

Markus Elsing

Offline Software and Tracking at the LHC

Developments in offline software and tracking, experience from Run-1, recent shutdown upgrade activities, as well as challenges ahead

- an ATLAS centric view -

Markus Elsing

Introduction: LHC

LHC is a high energy and high luminosity proton-proton collider

- → design centre-of-mass energy is 14 TeV and design luminosity is $\mathscr{L} = 10^{34} \text{ cm}^{-2}\text{s}^{-1}$
- ➡ first collider to reach energy regime of high energy cosmic rays (HECR)
- → expect ~23 p-p collisions at a bunch crossing frequency of 40 MHz (!)

• LHC is a unique machine

- → first collider to explore the physics at the TeV scale
- ➡ excellent sensitivity to rare (new physics) processes

expected production cross-sections

- → large inclusive *b*, *W*/*Z* and *top* production rates
 - LHC is a combined *b*-, *W*/*Z* and *top*-factory
- \rightarrow cross-section for jet and *W/Z* production orders of
 - magnitude larger than e.g. expected for Higgs
- total cross-section dominated by soft interactions

W.J. Stirling, private communication

Introduction: LHC Experiments

ATLAS and Track Reconstruction

general purpose detector

- optimised for rich
 p-p program at
 design luminosities
- ⇒ as well good performance for heavy ions

excellent calorimetry

two major tracking systems

- ➡ Inner Detector
- ➡ Muon Spectrometer

tracking used all across object reconstruction

- → leptons ($e/\mu/\tau$) and photons
- ➡ primary vertexing and flavour tagging
- pileup removal for jet and missing ET reconstruction

The early Times of LHC/ATLAS Software

project started during LEP era in '90s

- → Lol and TDRs done with infrastructure of the time
 - software in FORTRAN 77, CERNLIB incl. PAW, Geant3
 - general LINUX services at CERN started in 1997

huge challenges ahead

- ➡ LHC is a high energy and high luminosity machine
 - unprecedented trigger rates, event sizes, pileup
- → lots of questions to answer...
 - design the High Level Trigger systems ? (can it be done in software, even re-using offline code)
 - how to build up the software infrastructure ? (move to C++/OO, learn from BaBar and CDF/D0 Run-2 preparation)
 - a computing infrastructure matching the needs ? (building "the" LHC computing centre at CERN wasn't an option)
 - how to do high performance tracking at LHC pileup (and how to do this within the available computing resources)
- not to forget, LHC startup was supposed to be 2005

(well, it came different after all)

CERN computing

Markus Elsing

Outline of this Talk

- building up the software of the experiments
- ATLAS tracking software and its concepts
- early physics and experience from Run-1
- the Higgs discovery
 - ➡ the role of the offline software
- preparing for Run-2
 - ➡ first upgrades of the offline software
- future offline software challenges
- summary and outlook

Building up the Software of the Experiments

Markus Elsing

ROOT (Rene and Rdm OO Technology*)

project started 1995

- → by R.Brun and F.Rademacher (hence the name)
 - OO framework, having in mind the future LHC needs
 - as well, provided alternative to Objectivity/DB at the time
 - 1998 selected by Fermilab for Run-2 experiments
- → became "the standard" for HEP and LHC data analysis
 - used by Astrophysics, other sciences and fields
- core team at CERN, effort at FNAL and large community input

framework for interactive analysis

- → visualisation, math libraries, I/O
 - LHC data is based on ROOT persistency
- ➡ distribution includes suite of other tools
 - xrootd, TMVA, RooFit/RooStats, ...
- → total about 1.7 *million* lines of code
 - OpenHUB "estimated cost" is 27 M\$ https://www.openhub.net/p/ROOT/estimated_cost

16000

12000

Geant4 Collaboration started in 1999

- ➡ successor of Geant series toolkits developed at CERN
 - early studies at KEK and CERN resulted in RD44
 - OO simulation of passage of particles through matter
- ➡ today effort at many large laboratories: CERN, FNAL, SLAC, KEK, ESA/ESTEC, ...
- → detector simulation for CMS, LHCb, ATLAS, (ALICE), ...
- used by nuclear, accelerator and medical physics, as well as space science
- → about 2.1 *million* lines of code
 - OpenHUB "estimated cost" is 33 M\$ https://www.openhub.net/p/geant4/estimated_cost

equally important: event generators

- → Alpgen, Jimmy, Pythia6/8, Tauola(++), Sherpa, HepMC, Herwig(++), Photos, etc.
- → C++ and Fortran, about 1.4 *million* lines of code

