Tracking at the LHC (Part 3): Concepts for Track Reconstruction

Lectures given at the University of Freiburg Markus Elsing, 12-13. April 2016

Introduction

- in this lecture I will discuss the most complex and CPU consuming aspect of event reconstruction at the LHC
 - → finding trajectories (tracks) of charged particles produced in p-p collisions
- will have to introduce various techniques for
 - ⇒ pattern recognition, detector geometry, track fitting, extrapolation ...
 - → including mathematical concepts and aspects of software design

... so why does it matter?

The Tracking Problem

 particles produce in a p-p interaction leave a cloud of hits in the detector

The Tracking Problem

 particles produce in a p-p interaction leave a cloud of hits in the detector

tracking software
 is used to
 reconstruct their
 trajectories

Role of Tracking Software

- optimal tracking software
 - → required to fully explore performance of detector
- example: DELPHI Experiment at LEP
 - ⇒ silicon vertex detector upgrade
 - initially not used in tracking to resolve dense jets
 - pattern mistakes in jet-chamber limit performance

Role of Tracking Software

- optimal tracking software
 - → required to fully explore performance of detector
- example: DELPHI Experiment at LEP
 - ⇒ silicon vertex detector upgrade
 - initially not used in tracking to resolve dense jets
 - pattern mistakes in jet-chamber limit performance
 - → 1994: redesign of tracking software
 - start track finding in vertex detector
 - → factor ~ 2.5 more D* signal after reprocessing

 $\Delta m \left[\text{GeV/c}^2 \right]$

•reminder:

- → LHC is a high luminosity machine
 - proton bunches collide every
 25 (50) nsec in experiments
 - each time > 20 p-p interactions are observed! (event pileup)
- → our detectors see hits from particles produced by all > 20 p-p interactions
 - ~100 particles per p-p interaction
 - each charged particle leaves ~50 hits

•reminder:

- → LHC is a high luminosity machine
 - proton bunches collide every
 25 (50) nsec in experiments
 - each time > 20 p-p interactions are observed! (event pileup)
- → our detectors see hits from particles produced by all > 20 p-p interactions
 - ~100 particles per p-p interaction
 - each charged particle leaves ~50 hits

•reminder:

- → LHC is a high luminosity machine
 - proton bunches collide every
 25 (50) nsec in experiments
 - each time > 20 p-p interactions are observed! (event pileup)
- → our detectors see hits from particles produced by all > 20 p-p interactions
 - ~100 particles per p-p interaction
 - each charged particle leaves ~50 hits

- → this is how 1 pp

 collisions looks like
 - now imagine50 of themoverlapping
 - task of tracking software is to resolve the mess ...

- track reconstruction
 - → combinatorial problem grows with pileup
 - → naturally resource driver (CPU/memory)
- the <u>million dollar</u> question:
 - → how to reconstruct LH-LHC events within resources ? (pileup ~ 140-200)

ATLAS HL-LHC event in new tracker

event display from title page

more than 10 years of R&D on LHC tracking software

- → we knew that tracking at the LHC is going to be challenging
 - building on techniques developed for previous experiments
- → processor technologies will change in the future
 - need to rethink some of the design decisions we did
 - adapt software to explore modern CPUs: threading, data locality...

Outline of Part 3

- charged particle trajectories and extrapolation
 - → trajectory representations and trajectory following in a realistic detector
 - → detector description, navigation and simulation toolkits
- track fitting
 - → classical least square track fit and a Kalman filter track fit
 - → examples for advanced techniques
- track finding
 - ⇒ search strategies, Hough transforms, progressive track finding, ambiguity solution
- the ATLAS track reconstruction (as an example)

Trajectories and Extrapolation

A Trajectory of a Charged Particle

- → in a solenoid B-field a charged particle trajectory is describing a helix
 - a circle in the plane perpendicular to the field (Rφ)
 - a path (not a line) at constant polar angle (θ) in the Rz plane
- a trajectory in space is defined byparameters
 - the **local position** (l₁,l₂) on a plane, a cylinder, ..., on the surface or reference system
 - the direction in θ and φ plus the curvature Q/P_T
- → ATLAS choice:

$$\vec{p} = (l_1, l_2, \theta, \phi, Q/P)$$

The Perigee Parameterisation

helix representation w.r.t. a vertex

commonly used

- ⇒ e.g. to express track parameters near the production vertex
- → alternative: e.g. on plane surface

The Perigee Parameterisation

helix representation w.r.t. a vertex

commonly used

- ⇒ e.g. to express track parameters near the production vertex
- → alternative: e.g. on plane surface

Following the Particle Trajectory

- basic problems to be solved in order to follow a track through a detector:
 - → next detector module that it intersects?
 - → what are its parameters on this surface?
 - what is the uncertainty of those parameters?
 - → for how much material do I have to correct for ?

requires:

- → a detector geometry
 - surfaces for active detectors
 - passive material layers
- ⇒ a method to discover which is the next surface (navigation)
- → a propagator to calculate the new parameters and its errors
 - often referred to as "track model"

parameters with uncertainty

Following the Particle Trajectory

 basic problems to be solved in order to follow a track through a detector:

- → next detector module that it intersects?
- → what are its parameters on this surface?
 - what is the uncertainty of those parameters?
- → for how much material do I have to correct for ?

requires:

- → a detector geometry
 - surfaces for active detectors
 - passive material layers
- ⇒ a method to discover which is the next surface (navigation)
- → a propagator to calculate the new parameters and its errors
 - often referred to as "track model"

Following the Particle Trajectory

 basic problems to be solved in order to follow a track through a detector:

- → next detector module that it intersects?
- → what are its parameters on this surface?
 - what is the uncertainty of those parameters?
- → for how much material do I have to correct for?

requires:

- → a detector geometry
 - surfaces for active detectors
 - passive material layers
- ⇒ a method to discover which is the next surface (navigation)
- → a propagator to calculate the new parameters and its errors
 - often referred to as "track model"

for a constant B-field (or no field)

→ an analytical formula can be calculated for an intersection of a helix (or a straight line) on simple surfaces (plane, cylinder, vertex,...)

