

Markus Elsing

Offline Software and Tracking at the LHC

Developments in offline software and tracking, experience from Run-1, recent shutdown upgrade activities, as well as challenges ahead

Markus Elsing

Introduction: LHC

• LHC is a high energy and high luminosity proton-proton collider

- ➡ design centre-of-mass energy is *14 TeV* and design luminosity is $\mathscr{L} = 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- **■** first collider to reach energy regime of high energy cosmic rays (HECR)
- \rightarrow expect \sim 23 *p-p* collisions at a bunch crossing frequency of 40 *MHz* (!)

• LHC is a unique machine

- ➡ frst collider to explore the physics at the *TeV* scale
- **excellent sensitivity to rare (new physics) processes**

• expected production cross-sections

- ➡ large inclusive *b*, *W/Z* and *top* production rates
	- LHC is a combined *b*-, *W/Z* and *top*-factory
- ➡ cross-section for jet and *W/Z* production orders of
	- magnitude larger than e.g. expected for Higgs
- **■** total cross-section dominated by soft interactions

Introduction: LHC Experiments

ATLAS and Track Reconstruction

• general purpose detector

- ➡ optimised for rich *p-p* program at design luminosities
- ➡ as well good performance for heavy ions

• excellent calorimetry

•two major tracking systems

- **➡ Inner Detector**
- **Muon Spectrometer**

• tracking used all across object reconstruction

Marrakech: Andi, Andreas, Daniel, me, Heather

- \rightarrow leptons ($e/\mu/\tau$) and photons
- ➡ primary vertexing and favour tagging
- **→ pileup removal for jet and missing ET reconstruction**

The early Times of LHC/ATLAS Software 0 1988 1989 1990 1991 1992 1993 1994

• project started during LEP era in '90s

- ➡ LoI and TDRs done with infrastructure of the time
	- software in FORTRAN 77, CERNLIB incl. PAW, Geant3
	- general LINUX services at CERN started in 1997

• huge challenges ahead

- \rightarrow LHC is a high energy and high luminosity machine $\qquad \qquad$ 1988 1990 1992 1992
	- unprecedented trigger rates, event sizes, pileup
- \rightarrow lots of questions to answer...
	- design the High Level Trigger systems ? (can it be done in software, even re-using offline code)
	- how to build up the software infrastructure? (move to C++/OO, learn from BaBar and CDF/D0 Run-2 preparation)
	- a computing infrastructure matching the needs? (building "the" LHC computing centre at CERN wasn't an option)
	- how to do high performance tracking at LHC pileup (and how to do this within the available computing resources)
- **→** not to forget, LHC startup was supposed to be 2005

(well, it came different after all)

Outline of this Talk

- •building up the software of the experiments
- •ATLAS tracking software and its concepts
- early physics and experience from Run-1
- the Higgs discovery
	- → the role of the offline software
- preparing for Run-2
	- **first upgrades of the offline software**
- **future offline software challenges**
- •summary and outlook

Building up the Software of the Experiments

ROOT (Rene and Rdm OOTechnology*)

•project started 1995

- **→ by R.Brun and F.Rademacher (hence the name)**
	- OO framework, having in mind the future LHC needs
	- as well, provided alternative to Objectivity/DB at the time
	- 1998 selected by Fermilab for Run-2 experiments
- **→** became "the standard" for HEP and LHC data analysis
	- used by Astrophysics, other sciences and felds
- → core team at CERN, effort at FNAL and large community input

• framework for interactive analysis

- ➡ visualisation, math libraries, I/O
	- LHC data is based on ROOT persistency
- **→ distribution includes suite of other tools**
	- xrootd, TMVA, RooFit/RooStats, ...
- ➡ total about 1.7 *million* lines of code
	- OpenHUB "estimated cost" is 27 M\$ https://www.openhub.net/p/ROOT/estimated_cost

•Geant4 Collaboration started in 1999

- **successor of Geant series toolkits developed at CERN**
	- early studies at KEK and CERN resulted in RD44
	- OO simulation of passage of particles through matter
- today effort at many large laboratories: CERN, FNAL, SLAC, KEK, ESA/ESTEC, ...
- **→ detector simulation for CMS, LHCb, ATLAS, (ALICE), ...**
- \rightarrow used by nuclear, accelerator and medical physics, \rightarrow as well as space science
- ➡ about 2.1 *million* lines of code
	- OpenHUB "estimated cost" is 33 M\$

https://www.openhub.net/p/geant4/estimated_cost

• equally important: event generators

- ➡ Alpgen, Jimmy, Pythia6/8, Tauola(++), Sherpa, HepMC, Herwig(++), Photos, etc.
- ➡ C++ and Fortran, about 1.4 *million* lines of code

Software of Experiments

• all developed their own OO frameworks

- **→ ORCA (CMS), AliRoot based on ROOT (Alice), GAUDI (LHCb)**
- **ATLAS added its layer to GAUDI and called it ATHENA**