Software of Experiments

• all developed their own OO frameworks

- → ORCA (CMS), AliRoot based on ROOT (Alice), GAUDI (LHCb)
- → ATLAS added its layer to GAUDI and called it ATHENA

CMS started 2005 CMSSW to replace ORCA

- → based on experience from FERMILAB experiments
 - huge effort, took >3 years
- → today a full CMSSW release has 7.5 *million* lines of code
 - OpenHUB "estimated cost" is 125 M\$

https://www.openhub.net/p/cms-sw-cmssw/estimated_cost

• framework itself is only a fraction of this

• software stacks of the experiments

- → applications implemented in framework
 - detector simulation, trigger, reconstruction, ...
- based on common software toolkits
 - development organised within LCG Application Area

ERN

Markus Elsing

Building the Offline Reconstruction

migration to C++ based reconstruction

- → existing FORTRAN algorithmic code often state of the art
 - new ideas from LEP experience, later BaBar and CDF/D0
- → lot of work (too much) went into OO design
 - "hip" at the time, today we have to back off again (see later)

new ideas to meet the LHC challenges

- → driver for innovation, lots of examples:
 - Deterministic Annealing Filters (Com.Phys.Com. 120 (1999) p.197)
 ~ tracking in ATLAS TRT at high pileup
 - STEP (J. Instr. 4 (2009) p.04001) ~ Runge-Kutta field integration for ATLAS+CMS muon tracking
 - JetFitter (J.Phys.Conf.Ser. 119 (2008) 032032) ~ novel secondary vertexing in jets for b-tagging
 - FastJet (hep-ph/0512210) ~ fast jet finding
 - Particle Flow (hep-ex/0810.3686) ~ reconstruction in CMS
- → later significant influx from CDF/D0, example:

• Jet-Vertex-Fraction (hep-ex/0612040) ~ pileup suppression

ATLAS Tracking Software and its Concepts

ATLAS Inner Detector

• optimised for 24 pileup events

Contraction radiation tracker End-cap semiconductor tracker

6.2m

• barrel track passes:

- → 3 Pixel layers 250 mm thick
- → 4x2 Si strips on stereo modules12 cm x 80 mm, 285 mm thick
- \Rightarrow ~36 TRT 4 mm straws

2.1m

Electron Identification in the ATLAS TRT

 \Rightarrow e/ π separation via transition radiation: polymer (PP) fibers/foils interleaved with drift tubes

ATLAS Muon Spectrometer

• a huge system

- → 4 different technologies (MDT,CSC,RPC,TGC)
- \rightarrow large area (10.000 m^2)
- ➡ many channels (1 M)

toroid field configuration

→ large magnetic field variations in toroid

Three or four drifttube layers

➡ field 4 *Tesla* near coils

optical alignment system

MDT station

Tracking Software Concepts

developing the tracking for LHC detectors

- → how to do high performance tracking at LHC pileup ?
 - and how to do this within the available resources ?
 - keeping in mind trigger and offline use-cases

• ATLAS has 2 tracking systems, 7 different detector technologies

- → reflected in high level software design
 - detector independent "Common Tracking" layer
 - detector specific layers building on it
- → base classes, interfaces, mathematical tools all in common tracking layer
 - e.g. event data model, extrapolation, fitters...

informal collaboration by CMS and ATLAS

- → R&D on fitting techniques (e.g. Deterministic Annealing Filters)
- → R&D on novel tracking geometries with embedded navigation (see later)

R&D on modern Runge-Kutta field integration techniques (Runge-Kutta-Nystrom with continuous energy loss and multiple scattering (STEP), J. Instr. 4 (2009) p.04001)

Markus Elsing

Iater series of LHC alignment workshops across all 4 experiments

The Extrapolation Package

parameter transport engine used in tracking software

- central tool for pattern recognition, track fitting, etc.
- parameter transport from surface to surface, including covariance
- encapsulates the track model, geometry and material corrections

main components

- modern Runge-Kutta propagators
- ➡ navigation system (see below)
- ➡ B-field map with caching
- ➡ geometry model (see below)
- material effects corrections

Full and Fast (Tracking) Geometries

complex G4 geometries not optimal for reconstruction

- → simplified tracking geometries
- ➡ material surfaces, field volumes

reduced number of volumes

- blending details of material onto simple surfaces/volumes
- ➡ surfaces with 2D material density maps, templates per Si sensor...