- for inhomogeneous B-field there is no analytical solution
 - \Rightarrow start from equation of motion for a particle with charge q in magnetic field B:

$$\frac{d\vec{p}}{dt} = q\vec{v} \times \vec{B}.$$

 \rightarrow can be written as set of differential equations for motion along z with x(z) and y(z):

$$\frac{d^2x}{dz^2} = \frac{q}{p}R\left[\frac{dx}{dz}\frac{dy}{dz}B_x - \left(1 + \left(\frac{dx}{dz}\right)^2\right)B_y + \frac{dy}{dz}B_z\right]$$

$$\frac{d^2y}{dz^2} = \frac{q}{p}R\left[\left(1 + \left(\frac{dy}{dz}\right)^2\right)B_x - \frac{dx}{dz}\frac{dy}{dz}B_y - \frac{dx}{dz}B_z\right]$$
with:
$$R = \frac{ds}{dz} = \sqrt{1 + \left(\frac{dx}{dz}\right)^2 + \left(\frac{dy}{dz}\right)^2}$$

$$R = \frac{ds}{dz} = \sqrt{1 + \left(\frac{dx}{dz}\right)^2 + \left(\frac{dy}{dz}\right)^2}$$

- no analytical solution for inhomogeneous B-field, requires numerical integration along the path of the trajectory
- → numerical integration done using Runge-Kutta technique
 - in ATLAS a 4th order adaptive Runge-Kutta-Nystrom approach is used, propagates covariance matrix in parallel (Bugge, Myrheim, 1981, NIM 179, p.365)

- •numerical integration of y(z) in a nutshell:
 - **→** examples for integration methods
 - Euler's method
 - Midpoint method
 - Runge-Kutta integration

•numerical integration of *y*(*z*) in a nutshell:

- **⇒** examples for integration methods
 - Euler's method
 - Midpoint method
 - Runge-Kutta integration
- → Euler's method:
 - what is the value y at $z_{n+1}=z_n+h$?
 - starting point is y_n at z_n
 - use derivative $f = \frac{\partial y}{\partial z}$ at z_n to approximate y_{n+1}

$$y_{n+1}=y_n + h \cdot f(z_n, y_n)$$

with
 $f(z_n, y_n) = \partial y / \partial z|_{z=z_n}$

•numerical integration of y(z) in a nutshell:

- → examples for integration methods
 - Euler's method
 - Midpoint method
 - Runge-Kutta integration
- → Euler's method:
 - what is the value y at $z_{n+1}=z_n+h$?
 - starting point is y_n at z_n
 - use derivative $f = \frac{\partial y}{\partial z}$ at z_n to approximate y_{n+1}
- → Midpoint method:
 - evaluate f at z_n this time to stop at midpoint $z_n + h/2$ and evaluate f again

$$k_1=h \cdot f(z_n, y_n)$$

 $k_2=h \cdot f(z_n+h/2, y_n+k_1/2)$
 $y_{n+1}=y_n+k_2+O(h^3)$

•numerical integration of *y*(*z*) in a nutshell:

- → examples for integration methods
 - Euler's method
 - Midpoint method
 - Runge-Kutta integration
- → Euler's method:
 - what is the value y at $z_{n+1}=z_n+h$?
 - starting point is y_n at z_n
 - use derivative $f = \frac{\partial y}{\partial z}$ at z_n to approximate y_{n+1}
- → Midpoint method:
 - evaluate f at z_n this time to stop at midpoint $z_n + h/2$ and evaluate f again
- → 4th order Runge-Kutta integration:
 - evaluate f at 4 different points: at starting point, twice at midpoint and at endpoint to compute y_{n+1}

$$k_1 = hf(z_n, y_n)$$

$$k_2 = hf(z_n + \frac{h}{2}, y_n + \frac{k_1}{2})$$

$$k_3 = hf(z_n + \frac{h}{2}, y_n + \frac{k_2}{2})$$

$$k_4 = hf(z_n + h, y_n + k_3)$$

$$y_{n+1} = y_n + \frac{k_1}{6} + \frac{k_2}{3} + \frac{k_3}{3} + \frac{k_4}{6} + O(h^5)$$

• ATLAS Runge-Kutta propogator:

- → parameter propagation is 4th order
- → adaptive: use 3rd order result to monitor step precision and adapt step size (h)
- monitor the remaining distance to the target surface, if a few μm, use Taylor approximation to reach surface
- → Nystrom technique: does as well numerical integration of Jacobian for error propagation (fast & precise)

• ATLAS Runge-Kutta propogator:

- → parameter propagation is 4th order
- → adaptive: use 3rd order result to monitor step precision and adapt step size (h)
- monitor the remaining distance to the target surface, if a few μm, use Taylor approximation to reach surface
- → Nystrom technique: does as well numerical integration of Jacobian for error propagation (fast & precise)

need to allow for material effects

- → energy loss
 - use most probably energy loss for x/X₀
 - correct momentum (curvature) and its covariance
- **→** multiple scattering
 - increases uncertainty on direction of track
 - • for given x/X_0 traversed add term to covariances of θ and φ on a material "layer"

The Track Extrapolation Package

- a transport engine used in tracking software
 - ⇒ central tool for pattern recognition, track fitting, etc.
 - parameter transport from surface to surface, including covariance
 - encapsulates the track model, geometry and material corrections

Detector Geometry

- interactions in detector material limiting tracking performance
 - → LHC detectors are complex
 - require a very detailed description of their geometry
 - experiments developed geometry models (translation into G4 simulation)
 - huge number of volumes

→ control material close to beam pipe at % level

	model	placed volumes
ALICE	Root	4.3 M
ATLAS	GeoModel	4.8 M
CMS	DDD	2.7 M
LHCb	LHCb Det.Des.	18.5 M

Weighing Detectors during Construction

huge effort in experiments

- → important to reach good description in simulation and reconstruction
- → each individual detector part was put on balance and compare with model
 - CMS and ATLAS measured weight of their tracker and all of its components
- correct the geometry implementation in simulation and reconstruction

CMS	estimated from measurements	simulation
active Pixels	2598 g	2455 g
full detector	6350 kg	6173 kg

ATLAS	estimated from measurements	simulation
Pixel package	201 kg	197 kg
SCT detector	672 ±15 kg	672 kg
TRT detector	2961 ±14 kg	2962 kg

example: ATLAS TRT measured before and after insertion of the SCT

Date	$\begin{array}{l} \text{ATLAS} \\ \eta \approx 0 \end{array}$	$\eta pprox 1.7$	$\begin{array}{l} \text{CMS} \\ \eta \approx 0 \end{array}$	$\etapprox1.7$
1994 (Technical Proposals)	0.20	0.70	0.15	0.60
1997 (Technical Design Reports)	0.25	1.50	0.25	0.85
2006 (End of construction)	0.35	1.35	0.35	1.50

Full and Fast (Tracking) Geometries

- complex G4 geometries not optimal for reconstruction
 - → simplified tracking geometries
 - → material surfaces, field volumes
- reduced number of volumes
 - → blending details of material onto simple surfaces/volumes
 - → surfaces with 2D material density maps, templates per Si sensor...