•CMS started 2005 CMSSW to replace ORCA

- **→ based on experience from FERMILAB experiments**
	- huge effort, took > 3 years
- ➡ today a full CMSSW release has 7.5 *million* lines of code
	- OpenHUB "estimated cost" is 125 M\$

https://www.openhub.net/p/cms-sw-cmssw/estimated_cost

• framework itself is only a fraction of this

• software stacks of the experiments

- ➡ applications implemented in framework
	- detector simulation, trigger, reconstruction, ...
- **→ based on common software toolkits**
	- development organised within LCG Application Area

ERN

Markus Elsing

Building the Offline Reconstruction Noise Method

• migration to C++ based reconstruction

- **existing FORTRAN algorithmic code often state of the art**
	- new ideas from LEP experience, later BaBar and CDF/D0
- lot of work (too much) went into OO design
	- "hip" at the time, today we have to back off again (see later)

• new ideas to meet the LHC challenges

- **→ driver for innovation, lots of examples:**
	- Deterministic Annealing Filters (Com.Phys.Com. 120 (1999) p.197) \sim tracking in ATLAS TRT at high pileup
	- STEP (J. Instr. 4 (2009) p.04001) ~ Runge-Kutta field integration for ATLAS+CMS muon tracking
	- JetFitter (J.Phys.Conf.Ser. 119 (2008) 032032) \sim novel secondary vertexing in jets for b-tagging
	- FastJet (hep-ph/0512210) \sim fast jet finding
	- Particle Flow (hep-ex/0810.3686) ~ reconstruction in CMS
- **→ later significant influx from CDF/D0, example:**

ATLAS Tracking Software and its Concepts

ATLAS Inner Detector

• optimised for 24 pileup events

 $6.2m$

•barrel track passes:

- 3 Pixel layers 250 *mm* thick
	- **→ 4x2 Si strips on stereo** modules12 *cm* x 80 *mm*, 285 *mm* thick
	- ➡ ~36 TRT 4 *mm* straws

Electron Identifcation in the ATLAS TRT

 \rightarrow e/π separation via transition radiation: polymer (PP) fibers/foils interleaved with drift tubes

ATLAS Muon Spectrometer

• a huge system

- ➡ 4 different technologies (MDT,CSC,RPC,TGC)
- ➡ large area (10.000 *m2*)
- \rightarrow many channels (1 M)

• toroid field configuration

■ large magnetic field variations in toroid

Three of four drift. tube lavers

➡ feld 4 *Tesla* near coils

• optical alignment system

MDT station

Tracking Software Concepts

• developing the tracking for LHC detectors

• how to do high performance tracking at LHC pileup? ATLAS Atlantis cosmics

- how to do high performance tracking at LHC pileup? \mathbf{H} 2 X (m)
	- and how to do this within the available resources?
	- keeping in mind trigger and offline use-cases

•ATLAS has 2 tracking systems, 7 different detector technologies

- \rightarrow reflected in high level software design
	- detector independent "Common Tracking" layer
	- · detector specific layers building on it
- **→ base classes, interfaces, mathematical tools all** in common tracking layer
	- e.g. event data model, extrapolation, ftters...

•informal collaboration by CMS and ATLAS geometry event data

- R&D on fitting techniques (e.g. Deterministic Annealing Filters)
- **→ R&D on novel tracking geometries with embedded navigation (see later)**

R&D on modern Runge-Kutta field integration techniques (Runge-Kutta-Nystrom with continuous energy loss and multiple scattering (STEP), J. Instr. 4 (2009) p.04001) **→ later series of LHC alignment workshops across all 4 experiments**

Geom.

model

Trigger **Constanting Constanting Constanti**

Common Tracking

base \parallel base \parallel Extrap. \parallel Fitter \parallel Vertexing \parallel Align.

EDM base

2 (m) Y 0 -2 (m) Y 0 -2

Interfaces

The Extrapolation Package

•parameter transport engine used in tracking software

- ➡ central tool for pattern recognition, track ftting, etc.
- ➡ parameter transport from **surface to surface**, including covariance
- \rightarrow encapsulates the track model, geometry and material corrections

• main components

- ➡ modern Runge-Kutta propagators
- **navigation system (see below)**
- \rightarrow B-field map with caching
- ➡ geometry model (see below)
- **→ material effects corrections**

Full and Fast (Tracking) Geometries

• complex G4 geometries not optimal for reconstruction

- ➡ simplifed **tracking geometries**
- **■** material surfaces, field volumes

• reduced number of volumes

- blending details of material onto simple surfaces/volumes
- ➡ surfaces with 2D material density maps, templates per Si sensor...