	G4	tracking
ALICE	4.3 M	same *1
ATLAS	4.8 M	10.2K *2
CMS	2.7 M	3.8K *2
LHCb	18.5 M	30

*1 ALICE uses full geometry (TGeo)
 *2 plus a surface per Si sensor

Embedded Geometry Navigation Scheme

embedded navigation scheme in tracking geometries

- ➡ G4 navigation uses voxelisation as generic navigation mechanism
- → embedded navigation for simplified models
 - used in pattern recognition, extrapolation, track fitting and fast simulation

• example: ATLAS

- → developed geometry of connected volumes
- boundary surfaces connect neighbouring volumes to predict next step

95	5
2.3	8.4
	95 2.3

Fast Track Simulation (Fatras)

convenient to construct fast track simulation

- → re-use extrapolation package to propagate each particle:
 - transport engine with navigation
 - geometry model
 - B-field map
- → add stack to keep track of all particles produced and stack manager
- → add set of physics processes describing interaction of particles with matter

ATLAS	G4	fast sim.
CPU tine	1990	7.4

artic

stack

0.9

0.85

0.8

0.75

Pions

-☆ p_=5 GeV FATRAS

- p₊=5 GeV Geant4

-⊖ p_=50 GeV FATRAS

-- p₋=50 GeV Geant4

0.5

Extrapolation Package

B-field

A.Salzburger

2.5 μl

1.5

pion efficiency

Strategy of NewTracking in ATLAS

Iterative Seeding Strategy finding hits associated to one track

• the track finding algorithm

- Find seed from combination of 3 hits oa earch using hough transform
 - → build road along the likely trajectory
 - → run combinatorial Kalman Filter for a seed
- full exploration of all possible candidates secupdate trajectory with hits at each layer
 - take material effects into account

• iterative seeding approach (Run-1)

- → seeds are worked on in an ordered list
- start with 3 Pixels, 2 Pixel+Strip, 3 Strips
- bookkeeping layer:
 hits from good candidates removed
- build next seed ONLY from left over hits
- → sequential seed finding to avoid combinatorial explosion (see later w.r.t. parallel tracking)
 - unlike in the animation, tracks are found for one-after-the-other
 - hence, the ordering matters !!! (especially sorting in p_T bins)

Expected Performance

excellent preparation before startup

- → more than 10 years of simulation and test beam
- ➡ cosmics data taking in 2008 and 2009

detailed simulation studies

- ➡ document expected performance in TDRs
- → few of the known critical items:
 - $\bullet\,$ material effects limit efficiency and resolution at low p_t
 - good (local) alignment for b-tagging
 - momentum scale and alignment "weak modes"
- ➡ focus for commissioning of tracking and vertexing

Weighing Detectors during Construction

huge effort in experiments

- put each individual detector part on balance and compare with model
- CMS and ATLAS measured weight of their tracker and its components
- correct the geometry implementation in simulation and reconstruction

CMS	estimated from simulation measurements	
active Pixels	2598 g	2455 g
full detector	6350 kg	6173 kg
ATLAS	estimated from measurements	simulation
Pixel package	201 kg	197 kg
SCT detector	672 ±15 kg	672 kg
TRT detector	2961 ±14 kg	2962 kg

example: ATLAS TRT measured before and after insertion of the SCT

	evolution of X_0 in tracker			
Date	$\begin{array}{l} \text{ATLAS} \\ \eta \approx 0 \end{array}$	$\eta pprox 1.7$	$\begin{array}{l} \text{CMS} \\ \eta \approx 0 \end{array}$	$\eta pprox 1.7$
1994 (Technical Proposals)	0.20	0.70	0.15	0.60
1997 (Technical Design Reports)	0.25	1.50	0.25	0.85
2006 (End of construction)	0.35	1.35	0.35	1.50

CERN

Early Physics and the Experience from Run-1

event displays of first collisions in 2009

Markus Elsing

900 GeV

First Data to Physics Results

• a success story all along...

- → detector, DAQ and trigger worked !
- ➡ excellent quality of first data
 - fast convergence of calibration and alignment procedures
 - much smoother than many expected
- → striking level of modelling by simulation
 - thanks to careful preparation work,
 e.g. excellent model of tracker material
 - helped a lot the fast production of physics results

• with luminosity increasing over the year 2010

- quality of data approaching design levels with series of reprocessings
- "re-discovered" the standard model

Markus

particles one-by-one

Run 1 Tracking Performance Modu in the first year we achieve excellent

control on alignment

→ local alignment, e.g. TRT wire plane offsets or Pixel bow

→ global weak mode and time variations corrections

Run 1 Tracking Performance

- tracking efficiency difficult to measure for hadrons
 - efficiency for entirely limited by material interactions