	G4	tracking
ALICE	4.3 M	same *1
ATLAS	4.8 M	10.2K *2
CMS	2.7 M	3.8K *2
LHCb	18.5 M	30

^{*}I ALICE uses full geometry (TGeo)

^{*2} plus a surface per Si sensor

Embedded Navigation Schemes

- embedded navigation scheme in tracking geometries
 - → G4 navigation uses voxelisation as generic navigation mechanism
 - **⇒** embedded navigation for simplified models
 - used in pattern recognition, extrapolation, track fitting and fast simulation
- example: ATLAS
 - → developed geometry of connected volumes
 - → boundary surfaces connect neighbouring volumes to predict next step

ATLAS	G4	tracking	ratio
crossed volumes in tracker	474	95	5
time in SI2K sec	19.1	2.3	8.4

(neutral geantinos, no field lookups)

Detour: Simulation (Geant4)

- Geant4 is based upon
 - ⇒ stack to keep track of all particles produced and stack manager
 - **⇒** extrapolation system to propagate each particle:
 - transport engine with navigation
 - geometry model
 - B-field
 - ⇒ set of physics processes describing interaction of particles with matter
 - ⇒ a user application interface, ...

Markus Elsing 20

same concept as for

track reconstruction

Fast Simulation

- CPU needs for full G4
 exceeds computing models
 - → simulation strategies of experiments mix full G4 and fast simulation

	G4	fast sim.
CMS	360	0.8
ATLAS	1990	7.4

 $\label{eq:continuous} \begin{tabular}{ll} ttbar\ events,\ in\ kSI2K\ sec \\ G4\ differences:\ calo.modeling\ ,\ phys.list,\ \eta\ cuts,\ b\mbox{-field} \\ \end{tabular}$

•fast simulation engines

- → fast calo. simulation (parameterisation, showers libraries, ...)
- → simplified tracking geometries
- ⇒ simplify physics processes w.r.t. G4
- → output in same data model as full sim.
- ⇒ able to run full reconstruction (trigger)

Track Fitting

From Measurement Model to Track Fitting

measurements m_k of a track

→ in mathematical terms a model:

 \rightarrow in practice those m_k are clusters, drift circles, ...

From Measurement Model to Track Fitting

measurements m_k of a track

→ in mathematical terms a model:

 \rightarrow in practice those m_k are clusters, drift circles, ..

task of a track fit

→ estimate the track parameters from a set measurements

examples for fitting techniques

- → Least Square track fit or Kalman Filter track fit
- → more specialised versions: Gaussian Sum Filter or Deterministic Annealing Filters

Classical Least Square Track Fit

• construct and minimise the χ^2 function:

Carl Friedrich Gauss is credited with developing the fundamentals of the basis for least-squares analysis in 1795 at the age of eighteen.

Legendre was the first to publish the method, however.

→Write down Least Square function:

$$\chi^{2} = \sum_{k} \Delta m_{k}^{T} G_{K}^{-1} \Delta m_{k} \quad \text{with:} \quad \Delta m_{k} = m_{k} - d_{k}(p)$$

 d_k contains measurement model and propagation of the parameters $p: d_k = h_k \circ f_{k|k-1} \circ \cdots \circ f_{2|1} \circ f_{1|0}$ G_k is the covariance matrix of m_k .

• construct and minimise the χ^2 function:

Carl Friedrich Gauss is credited with developing the fundamentals of the basis for least-squares analysis in 1795 at the age of eighteen.

Legendre was the first to publish the method, however.

→Write down Least Square function:

$$\chi^{2} = \sum_{k} \Delta m_{k}^{T} G_{K}^{-1} \Delta m_{k} \quad \text{with:} \quad \Delta m_{k} = m_{k} - d_{k}(p)$$

 d_k contains measurement model and propagation of the parameters $p: d_k = h_k \circ f_{k|k-1} \circ \cdots \circ f_{2|1} \circ f_{1|0}$ G_k is the covariance matrix of m_k .

 \rightarrow Linearise the χ^2 with a Taylor expansion:

$$d_k(p_0 + \delta p) \cong d_k(p_0) + D_k \cdot \delta p + \text{higher terms}$$
 with Jacobian:
$$D_k = H_k F_{k|k-1} \cdots F_{2|1} F_{1|0}$$

• construct and minimise the χ^2 function:

Carl Friedrich Gauss is credited with developing the fundamentals of the basis for least-squares analysis in 1795 at the age of eighteen.

Legendre was the first to publish the method, however.

→Write down Least Square function:

$$\chi^{2} = \sum_{k} \Delta m_{k}^{T} G_{K}^{-1} \Delta m_{k} \quad \text{with:} \quad \Delta m_{k} = m_{k} - d_{k} (p)$$

 d_k contains measurement model and propagation of the parameters $p: d_k = h_k \circ f_{k|k-1} \circ \cdots \circ f_{2|1} \circ f_{1|0}$ G_k is the covariance matrix of m_k .

 \rightarrow Linearise the χ^2 with a Taylor expansion:

$$d_k(p_0 + \delta p) \cong d_k(p_0) + D_k \cdot \delta p + \text{higher terms}$$
 with Jacobian:
$$D_k = H_k F_{k|k-1} \cdots F_{2|1} F_{1|0}$$

 \rightarrow Minimising linearised χ^2 yields system of linear equations:

$$\frac{\partial \chi^2}{\partial p} = 0 \implies \left\{ \delta p = \left(\sum_{k} D_k^T G_k^{-1} D_k \right)^{-1} \sum_{k} D_k^T G_k^{-1} \left(m_k - d_k(p_0) \right) \right\}$$
and covariance of δp is: $C = \left(\sum_{k} D_k^T G_k^{-1} D_k \right)^{-1}$

- •allowing for material effects in fit:
 - \rightarrow can be absorbed in track model $\mathbf{f}_{k|i}$, provided effects are small
 - → for substantial multiple scatting, allows for scattering angles in the fit

- •allowing for material effects in fit:
 - \rightarrow can be absorbed in track model $f_{k|i}$, provided effects are small
 - → for substantial multiple scatting, allows for scattering angles in the fit
- •introduce scattering angles on material surfaces
 - \Rightarrow on each material surface, add 2 angles $\delta\theta_i$ as fee parameters to the fit

 \Rightarrow expected mean of those angles is 0 (!), their covariance Q_i is given by multiple scattering in x/X_0

- •allowing for material effects in fit:
 - \rightarrow can be absorbed in track model $f_{k|i}$, provided effects are small
 - → for substantial multiple scatting, allows for scattering angles in the fit
- •introduce scattering angles on material surfaces
 - \Rightarrow on each material surface, add 2 angles $\delta\theta_i$ as fee parameters to the fit
 - \Rightarrow expected mean of those angles is 0 (!), their covariance Q_i is given by multiple scattering in x/X_0
- •results in additional term in χ² equations:

$$\chi^{2} = \sum_{k} \Delta m_{k}^{T} G_{k}^{-1} \Delta m_{k} + \sum_{i} \delta \theta_{i}^{T} Q_{i}^{-1} \delta \theta_{i}$$
with:
$$\Delta m_{k} = m_{k} - d_{k} \left(p, \delta \theta_{i} \right)$$

→ computationally expensive (invert a dimension 5+2*n matrix)

