft

HS06 = 13.08

—e— Full reconstruction
—e— Inner Detector only

CPU for Reconstruction

Resource request
250 HS06/13.6

®sum of tracking and general software

Improvements

= improved software technology, including:
e tracking related improvements
e new 64 bit compilers, new tcmalloc
= tune reconstruction strategy (very similar in ATLAS and CMS)
e optimise track finding strategy for 40 pileup
e faster versions of things like FastJet, ...
e addressing other CPU hot spots in reconstruction

Reconstruction time per event [s]

17.2, 32bit 19.0, 64bit 19.1, 64bit 20.1, 64bit
Software release
total CPU time vs pileup

ATLAS Preliminary (Data 2012)

Software release
== 17.2.7.9
19.0.3.3
- 19.1.1.1 Run-|

20.1.4.3

Full reconstruction time per event [s]

25 30 35

Average number of interactions per bunch crossing ( u )

CMS Simulation, ¥s = 13 TeV, it + PU, BX=25ns

—=— Track Reco Current

Track Reco Run1

tracking CPU time

vs release

Run-|
QE{W




CPU time vs release

ATLAS Simulation Preliminary
RDO to ESD

Vs =14 TeV
<u>=40

25 ns bunch spacing
Run 1 Geometry

pp — ft

HS06 = 13.08

—e— Full reconstruction
—e— Inner Detector only

CPU for Reconstruction

®sum of tracking and general software

Improvements

= improved software technology, including:
e tracking related improvements
e new 64 bit compilers, new tcmalloc
= tune reconstruction strategy (very similar in ATLAS and CMS)
e optimise track finding strategy for 40 pileup
e faster versions of things like FastJet, ...
e addressing other CPU hot spots in reconstruction

Resource request
250 HS06/13.6

Reconstruction time per event [s]

17.2, 32bit 19.0, 64bit 19.1, 64bit 20.1, 64bit
Software release
total CPU time vs pileup

ATLAS Preliminary (Data 2012)

Software release
== 17.2.7.9
19.0.3.3
- 19.1.1.1 Run-|

20.1.4.3

Full reconstruction time per event [s]

®huge gains achieved! : S B
Average number of interactions per bunch crossing ( u )
= ATLAS reports overall factor > 4 in CPU time _
e touched >1000 packages for factor 5 in tracking  [EN it

—=— Track Reco Current

= CMS reports overall factor > 2 in CPU time

e on top of their 2011/12 improvements

¢ as well dominated by tracking improvements
= both experiments within 1 kHz Tier-0 budget

Track Reco Run1

tracking CPU time
vs release

Run-2

e required to keep single lepton triggers Run. | -
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Moore's law

Processor scaling trends

= Transistors

Technology Challenges B e

@ \Moore's law is still alive

= number of transistors still doubles every 2 years
e no free lunch, clock speed no longer increasing
= |ots of transistors looking for something to do:
e vector registers
e out of order execution
e hyper threading
e multiple cores
= many-core processors, including GPGPUs Intel Xeon Phi
e |ots of cores with less memory
= increase theoretical performance of processors

o
;=
©
o
7]
©
=
=
o
[}
[any

echallenge will be to adapt HEP software

= hard to exploit theoretical processor performance
e many of our algorithm strategies are sequential
= need to parallelise applications (multi-threading)

(GAUDI-HIVE and CMSSW multi-threading a step in this direction)

e change memory model for objects, more vectorisation, ...
CE?W
\\_/




Iterative tracking

Massively parallel
Tracking ?

e —_—e— —
R e T

® ATLAS/CMS tracking strateqy is for early rejection

= jterative tracking: avoid combinatorial overhead as much as possible !
e carly rejection requires strategic candidate processing and hit removal
= not a heavily parallel approach, itis a SEQUENTIAL approach'!

eimplications for making it massively parallel ?

= Amdahl’s law at work: .
Time; = Para/ N + Seq

= iterative tracking: small parallel part Para, heavy on sequential Seq
e hence, if we want to gain by a large N threads, we need to reduce Seq

®hence we need to re-think the algorithmic strategy

= having concurrency in mind from the very start
= as well, look outside the box, e.g. explore using machine learning techniques
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