• muons are almost ideal MIPs

- → Z, J/ ψ and Y decays allow us to accurately measure the tracking efficiency
- ➡ measured efficiency >99.5% for all Run-1 conditions

excellent b-tagging performance

➡ working point: 70% b-efficiency for light rejection >100

The Higgs Discovery: the Role of the Offline Software

Markus Elsing

Situation in 2011

• Higgs searches in 2011 data

- both experiments saw "hints" for a light Higgs
 - about ~3σ each, ignoring "look elsewhere effect"
 - indications as well in TEVATRON data
- → low mass region at LHC
 - many decay modes accessible (γγ,ZZ,WW,ττ,bb)
 - γγ and ZZ yield excellent mass resolution (~1%)
- → detector performance crucial to all analyses (!)

• rapid increase in luminosity

- → pileup approaching design levels in 2011
 - mainly because of 50 ns operation
 - expectation was to exceed design level in 2012
- concerns about pileup robustness and performance of object reconstruction
 - experiments did intensive software development in preparation for 2012 data taking

Updates to Tracking

• CPU scales non-linear with pileup

- → combinatorial explosion
 - CMS ~50% in tracking

 (e/γ dominated by special tracking too)
 - ATLAS ~70% in tracking
- ➡ e.g. CMS gained factor 2-3 in CPU
 - optimisation of pattern for 30 pileup
 - as well technical optimisation (memory)
 - similar optimisation done in ATLAS

pileup robustness and performance

- ➡ improve track selections to control fakes
- ➡ more robust tracking cuts for object reconstruction
 - e.g., tracking for conversions in ATLAS optimised to improve pileup stability $(H \rightarrow \gamma \gamma)$

Updates to Vertexing and Jet/MET

primary vertexing

- → more robust selections and algorithm updates
- \implies still visible effects of vertex merging at high μ
- \Rightarrow Σp_T based vertex tagging less and less optimal (see MC)

tracking as a tool for pileup control

- → combining calorimeter and tracking information
 - CMS jets, $\not\!\!E_T$ and τ based on Particle Flow
 - ATLAS used vertexing for pileup jet tagging (JVF and variants of it)
- ➡ such techniques will be even more important in the future

Tracking with Electron Brem. Recovery

• strategy for brem. recovery

- ➡ restrict recovery to regions pointing to electromagnetic clusters (Rol)
- pattern: allow for large energy loss in combinatorial Kalman filter
 - adjust noise term for electrons
- \Rightarrow global- χ^2 fitter allows for brem. point
- adapt ambiguity processing (etc.) to ensure e.g. b-tagging is not affected
- → use full fledged Gaussian-Sum Filter in electron identification code

deployed before 2012

- → improvements especially at low p_T (< 15 GeV)
 - limiting factor for $H \rightarrow ZZ^* \rightarrow 4e$
- significant efficiency gain for Higgs discovery
 - similar techniques used in CMS

CERN Seminar July 4th, 2012: the Higgs

• fantastic success (!!!)

- software and computing had its share in it ...
- → full chain worked excellent:
 - from detector + trigger to
 - prompt calibration,
 - Tier-0 reconstruction,
 - GRID distribution and
 - fast distributed analysis !

Results are preliminary:

- 2012 data recorded until 2 weeks ago
- I nursher conditions in 2012 due to * x2 larger event pile-up
- new, improved analyses deployed for the first time

 $H \rightarrow \gamma\gamma$ and $H \rightarrow 41$: high-sensitivity at low-m_H; high mass-resolution; pile-up robust \Box analyses improved to increase sensitivity \rightarrow new results from 2011 data \Box all the data recorded so far in 2012 have been analyzed \rightarrow results are presented here for the first time

Other low-mass channels: $H \rightarrow WW^{(*)} \rightarrow IvIv$, $H \rightarrow \tau\tau$, $W/ZH \rightarrow W/Z$ bb:

- \Box E_T^{miss} in final state \rightarrow less robust to pile-up
- worse mass resolution, no signal "peak" in some cases
- complex mixture of backgrou
- understanding of the detected
 advanced, but results not yet
- \rightarrow 2011 results used here for the

ATLAS: Status of SM Higgs searches, 4/7/2

3

Preparing for Run-2: First Upgrades of the Offline Software

Markus Elsing

Run-2 has already started !

• LHC beam is back !