- •allowing for material effects in fit:
 - \rightarrow can be absorbed in track model $f_{k|i}$, provided effects are small
 - → for substantial multiple scatting, allows for scattering angles in the fit
- •introduce scattering angles on material surfaces
 - \rightarrow on each material surface, add 2 angles $\delta\theta_i$ as fee parameters to the fit
 - \Rightarrow expected mean of those angles is 0 (!), their covariance Q_i is given by multiple scattering in x/X_0
- •results in additional term in χ² equations:

$$\chi^{2} = \sum_{k} \Delta m_{k}^{T} G_{k}^{-1} \Delta m_{k} + \sum_{i} \delta \theta_{i}^{T} Q_{i}^{-1} \delta \theta_{i}$$
with:
$$\Delta m_{k} = m_{k} - d_{k} (p, \delta \theta_{i})$$

- → computationally expensive (invert a dimension 5+2*n matrix)
- → advantage is that the fitted track follows precisely the particle trajectory (e.g. for ATLAS muon reconstruction)

- a Kalman Filter is a progressive way of performing a least square fit
 - ⇒ can be shown that it is mathematically equivalent
- how does the filter work?
 - ⇒ estimate starting parameters p_{0|0}
 - → iterate over all hits 1..K:
 - take trajectory parameters p_{k-1|k-1} at point k-1

- a Kalman Filter is a progressive way of performing a least square fit
 - ⇒ can be shown that it is mathematically equivalent
- how does the filter work?
 - ⇒ estimate starting parameters p_{0|0}
 - → iterate over all hits 1..K:
 - 1. take trajectory parameters **p**_{k-1|k-1} at point **k-1**
 - 2. propagate to point **k** to get predicted parameters **p**_{k|k-1}

- a Kalman Filter is a progressive way of performing a least square fit
 - ⇒ can be shown that it is mathematically equivalent
- how does the filter work?
 - ⇒ estimate starting parameters p_{0|0}
 - → iterate over all hits 1..K:
 - 1. take trajectory parameters p_{k-1|k-1} at point k-1
 - 2. propagate to point k to get predicted parameters $p_{k|k-1}$
 - 3. update predicted parameters with measurement m_k to obtain $p_{k|k}$ (simple weighted mean or gain matrix update)

- a Kalman Filter is a progressive way of performing a least square fit
 - ⇒ can be shown that it is mathematically equivalent
- how does the filter work?
 - ⇒ estimate starting parameters p_{0|0}
 - → iterate over all hits 1..K:
 - 1. take trajectory parameters p_{k-1|k-1} at point k-1
 - 2. propagate to point k to get predicted parameters $p_{k|k-1}$
 - 3. update predicted parameters with measurement m_k to obtain $p_{k|k}$ (simple weighted mean or gain matrix update)
 - 4. and start over with 1.

- a Kalman Filter is a progressive way of performing a least square fit
 - ⇒ can be shown that it is mathematically equivalent
- how does the filter work?
 - ⇒ estimate starting parameters p_{0|0}
 - → iterate over all hits 1..K:
 - 1. take trajectory parameters p_{k-1|k-1} at point k-1
 - 2. propagate to point **k** to get predicted parameters **p**_{k|k-1}
 - 3. update predicted parameters with measurement m_k to obtain $p_{k|k}$ (simple weighted mean or gain matrix update)
 - 4. and start over with 1.

material effects (multiple scattering and energy loss)

- a Kalman Filter is a progressive way of performing a least square fit
 - ⇒ can be shown that it is mathematically equivalent

how does the filter work?

- ⇒ estimate starting parameters p_{0|0}
- → iterate over all hits 1..K:
- 1. take trajectory parameters **p**_{k-1|k-1} at point **k-1**
- 2. propagate to point k to get predicted parameters $p_{k|k-1}$
- 3. update predicted parameters with measurement m_k to obtain $p_{k|k}$ (simple weighted mean or gain matrix update)
- 4. and start over with 1.

material effects (multiple scattering and energy loss)

- \rightarrow incorporated in the propagated parameters $p_{k|k-1}$ (extrapolated prediction)
- \Rightarrow and therefore enters automatically in the updated parameters $p_{k|k}$ at point k

forward filter

→ in mathematical terms:

- forward filter
 - → in mathematical terms:
 - I. propagate p_{k-1} and its covariance C_{k-1} :

$$q_{k|k-1} = f_{k|k-1}(q_{k-1|k-1})$$
 $C_{k|k-1} = F_{k|k-1}C_{k-1|k-1}F_{k|k-1}^{T} + Q_k$
with $Q_k \sim \text{noise term (M.S.)}$

- forward filter
 - → in mathematical terms:
 - I. propagate p_{k-1} and its covariance C_{k-1} :

$$q_{k|k-1} = f_{k|k-1}(q_{k-1|k-1})$$
 $C_{k|k-1} = F_{k|k-1}C_{k-1|k-1}F_{k|k-1}^{T} + Q_k$
with $Q_k \sim \text{noise term (M.S.)}$

2. update prediction to get $q_{k|k}$ and $C_{k|k}$:

$$\mathbf{q}_{k|k} = \mathbf{q}_{k|k-1} + \mathbf{K}_k [\mathbf{m}_k - \mathbf{h}_k(\mathbf{q}_{k|k-1})]$$

$$\mathbf{C}_{k+1} = (\mathbf{I}_k \mathbf{K}_k \mathbf{H}_k) \mathbf{C}_{k+1}$$

$$\boldsymbol{C}_{k|k} = (\boldsymbol{I} - \boldsymbol{K}_k \boldsymbol{H}_k) \boldsymbol{C}_{k|k-1}$$

with $K_k \sim \text{gain matrix}$:

$$\boldsymbol{K}_{k} = \boldsymbol{C}_{k|k-1} \boldsymbol{H}_{k}^{\mathrm{T}} (\boldsymbol{G}_{k} + \boldsymbol{H}_{k} \boldsymbol{C}_{k|k-1} \boldsymbol{H}_{k}^{\mathrm{T}})^{-1}$$

- forward filter
 - → in mathematical terms:
 - I. propagate p_{k-1} and its covariance C_{k-1} :

$$q_{k|k-1} = f_{k|k-1}(q_{k-1|k-1})$$
 $C_{k|k-1} = F_{k|k-1}C_{k-1|k-1}F_{k|k-1}^{T} + Q_k$
with $Q_k \sim \text{noise term (M.S.)}$

2. update prediction to get $q_{k|k}$ and $C_{k|k}$:

$$\mathbf{q}_{k|k} = \mathbf{q}_{k|k-1} + \mathbf{K}_k [\mathbf{m}_k - \mathbf{h}_k (\mathbf{q}_{k|k-1})]$$
$$\mathbf{C}_{k|k} = (\mathbf{I} - \mathbf{K}_k \mathbf{H}_k) \mathbf{C}_{k|k-1}$$

with $K_k \sim \text{gain matrix}$:

$$\boldsymbol{K}_{k} = \boldsymbol{C}_{k|k-1} \boldsymbol{H}_{k}^{\mathrm{T}} (\boldsymbol{G}_{k} + \boldsymbol{H}_{k} \boldsymbol{C}_{k|k-1} \boldsymbol{H}_{k}^{\mathrm{T}})^{-1}$$

⇒ precise fit result q_k at end of fit

- forward filter
 - → in mathematical terms:
 - I. propagate p_{k-1} and its covariance C_{k-1} :

$$q_{k|k-1} = f_{k|k-1}(q_{k-1|k-1})$$
 $C_{k|k-1} = F_{k|k-1}C_{k-1|k-1}F_{k|k-1}^{T} + Q_k$
with $Q_k \sim \text{noise term (M.S.)}$

2. update prediction to get $q_{k|k}$ and $C_{k|k}$:

$$\mathbf{q}_{k|k} = \mathbf{q}_{k|k-1} + \mathbf{K}_k [\mathbf{m}_k - \mathbf{h}_k (\mathbf{q}_{k|k-1})]$$
$$\mathbf{C}_{k|k} = (\mathbf{I} - \mathbf{K}_k \mathbf{H}_k) \mathbf{C}_{k|k-1}$$

with $K_k \sim \text{gain matrix}$:

$$\boldsymbol{K}_{k} = \boldsymbol{C}_{k|k-1} \boldsymbol{H}_{k}^{\mathrm{T}} (\boldsymbol{G}_{k} + \boldsymbol{H}_{k} \boldsymbol{C}_{k|k-1} \boldsymbol{H}_{k}^{\mathrm{T}})^{-1}$$

- \rightarrow precise fit result q_k at end of fit
- a weighted mean to obtian pkk

- forward filter
 - → in mathematical terms:

I. propagate p_{k-1} and its covariance C_{k-1} :

$$q_{k|k-1} = f_{k|k-1}(q_{k-1|k-1})$$
 $C_{k|k-1} = F_{k|k-1}C_{k-1|k-1}F_{k|k-1}^{T} + Q_k$
with $Q_k \sim \text{noise term (M.S.)}$

2. update prediction to get $q_{k|k}$ and $C_{k|k}$:

$$\mathbf{q}_{k|k} = \mathbf{q}_{k|k-1} + \mathbf{K}_k [\mathbf{m}_k - \mathbf{h}_k(\mathbf{q}_{k|k-1})]$$
$$\mathbf{C}_{k|k} = (\mathbf{I} - \mathbf{K}_k \mathbf{H}_k) \mathbf{C}_{k|k-1}$$

with $K_k \sim \text{gain matrix}$:

$$\boldsymbol{K}_{k} = \boldsymbol{C}_{k|k-1} \boldsymbol{H}_{k}^{\mathrm{T}} (\boldsymbol{G}_{k} + \boldsymbol{H}_{k} \boldsymbol{C}_{k|k-1} \boldsymbol{H}_{k}^{\mathrm{T}})^{-1}$$

- ⇒ precise fit result q_k at end of fit
- •Kalman Smoother:
 - → provides full information along track
 - **→** equivalent: average forw./back. filter

→ Smoother in mathematical terms:

proceeds from layer k+1 to layer k:

$$q_{k|n} = q_{k|k} + A_k(q_{k+1|n} - q_{k+1|k})$$

$$C_{k|n} = C_{k|k} - A_k (C_{k+1|k} - C_{k+1|n}) A_k^{\mathrm{T}}$$

with $A_k \sim$ smoother gain matrix:

$$A_k = C_{k|k} F_{k+1|k}^{\mathrm{T}} (C_{k+1|k})^{-1}$$

Fitting for Electron Bremsstrahlung

- material in tracker
 - → e-Bremsstrahlung and γ-conversions
- electron efficiency limited
 - → momentum loss due to Bremsstrahlung leads to sudden large changes in track curvature
 - → loosing hits after Brem. leads to inefficiency
 - \Rightarrow fit either biased towards small momenta or fails completely because of bad χ^2

Fitting for Electron Bremsstrahlung

- material in tracker
 - → e-Bremsstrahlung and γ-conversions
- electron efficiency limited
 - → momentum loss due to Bremsstrahlung leads to sudden large changes in track curvature
 - → loosing hits after Brem. leads to inefficiency
 - ightharpoonup fit either biased towards small momenta or fails completely because of bad χ^2
- techniques to allow for
 Bremsstrahlung in track fitting
 - → for Least Square track fit
 - allow Brem. effect to change curvature, additional term similar is to scattering angle
 - → for Kalman Filter
 - increase correction for material effects in propagation to allow for Brem.
 - → better: Gaussian Sum Filter

 approximate Bethe-Heitler distribution as Gaussian mixture

- approximate Bethe-Heitler distribution as Gaussian mixture
 - → state vector after material correction becomes sum of Gaussian components
 - relative weights from Bethe-Heitler distribution
 - GSF step resembles set of parallel Kalman Filters
 - computationally expensive!

- approximate Bethe-Heitler distribution as Gaussian mixture
 - → state vector after material correction becomes sum of Gaussian components
 - relative weights from Bethe-Heitler distribution
 - GSF step resembles set of parallel Kalman Filters
 - computationally expensive!
 - → component reduction to avoid combinatorial explosion after several material layers
 - re-evaluate weights of components based on compatibility with hits
 - drop components with too low weights

- approximate Bethe-Heitler distribution as Gaussian mixture
 - ⇒ state vector after material correction becomes sum of Gaussian components
 - relative weights from Bethe-Heitler distribution
 - GSF step resembles set of parallel Kalman Filters
 - computationally expensive!
 - → component reduction to avoid combinatorial explosion after several material layers
 - re-evaluate weights of components based on compatibility with hits
 - drop components with too low weights
 - → GSF improves fit performance w.r.t. Kalman Filter

Deterministic Annealing Filters

robust technique

- → developed for fitting with high occupancies
 - e.g. ATLAS TRT with high event pileup
 - reconstruction of 3-prong τ decays
- ⇒ can deal with several close by hits on a layer

adaptive fit

→ multiply weight of each hit in layer with assignment probability:

$$p_{ik} = \frac{\exp\left(-\hat{d}_{ik}^2/T\right)}{\sum_{j=1}^{n_k} \exp\left(-\hat{d}_{jk}^2/T\right)}$$

Boltzman factor

with: $\hat{d_{ik}} = d_{ik}/\sigma_k$

normalised distance

Deterministic Annealing Filters

robust technique

- → developed for fitting with high occupancies
 - e.g. ATLAS TRT with high event pileup
 - reconstruction of 3-prong τ decays
- ⇒ can deal with several close by hits on a layer

adaptive fit

→ multiply weight of each hit in layer with assignment probability:

$$p_{ik} = \frac{\exp\left(-\hat{d}_{ik}^2/T\right)}{\sum_{j=1}^{n_k} \exp\left(-\hat{d}_{jk}^2/T\right)}$$

with: $\hat{d_{ik}} = d_{ik}/\sigma_k$

normalised distance

Boltzman factor

- → process decreasing temperature T is called annealing (iterative)
 - start at high T ~ all hits contribute same
 - at low T ~ close by hits remain