→ machine ready for 13 *TeV* operations

• Run-2 until 2018

- → expect $L_{int} \sim 120 \, fb^{-1}$ with $L_{peak} \sim 1.7*10^{34} \, cm^{-2} s^{-1}$
 - need to be prepared for event pileup of 40
- ➡ about factor > ~2 in interesting cross sections
 - expect twice trigger rates for same thresholds

substantial discovery potential for high-mass objects running at 13 TeV

- → already with 1 *fb*⁻¹ and m(system) > ~2 *TeV*
- \rightarrow across all searches for ~ 10 *fb*⁻¹

• continue to explore the rich LHC

physics program

➡ Higgs, top, Standard Model, b-physics, ...

Markus Elsing

Pixel Upgrades for Run-2

aim is to mitigate effects of Run-2/3 pileup

- → ATLAS: IBL ready 2015, CMS: new 4 layer Pixels for 2017
- → both experiments add low mass Pixel layer close to beam
 - improves impact parameter resolution
- ➡ additional hit to reduce fakes and/or improve efficiency
 - and use 4th layer in seeding to reduce CPU

significant improvements on b-tagging

➡ at 50 pileup both experiments recover b-tagging performance like without pileup, or even improve upon it

Computing Constraints for Run-2

• unlike Run-1, computing resources will be limited !

- → assumption is a constant computing budget
- ➡ interplay of technology advancement, market price and needed replacements

motivation for LS1 software upgrades

- ➡ ensure that Tier-0 can process 1 *kHz* trigger rate
- → optimise disk usage (e.g. ATLAS new Analysis Model)
- biggest problem will be disk !

ATLAS New Analysis Model for Run-2

• several issues with Run-1 model

- → analysis ntuples duplicate AOD (disk !)
- ➡ production of ntuples costly (time !)
- → analysers develop in ROOT (compatibility!)

"small" revolution for ATLAS

- ➡ new format (xAOD) readable in ROOT
 - branch-wise reading at ROOT speed
 - object decoration with user data
- ➡ centrally produce skims for analysers
 - train production model
 - smart slimming of xAOD objects
- ➡ analysis tools transparently usable in ROOT and ATHENA
 - ROOT based and ATHENA based analysis software releases

changes for other experiments are less extreme

similar pressure to reduce resource needs

Tracking Developments towards Run-2

- ATLAS and CMS focus on technology and strategy to improve CURRENT algorithms
 - → improve software technology, including:
 - simplify EDM design to be less OO ("hip" 10 years ago)
 - ATLAS migrated to Eigen faster vector+matrix algebra (CMS was already using SMatrix)
 - vectorised trigonometric functions (CMS: VDT or ATLAS: intel math lib)
 - work on CPU hot spots
 (e.g. ATLAS replaced F90 by C++ for B-field service)
 - → tune reconstruction strategy (very similar in ATLAS and CMS):
 - optimise iterative track finding strategy for 40 pileup
 - ATLAS modified track seeding to explore 4th Pixel layer
 - CMS added cluster-shape filter against out-of-time pileup

hence, mix of SIMD and algorithm tuning

CMS made their tracking as well thread-safe

Tuning the Tracking Strategy

- optimal seeding strategy depends on level of pileup (ATLAS)
 - → fraction of seeds to give a good track candidate:

seed-triplets	pileup	"PPP"	"PPS"	"PSS"	"SSS"
P = Pixel	0	57%	26%	29%	66%
S = Strips	40	17%	6%	5%	35%

• hence start with SSS at 40 pileup !

➡ further increase good seed fraction using 4th hit

pileup	"PPP+1"	"PPS+I"	"PSS+I"	"SSS+1"
0	79%	53%	52%	86%
40	39%	8%	16%	70%

• takes benefit from new Insertable B-Layer (IBL)

final ATLAS Run-2 seeding strategy

→ significant speedup at 40 pileup (and 25 *ns*)

seeding	efficiency	CPU*	*on local
"Run-I"	94.0%	9.5 sec	machine
"Run-2"	94.2%	4.7 sec	Mauluus Elsi

CPU for Reconstruction

sum of tracking and general software improvements

- → improved software technology, including:
 - tracking related improvements
 - new 64 bit compilers, new tcmalloc
- → tune reconstruction strategy (very similar in ATLAS and CMS)
 - optimise track finding strategy for 40 pileup
 - faster versions of things like FastJet, ...
 - addressing other CPU hot spots in reconstruction

• huge gains achieved !

- → ATLAS reports overall factor > 4 in CPU time
 - touched >1000 packages for factor 5 in tracking
- → CMS reports overall factor > 2 in CPU time
 - on top of their 2011/12 improvements
 - as well dominated by tracking improvements
- \rightarrow both experiments within 1 *kHz* Tier-0 budget
 - required to keep single lepton triggers

Tracking in dense Jets

problem of cluster merging

- merging when track separation reaches single Pixel size
- → during track reconstruction shared clusters are penalised to reduce fakes and duplicate tracks

artificial neural network (NN)

- → identify merged clusters and splitting them
- → during Run-I these were duplicated
 - though with different cluster positions
- → performance in these environments was known to be suboptimal

• crucial in many areas:

- → b-tagging (especially at high momenta)
- → jet calibration and particle flow
- \rightarrow 3-prong τ identification

merged **Pixel clusters** Markus Elsing

residual before and after splitting ····· CCA Clustering ATLAS Simulation NN Clustering

0.06

Run-2 Tracking in dense Jets

new strategy delays NN cluster splitting

- → pattern runs with merged clusters to find all candidates
- split clusters in ambiguity solution using tracks
 - more information used to improve splitting performance
- → improve logic to allow sharing (un-"splitable") clusters

• significant improvement at high-p_T

- ➡ tau 3-prong inefficiency halved
- b-tagging efficiency doubled

(CMS uses new splitting in clustering for Run-2)

Software for Detector Upgrades

Markus Elsing

LHC Upgrade Physics Goals

• Higgs couplings and properties

- → few % on couplings possible with 3000(350) pb⁻¹
- → new channels opening up (e.g. $H \rightarrow \mu\mu$)
- ➡ measure *ttH* and 30% on Higgs self coupling

study vector boson scattering

- → Higgs restores unitarity in VV scattering around 1 TeV
- extend reach for new physics searches
 - ➡ e.g. for 3rd generation squarks and gauginos

• LHCb physics reach with 50 fb⁻¹

- \rightarrow unique for new physics searches in B_s system
 - precision measurement of $B_{(s)} \rightarrow \mu \mu$
 - few % in CP violating ϕ_s from $B_s \rightarrow \phi \phi$
 - CP violation in $B_s \rightarrow J/\Psi \varphi$
- → unprecedented charm yields
 - search for CP violation in charm decays

Markus Elsing

LHC Upgrade Program

Phase-1 upgrades (2018→)

- → LHCb and ALICE trigger-less readout
- \rightarrow CMS and ATLAS ready for 350 fb⁻¹
- Phase-2 upgrades (2023→)
 - → HL-LHC upgrades for CMS and ATLAS for 3000 *fb*⁻¹

software plays key role in this program

- → physics prospects, detector design, TDRs...
- → preparing offline and trigger for detector upgrades itself

LHCb Detector Upgrades in LS2

ALICE Upgrades during LS2

LLT Trigger Scheme

with full reconstruction

Muons

➡ MWPC

➡ PMTs (reduce PMT gain replace readout)

(almost compatible)

Calorimeter

TPC: replace wire chamber

New Muon Forward Tracker Measure u IP

Replace Muons F

with GEM chambers

➡ up to 40 MHz into HLT

➡ output 20KHz

RICH 1

➡ HPD

• Study Quark Gluon Plasma with Pb-Pb collisions : $6 \times 10^{27} \text{ Hz/cm}^2 \rightarrow 10 \text{ nb}^{-1}$ Increase DAQ acquisition rate (current 5 kHz) to register all interactions ≥ 50 kHz

Outer Tracker

(replace readout)

straw tubes

VELO

➡ Si strips (replace a

Replace Internal Tracking System

Replace FE and RO o TOF/PHOS/TRD

Very forward FM + Hadror

Calorimeter? → Access very small x v

→ Improve IP resolution to measure

meson and baryon down to P, ~ 0

option:

⇒ Si strips

(replace all)

Fiber Tracker to

replace Inner (Si)

Silicon Trackers

and Outer Tracker

Hardware based Tracking ?

• current ATLAS trigger chain

- → Level-1: hardware based (~50 kHz)
- ➡ Level-2: software based with regional access to full granularity data (~5 kHz)
- → Event Filter: software trigger (~500 Hz)

• ATLAS installs FTK during Run-2

- ➡ hardware track reconstruction for Level-2 Trigger
 - associative memory (AM) chips to find patterns
 - FPGA based track parameter estimation
 - "Hit Worrier" (HW) to remove fakes
- → slice installed for 2015, full coverage in 2016
 - will replace software based Level-2 tracking in ATLAS
- \rightarrow full event track reconstruction at latency of ~ 100 μ s
 - fast track confirmation of Level-1 triggers
 - particle flow like tau tagging
 - fast b-jet tagging