Deterministic Annealing Filters

robust technique

- → developed for fitting with high occupancies
 - e.g. ATLAS TRT with high event pileup
 - reconstruction of 3-prong τ decays
- ⇒ can deal with several close by hits on a layer

adaptive fit

→ multiply weight of each hit in layer with assignment probability:

$$p_{ik} = \frac{\exp\left(-\hat{d}_{ik}^2/T\right)}{\sum_{j=1}^{n_k} \exp\left(-\hat{d}_{jk}^2/T\right)}$$

with: $\hat{d_{ik}} = d_{ik}/\sigma_k$

normalised distance

Boltzman factor

- → process decreasing temperature T is called annealing (iterative)
 - start at high T ~ all hits contribute same
 - at low T ~ close by hits remain

Track Finding

Track Finding: Can you find the 50 GeV track?

Track Finding: Can you find the 50 GeV track?

Track Finding

the task of the track finding

- → identify **track candidates** in event
- cope with the combinatorial explosion of possible hit combinations

different techniques

- → rough distinction: local/sequential and global/parallel methods
- → local method: generate seeds and complete them to track candidates
- → global method: simultaneous clustering of detector hits into track candidates

some local methods

- → track road
- **→** track following
- → progressive track finding

some global methods

- → conformal mapping
 - Hough and Legendre transform
- → adaptive methods
 - Elastic Net, Cellular Automaton ... (will not discuss the latter)

Conformal Mapping

Hough transform

→ cycles through the origin in x-y transform into point in u-v

$$u = \frac{x}{x^2 + y^2}, \quad v = \frac{y}{x^2 + y^2}$$

$$\implies v = -\frac{x}{y}u + \frac{x^2 + y^2}{2y}$$

• each hit becomes a straight line

Conformal Mapping

Hough transform

→ cycles through the origin in x-y transform into point in u-v

$$u = \frac{x}{x^2 + y^2}, \quad v = \frac{y}{x^2 + y^2}$$

$$\implies v = -\frac{x}{y}u + \frac{x^2 + y^2}{2y}$$

- each hit becomes a straight line
- → search for maxima (histogram) in parameter space to find track candidates

Conformal Mapping

Hough transform

→ cycles through the origin in x-y transform into point in u-v

$$u = \frac{x}{x^2 + y^2}, \quad v = \frac{y}{x^2 + y^2}$$

$$\implies v = -\frac{x}{y}u + \frac{x^2 + y^2}{2y}$$

- each hit becomes a straight line
- ⇒ search for maxima (histogram) in parameter space to find track candidates

Legendre transform

- → used for track finding in drift tubes
- → drift radius is transformed into sine-curves in Legendre space
- → solves as well L-R ambiguity

Local Track Finding

Track Road algorithm

Local Track Finding

- Track Road algorithm
 - → find seeds ~ combinations of 2-3 hits

- Track Road algorithm
 - → find seeds ~ combinations of 2-3 hits
 - → build road along the likely trajectory

- Track Road algorithm
 - → find seeds ~ combinations of 2-3 hits
 - ⇒ build road along the likely trajectory
 - ⇒ select hits on layers to obtain candidates

- Track Road algorithm
 - → find seeds ~ combinations of 2-3 hits
 - → build road along the likely trajectory
 - ⇒ select hits on layers to obtain candidates
- Track Following

- Track Road algorithm
 - → find seeds ~ combinations of 2-3 hits
 - ⇒ build road along the likely trajectory
 - ⇒ select hits on layers to obtain candidates
- Track Following
 - → find seeds ~ combinations of 2-3 hits

Track Road algorithm

- → find seeds ~ combinations of 2-3 hits
- → build road along the likely trajectory
- → select hits on layers to obtain candidates

Track Following

- → find seeds ~ combinations of 2-3 hits
- ⇒ extrapolate **seed** along the likely trajectory

Track Road algorithm

- → find seeds ~ combinations of 2-3 hits
- ⇒ build road along the likely trajectory
- ⇒ select hits on layers to obtain candidates

Track Following

- → find seeds ~ combinations of 2-3 hits
- ⇒ extrapolate **seed** along the likely trajectory
- ⇒ select hits on layers to obtain candidates

- Track Road algorithm
 - → find seeds ~ combinations of 2-3 hits
 - ⇒ build road along the likely trajectory
 - ⇒ select hits on layers to obtain candidates
- Track Following
 - → find seeds ~ combinations of 2-3 hits
 - ⇒ extrapolate **seed** along the likely trajectory
 - ⇒ select hits on layers to obtain candidates
- Progressive Track Finder

Track Road algorithm

- → find seeds ~ combinations of 2-3 hits
- ⇒ build road along the likely trajectory
- ⇒ select hits on layers to obtain candidates

Track Following

- → find seeds ~ combinations of 2-3 hits
- ⇒ extrapolate **seed** along the likely trajectory
- ⇒ select hits on layers to obtain candidates

Progressive Track Finder

→ find seeds ~ combinations of 2-3 hits

Track Road algorithm

- → find seeds ~ combinations of 2-3 hits
- ⇒ build road along the likely trajectory
- ⇒ select hits on layers to obtain candidates

Track Following

- → find seeds ~ combinations of 2-3 hits
- ⇒ extrapolate **seed** along the likely trajectory
- ⇒ select hits on layers to obtain candidates

Progressive Track Finder

- → find seeds ~ combinations of 2-3 hits
- extrapolate seed to next layer, find best hit and update trajectory

Track Road algorithm

- → find seeds ~ combinations of 2-3 hits
- ⇒ build road along the likely trajectory
- ⇒ select hits on layers to obtain candidates

Track Following

- → find seeds ~ combinations of 2-3 hits
- → extrapolate seed along the likely trajectory
- ⇒ select hits on layers to obtain candidates

Progressive Track Finder

- → find seeds ~ combinations of 2-3 hits
- extrapolate seed to next layer, find best hit and update trajectory
- → repeat until last layers to obtain candidates

Track Road algorithm

- → find seeds ~ combinations of 2-3 hits
- ⇒ build road along the likely trajectory
- ⇒ select hits on layers to obtain candidates

Track Following

- → find seeds ~ combinations of 2-3 hits
- → extrapolate seed along the likely trajectory
- ⇒ select hits on layers to obtain candidates

Progressive Track Finder

- → find seeds ~ combinations of 2-3 hits
- extrapolate seed to next layer, find best hit and update trajectory
- → repeat until last layers to obtain candidates

Combinatorial Kalman Filter

Track Road algorithm

- → find seeds ~ combinations of 2-3 hits
- ⇒ build road along the likely trajectory
- ⇒ select hits on layers to obtain candidates