ERN

- $\bullet\,$ pileup corrections for jets and missing E_T
- excellent performance for Level-2 purposes
 - track efficiency is 90-95% w.r.t. offline
 - track refit using full fitter recovers offline resolution

Markus Elsing

enters

here

Inner Tracker Upgrades for HL-LHC

CMS Inner Tracker

r [mm]

1000

800

600

Strips

Strips and z

- → Strip tracker replacement
 - several layouts under consideration
 - short strips in $R\phi$, macro-pixels in z
- \rightarrow Level-1 track trigger with high p_T stubs
 - correlate 2 sensors, threshold ~ 2 GeV
 - pattern in FPGA or AM chips, FPGA fit
- \rightarrow Pixels: extend η coverage to 4 (!)

• ATLAS Inner Tracker

Software and Manpower

software follows a natural life cycle

- building up the software for an experiment
- start of operations and data taking
- data analysis and detector upgrades

loss of software manpower in ATLAS/CMS

- (mostly) students and postdocs moved on to do physics
 - same trend like in previous experiments
- → like CDF/D0 Run-2, LHC upgrade program is ambitious
 - need to find sufficient manpower to develop the software for the upgrade

BaBar

Jan2005

Future Offline Software Challenges

the million dollar question: how to process HL-LHC events

Markus Elsing

Future Computing Needs

• increase in raw data samples

- ➡ driven by ALICE trigger-less readout
 - mostly for their online disk buffer
- ➡ ATLAS and CMS increase of trigger rate and event size (pileup)

• total disk needs scales with raw

- current models are above constant budget, hence need:
 - smaller data formats
 - new analysis models
 - use more tape (cheaper, continues to scale)
 - less replicas (use growing network bandwidth)

• CPU needs less certain

- → best estimates are factors above budget
 - based on current applications and models

Processor Technology

Moore's law is still alive

- ➡ number of transistors still doubles every 2 years
 - no free lunch, clock speed no longer increasing
- → lots of transistors looking for something to do:
 - vector registers
 - out of order execution
 - hyper threading
 - multiple cores
- ➡ increase theoretical performance of processors
 - hard to achieve this performance with HEP applications

• many-core processors, including GPGPUs

- ⇒ e.g. Intel Xeon Phi, Nvidia Tesla
- → lots of cores with less memory
 - same for ARM or ATOM based systems
- ➡ challenge will be to adapt HEP software
 - need to parallelise applications (multi-threading)
 - (GAUDI-HIVE and CMSSW multi-threading a step in this direction)
 - change memory model for objects, more vectorisation, ...

Massively parallel Tracking ?

- ATLAS/CMS tracking strategy is for early rejection
 - → iterative tracking: avoid combinatorial overhead as much as possible !
 - early rejection requires strategic candidate processing and hit removal
 - ➡ not a heavily parallel approach, it is a SEQUENTIAL approach !

• implications for making it massively parallel ?

→ Armdahl's law at work:

- ➡ iterative tracking: small parallel part Para, heavy on sequential Seq
 - hence, if we want to gain by a large N threads, we need to reduce Seq

CMS study: run combinatorial filter in parallel for seeds

- ➡ find compromise on early rejection, but still limit combinatorial overhead
 - as a result, one spends somewhat more CPU, main gain is in memory

promising if one uses additional processing power that otherwise would not be usable (many core processors) or if latency is the main issue (trigger)

Tracking Algorithms for High Pileup

• alternative tracking techniques for parallelisation ?

CMS investigated using Hough Transforms, limited by multiple scattering

• tracking according to physics needs ?

- → idea: run different tracking inside/outside Region-of-Interest
 - best possible tracking for signal event or region
 - faster, approximate tracking on pileup and underlying event (extreme: truth guided tracking on MC to avoid pattern overhead)
- → experiments already started doing this in Run-1!
 - CMS runs tracking passes to recover efficiency for muons
 - ATLAS runs brem. recovery for tracks pointing to EM clusters
- ➡ and for Run-2
 - ATLAS regional tracking for photon conversions
 - both experiments have dedicated tracking in jets

need more R&D on future algorithms

Markus Elsing

Detector Simulation

- simulation limited by CPU
 - → avoid MC limiting physics precision
 - → need to increase GRID "MC luminosity"
- major software technology developments in simulation
 - Geant 4.10 introduces multi-threading support
 - → Geant V redesign to explore vectorisation
- ATLAS Integrated Simulation Framework (ISF)
 - mixes fast and full sim. in one event
 - spend time on important event aspects
 - ➡ towards complete fast software chain
 - avoid digit. and reco. bottleneck

ERN

• directly produce analysis formats (disk)

ATLAS Level-2 GPU Tracking Prototype

as an example for a complete tracking chain on GPUs

- ➡ from raw to tracks
- currently many such R&D activities in CMS and ATLAS

thread 0

Pixel clusterization on GPU

- Two new algorithms for parallel execution:
 - for algorithm = fast AND operation for symmetrical

GPU-based track finding

 Algorithmic workflow inspired by SiTrack:

eveloped

The algorithm with cluster size control: J. Howard

GPU-based data preparation

Siven cluster size limit L the algorithm calculates the L-th power of the hit adjacency matrix A(lement $A^{L}(i, j)$ gives the number of walks of ength L from hit i to hit jcasically, if $A^{L}(i, j) \neq 0$ the two hits belongs to the same cluster and the cluster diameter does not exceed L

Aatrix multiplication can be done very efficiently on GPUs. In addition, this algorithm benefits rom all the matrix products being Boolean – bitvise AND is used instead of actual multiplication eam decoding: ections of hits eader, trailer, actual coding are done in orking on global output

input 1D array

output SoA

word word

- significant speedup compared to running same chain on CPU
- CUDA vs openCL, development and maintenance cost ?

Markus Elsing

HEP Software Foundation

recent workshop, see as well CHEP

initiative to raise profile of HEP software projects

- building upon existing and previous initiatives
 - hepfroge.org
 - Concurrency Forum
 - (less known) US HEP Forum for Computational Excellence
 - previous LCG Application Area
- → as well, existing HEP SW projects
 - Geant4, Root, ...
- ➡ hopefully as well GRID software

foundation as a bottom-up approach

- ➡ invite participation in projects across experiments and collaboration beyond HEP
- → hope to achieve synergies and bundle expertise on crucial technology developments
- → may host tracking (reconstruction) algorithm forum to foster collaboration

Common Algorithmic Software ?

examples for common algorithmic software

- → FastJet de-facto standard for jet finding, distribution as part of LCG externals
- → TMVA, RooFit/RooStat, HistFitter, BAT statistics and multivariate analysis
- → AIDA tracking primarily targeting ILC / FCC
- → genfit an implementation of standard track fitting techniques (Belle-II)
- → CMS vertexing suite package of standard vertexing codes (CMS, Belle-II,...)
- → VDT, SMatrix, Eigen vector algebra and math libs

• a real integrated common tracking implementation ?

- → AIDA is the one aiming at this ...
- ➡ integration means picking a data model
 - determines Jacobians in math formulars
- ➡ integration means framework interfaces
- ➡ best physics performance ?
 - pattern strategy depends on experiment
- ➡ manpower on AIDA vs (e.g.) CMS/ATLAS ?
- ➡ discussion in ATLAS:

 make tracking/vertexing suite public ? (for FCC)

Building a "Forum" and a Community ?

some obvious observations:

- → we need to make workshops like Connecting the Dots more regular
 - yearly like BOOST workshops ? every 18 months like CHEP and ACAT ?
- → we need to think about dedicated schools to teach algorithms to students
 - we need to invest in future experts (and give them career perspectives)
- → do we need some more regular forum alongside the Concurrency Forum ?
 - need will grow once we have more common developments to discuss
 - how often shall we do such a meeting initially ?

• focus on exchange of ideas, techniques, best practices ... ?

- ➡ at Connecting the Dots meeting, not much enthusiasm across all experiments (but maybe FCC) to migrate to something like a common algorithm stack
- ➡ common software projects may grow naturally out of needs we may identify

• created as well a generic HSF mailing list:

http://hepsoftwarefoundation.org/content/reconstruction-algorithms-forum

to be used to bring together initiatives like Connecting the Dots for tracking and the communities working on boosted object reconstruction and alike

Summary

building the LHC software and tracking

- → took almost a decade to master the challenge
- ➡ resulted in sophisticated software stags for the experiments
 - including highly optimised track reconstruction

excellent performance during Run-1

- ➡ full benefit from careful preparation
- ➡ good quality data and description in simulation
 - highly instrumental to fully explore physics reach, including the role of software in the Higgs discovery

shutdown preparations for Run-2

- even higher pileup and limited computing resources
- ➡ first round of software upgrades to mitigate effects

many more challenges ahead

- ➡ Phase-1 and Phase-2 detector upgrades
- ➡ IT technologies are changing dramatically

CERN