Track Following

- → find seeds ~ combinations of 2-3 hits
- → extrapolate seed along the likely trajectory
- ⇒ select hits on layers to obtain candidates

Progressive Track Finder

- → find seeds ~ combinations of 2-3 hits
- extrapolate seed to next layer, find best hit and update trajectory
- → repeat until last layers to obtain candidates

Combinatorial Kalman Filter

⇒ extension of a Progressive Track Finder for dense environments

Track Road algorithm

- → find seeds ~ combinations of 2-3 hits
- ⇒ build road along the likely trajectory
- ⇒ select hits on layers to obtain candidates

Track Following

- → find seeds ~ combinations of 2-3 hits
- → extrapolate seed along the likely trajectory
- ⇒ select hits on layers to obtain candidates

Progressive Track Finder

- → find seeds ~ combinations of 2-3 hits
- extrapolate seed to next layer, find best hit and update trajectory
- → repeat until last layers to obtain candidates

Combinatorial Kalman Filter

- ⇒ extension of a Progressive Track Finder for dense environments
- → full combinatorial exploration, follow all hits to find all possible track candidates

The ATLAS Track Reconstruction

Markus Elsing 3^o

... and in Practice?

- choice of reconstruction strategy depends on:
 - → detector technologies
 - → physics/performance requirements
 - → occupancy and backgrounds
 - → technical constraints (CPU, memory)
- even for same detector setup one looks at different types of events:
 - → test beam
 - **→** cosmics
 - → trigger (regional)
 - → offline (full scan)
- track reconstruction used by experiments
 - **→** usually apply a combination of different techniques
 - → often iterative ~ different strategies run one after the other to obtain best possible performance within resource constraints

pre-precessing

- → Pixel+SCT clustering
- → TRT drift circle formation
- → space points formation

pre-precessing

- → Pixel+SCT clustering
- → TRT drift circle formation
- → space points formation

combinatorial track finder

- → iterative:
 - 1. Pixel seeds
 - 2. Pixel+SCT seeds
 - 3. SCT seeds
- → restricted to roads
- bookkeeping to avoid duplicate candidates

ambiguity solution

- precise least square fit with full geometry
- selection of best silicon tracks using:
 - 1. hit content, holes
 - 2. number of shared hits
 - 3. fit quality...

extension into TRT

- progressive finder
- refit of track and selection

pre-precessing

- Pixel+SCT clustering
- TRT drift circle formation
- space points formation

combinatorial track finder

- iterative:
 - Pixel seeds
 - 2. Pixel+SCT seeds
 - 3. SCT seeds
- → restricted to roads
- bookkeeping to avoid duplicate candidates

→ unused TRT segments

ambiguity solution

- precise fit and selection
- TRT seeded tracks

TRT seeded finder

- from TRT into SCT+Pixels
- combinatorial finder

ambiguity solution

- → precise least square fit with full geometry
- ⇒ selection of best silicon tracks using:
 - 1. hit content, holes
 - 2. number of shared hits
 - 3. fit quality...

TRT segment finder

- on remaining drift circles
- → uses Hough transform

extension into TRT

- progressive finder
- refit of track and selection

vertexing

- primary vertexing
- → conversion and V0 search

standalone TRT

→ unused TRT segments

ambiguity solution

- → precise fit and selection
- → TRT seeded tracks

TRT seeded finder

- → from TRT into SCT+Pixels
- → combinatorial finder

pre-precessing

- → Pixel+SCT clustering
- → TRT drift circle formation
- → space points formation

combinatorial track finder

- → iterative:
 - 1. Pixel seeds
 - 2. Pixel+SCT seeds
 - 3. SCT seeds
- → restricted to roads
- → bookkeeping to avoid duplicate candidates

ambiguity solution

- precise least square fit with full geometry
- selection of best silicon tracks using:
 - 1. hit content, holes
 - 2. number of shared hits
 - 3. fit quality...

TRT segment finder

- → on remaining drift circles
- → uses Hough transform

progressive finder

refit of track and selection

extension into TRT

Markus Elsing

4

vertexing

- primary vertexing
- → conversion and V0 search

standalone TRT

→ unused TRT segments

ambiguity solution

- → precise fit and selection
- → TRT seeded tracks

TRT seeded finder

- → from TRT into SCT+Pixels
- → combinatorial finder

pre-precessing

- → Pixel+SCT clustering
- → TRT drift circle formation
- → space points formation

- → list of selected EM clusters
- ⇒ seed brem. recovery

combinatorial track finder

- → iterative:
 - 1. Pixel seeds
 - 2. Pixel+SCT seeds
 - 3. SCT seeds
- → restricted to roads
- bookkeeping to avoid duplicate candidates

ambiguity solution

- precise least square fit with full geometry
- selection of best silicon tracks using:
 - 1. hit content, holes
 - 2. number of shared hits
 - 3. fit quality...

TRT segment finder

- → on remaining drift circles
- → uses Hough transform

Markus Elsing

extension into TRT

- progressive finder
- refit of track and selection

- track finding is most time consuming reconstruction step
 - → avoid combinatorial overhead!
 - → iterative seeding approach:

- track finding is most time consuming reconstruction step
 - ⇒ avoid combinatorial overhead!
 - → iterative seeding approach:
 - restrict seeding for combinatorial Kalman Filter to set of layers

- track finding is most time consuming reconstruction step
 - ⇒ avoid combinatorial overhead!
 - → iterative seeding approach:
 - restrict seeding for combinatorial Kalman Filter to set of layers
 - find initial set of tracks

- track finding is most time consuming reconstruction step
 - ⇒ avoid combinatorial overhead!
 - → iterative seeding approach:
 - restrict seeding for combinatorial Kalman Filter to set of layers
 - find initial set of tracks
 - remove used hits from event

- track finding is most time consuming reconstruction step
 - ⇒ avoid combinatorial overhead!
 - → iterative seeding approach:
 - restrict seeding for combinatorial Kalman Filter to set of layers
 - find initial set of tracks
 - remove used hits from event
 - seed tracking from different set of layers to find more tracks
 - ... etc.

- track finding is most time consuming reconstruction step
 - ⇒ avoid combinatorial overhead!
 - → iterative seeding approach:
 - restrict seeding for combinatorial Kalman Filter to set of layers
 - find initial set of tracks
 - remove used hits from event
 - seed tracking from different set of layers to find more tracks
 - ... etc.
 - → optimal choice of iterative seeding strategy is matter of tuning
 - e.g. CMS did 7 iterations in Run-1

Tuning the Iterative Tracking Strategy

optimal seeding strategy depends on level of pileup (ATLAS)

→ fraction of seeds to give a good track candidate:

seed-triplets:	pileup	"PPP"	"PPS"	"PSS"	"SSS"
P = Pixel	0	57%	26%	29%	66%
S = Strips	40	17%	6%	5%	35%

hence start with SSS at 40 pileup!

Tuning the Iterative Tracking Strategy

optimal seeding strategy depends on level of pileup (ATLAS)

→ fraction of seeds to give a good track candidate:

seed-triplets:	pileup	"PPP"	"PPS"	"PSS"	"SSS"
P = Pixel	0	57%	26%	29%	66%
S = Strips	40	17%	6%	5%	35%

hence start with SSS at 40 pileup!

→ further increase good seed fraction using 4th hit

pileup	"PPP+1"	"PPS+1"	"PSS+I"	"SSS+I"
0	79%	53%	52%	86%
40	39%	8%	16%	70%

• takes benefit from new Insertable B-Layer (IBL)

Tuning the Iterative Tracking Strategy

optimal seeding strategy depends on level of pileup (ATLAS)

→ fraction of seeds to give a good track candidate:

seed-triplets:	pileup	"PPP"	"PPS"	"PSS"	"SSS"
P = Pixel	0	57%	26%	29%	66%
S = Strips	40	17%	6%	5%	35%

- hence start with SSS at 40 pileup!
- → further increase good seed fraction using 4th hit

pileup	"PPP+1"	"PPS+1"	"PSS+I"	"SSS+1"
0	79%	53%	52%	86%
40	39%	8%	16%	70%

• takes benefit from new Insertable B-Layer (IBL)

•final ATLAS Run-2 seeding strategy

⇒ significant speedup at 40 pileup (and 25 ns)

seeding	efficiency	CPU*
"Run-I"	94.0%	9.5 sec
"Run-2"	94.2%	4.7 sec

on local

Ambiguity Solution

- track selection cuts
 - → applied at every stage in reconstruction
 - ⇒ still more candidates than final tracks and too high rate of fakes
- task of ambiguity solution:
 - ⇒ select good tracks and reject fakes
- ordered iterative procedure
 - → in case of ATLAS:
 - precise fit with outlier removal
 - → construct quality function ("score") for each candidate:
 - 1. hit content, holes
 - 2. number of shared hits
 - 3. fit quality...
 - → candidate with best score wins
 - → if too many shared hits, create sub-track if track with remaining hits passes cuts

Tracking in dense Jets

problem of cluster merging

- → merging when track separation reaches single Pixel size
- → during track reconstruction shared clusters are penalised to reduce fakes and duplicate tracks

neural network (NN) Pixel clustering

→ identify merged clusters and splitting them

⇒ b-tagging (especially at high momenta)

→ jet calibration and particle flow

 \rightarrow 3-prong τ identification

Tracking with Electron Brem. Recovery

strategy for brem. recovery

- → restrict recovery to regions pointing to electromagnetic clusters (RoI)
- → pattern: allow for large energy loss in combinatorial Kalman filter
 - adjust noise term for electrons
- \rightarrow global- χ^2 fitter allows for brem. point
- → adapt ambiguity processing (etc.) to ensure e.g. b-tagging is not affected
- → use full fledged Gaussian-Sum Filter in electron identification code

tracking update deployed in 2012

- ⇒ improvements especially at low p_T (< 15 GeV)
 - limiting factor for H→ZZ*→4e
- → significant efficiency gain for Higgs discovery

Let's Summarise...

- discussed concepts for track reconstruction
- have overview of strategies and mathematical tools
- discussed an example of a track reconstruction package (ATLAS NewTracking)
- next is to talk about vertexing and its applications

Bonus Slides... LS-1 Tracking Upgrades

...so what did we do about this so far?

Tracking Developments towards Run-2

- ATLAS and CMS focus on technology and strategy to improve CURRENT algorithms
 - ⇒ improve software technology, including:
 - simplify EDM design to be less OO ("hip" 10 years ago)
 - ATLAS migrated to Eigen faster vector+matrix algebra (CMS was already using SMatrix)
 - vectorised trigonometric functions (CMS: VDT or ATLAS: intel math lib)
 - work on CPU hot spots
 (e.g. ATLAS replaced F90 by C++ for B-field service)
 - → tune reconstruction strategy (very similar in ATLAS and CMS):
 - optimise iterative track finding strategy for 40 pileup
 - ATLAS modified track seeding to explore 4th Pixel layer
 - CMS added cluster-shape filter against out-of-time pileup
- hence, mix of SIMD and algorithm tuning
 - → CMS made their tracking as well thread-safe

CPU for Reconstruction

- sum of tracking and general software improvements
 - → improved software technology, including:
 - tracking related improvements
 - new 64 bit compilers, new tcmalloc
 - → tune reconstruction strategy (very similar in ATLAS and CMS)
 - optimise track finding strategy for 40 pileup
 - faster versions of things like FastJet, ...
 - addressing other CPU hot spots in reconstruction

CPU for Reconstruction

- sum of tracking and general software improvements
 - → improved software technology, including:
 - tracking related improvements
 - new 64 bit compilers, new tcmalloc
 - → tune reconstruction strategy (very similar in ATLAS and CMS)
 - optimise track finding strategy for 40 pileup
 - faster versions of things like FastJet, ...
 - addressing other CPU hot spots in reconstruction

•huge gains achieved!

- → ATLAS reports overall factor > 4 in CPU time
 - touched >1000 packages for factor 5 in tracking
- → CMS reports overall factor > 2 in CPU time
 - on top of their 2011/12 improvements
 - as well dominated by tracking improvements
- → both experiments within 1 *kHz* Tier-0 budget
 - required to keep single lepton triggers

Technology Challenges

Moore's law is still alive

- → number of transistors still doubles every 2 years
 - no free lunch, clock speed no longer increasing
- → lots of transistors looking for something to do:
 - vector registers
 - out of order execution
 - hyper threading
 - multiple cores
- → many-core processors, including GPGPUs
 - lots of cores with less memory
- ⇒ increase theoretical performance of processors

challenge will be to adapt HEP software

- → hard to exploit theoretical processor performance
 - many of our algorithm strategies are sequential
- → need to parallelise applications (multi-threading) (GAUDI-HIVE and CMSSW multi-threading a step in this direction)
 - change memory model for objects, more vectorisation, ...

see G.Stewart, CHEP 2015

Massively parallel Tracking?

- ATLAS/CMS tracking strategy is for early rejection
 - → iterative tracking: avoid combinatorial overhead as much as possible!
 - early rejection requires strategic candidate processing and hit removal
 - → not a heavily parallel approach, it is a SEQUENTIAL approach!
- implications for making it massively parallel?
 - → Amdahl's law at work:

- ⇒ iterative tracking: small parallel part Para, heavy on sequential Seq
 - hence, if we want to gain by a large N threads, we need to reduce Seq
- hence we need to re-think the algorithmic strategy
 - → having concurrency in mind from the very start
 - ⇒ as well, look outside the box, e.g. explore using machine learning techniques