*1 ALICE uses full geometry (TGeo) *2 plus a surface per Si sensor

Embedded Geometry Navigation Scheme

• embedded navigation scheme in tracking geometries

- **G4 navigation uses voxelisation as generic** navigation mechanism
- ➡ **embedded navigation** for simplifed models
	- used in pattern recognition, extrapolation, track ftting and fast simulation

• example: ATLAS

- **→ developed geometry of connected volumes**
- ➡ boundary surfaces connect neighbouring volumes to predict next step

Fast Track Simulation (Fatras)

• convenient to construct fast track simulation

- ➡ re-use **extrapolation package** to propagate each particle:
	- transport engine with navigation
	- geometry model
	- B-feld map
- ➡ add **stack** to keep track of all particles produced and stack manager
- ➡ add set of **physics processes** describing interaction of particles with matter

0.75

 $0.8₊$

 0.85

Pions

0.9

0.95

1

ATLAS Preliminary Simulation

$|n|$ 0 0.5 1 1.5 2 2.5 -_A · p_r=5 GeV FATRAS p_T=5 GeV Geant4 $-\Theta$ · p_{τ} =50 GeV FATRAS p_T=50 GeV Geant4 pion efficiency

Strategy of NewTracking in ATLAS

Iterative Seeding totrategy ! first (global) **pattern recognition**,

finding hits associated to one track

• the track finding algorithm

- ▶ tra find seedsfrom combination of 3 hits parasearch using hough transform
	- ➡ build **road** along the likely trajectory

➡ run **combinatorial Kalman Filter** for a seed

- ! more difficult with noise and hits from full **exploration** of all possible candidates secoupdate trajectory with hits at each layer
	- take material effects into account

I presibility of fakting protiction •iterative seeding approach (Run-1)

- **■** seeds are worked on in an ordered list
- ▶ in mode Mith 3 Bixels, 2 Pixel+Strip, 3 Strips
	- classical picture does not work ➡ bookkeeping layer:
	- issical proture does not work
• hits from good candidates removed
vmore
	- anymore
build next seed ONLY from left over hits
	- sequential seed finding to avoid combinatorial explosion (see later w.r.t. parallel tracking)
- $\bullet\,$ unlike in the animation, tracks are found for one-after-the-other $\bullet\,$ • unlike in the animation, tracks are found for one-after-the-other
	- hence, the ordering matters \cdots (especially sorting in p_T bins)

Expected Performance

• excellent preparation before startup

- \rightarrow more than 10 years of simulation and test beam
- ➡ cosmics data taking in 2008 and 2009

• detailed simulation studies

- **→ document expected performance in TDRs**
- \rightarrow few of the known critical items:
	- material effects limit efficiency and resolution at low pt
	- good (local) alignment for *b*-tagging
	- momentum scale and alignment "weak modes"
- **focus for commissioning of tracking and vertexing**

Weighing Detectors during Construction **Weighing'detectors'during'construction** Weighdaassembled belangrijk ring Construction involving hard-to-validate thin-walled aluminum, copper/nickel, or titanium pipes and polyimide/aluminum tapes rather than the less risky but heavier stainless steel

• huge *effort* in experiments

- ➡ put each individual detector part on balance and compare with model
- **CMS and ATLAS measured weight of their** tracker and its components
- ➡ correct the geometry implementation in simulation and reconstruction

measured before and example: ATLAS TRT after insertion of the SCT thewe are convergence then to the values of the values $\frac{1}{2}$

The numbers are given in fractions of radiation lengths (X 0). Note that for A \bar{X} for \bar{X}

MGA TRAM KIIN-Early Physics and the Experience from Run-1

the lines corresponding to the middle using the middle of the middle of the middle of the middle of the middle

First Data to Physics Results

• a success story all along...

- ➡ detector, DAQ and trigger worked !
- **excellent quality of first data**
	- fast convergence of calibration and alignment procedures
	- much smoother than many expected
- **■** striking level of modelling by simulation
	- thanks to careful preparation work, e.g. excellent model of tracker material
	- helped a lot the fast production of physics results

• with luminosity increasing over the year 2010

- **→ quality of data approaching design** levels with series of reprocessings
- "re-discovered" the standard model

Markus

F.Gianotti, ICHEP 2010

particles one-by-one

• in the first year we achieve excellent Run 1 Tracking Performance Modu

control on alignment

→ local alignment, e.g. TRT wire plane offsets or Pixel bow Y

→ global weak mode and time variations corrections $\begin{array}{r} \text{if } \mathbf{a} \text{ is a random variable, and } \mathbf{b} \text{ is a random variable, and } \mathbf{a} \text{ is a random variable.} \end{array}$

Run 1 Tracking Performance <u>|L</u>

- •tracking efficiency difficult to measure for hadrons \overline{a} **10** measure to
	- **→** efficiency for entirely limited by material interactions

• muons are almost ideal MIPs

- \Rightarrow *Z, J/* ψ and Y decays allow us to accurately measure the $\frac{2}{3}$ $\frac{1}{3}$ ose the number of $\frac{1}{3}$ tracking efficiency tracely incependent of μ 0.99
- \rightarrow measured efficiency >99.5% for all Run-1 conditions \rightarrow 0.97 0.1 < m| < 2.5 \rightarrow All As \rightarrow

• excellent *b*-tagging performance

→ working point: 70% *b*-efficiency for light rejection >100 and $\frac{1}{8}0.995$ bin and rapidly increases to nearly 100% for *n*BS

the Role of the The Higgs Discovery: Offline Software

Markus Elsing

Situation in 2011

•Higgs searches in 2011 data

- **→ both experiments saw "hints" for a light Higgs**
	- about *~3*σ each, ignoring "look elsewhere effect"
	- indications as well in TEVATRON data
- **→ low mass region at LHC**
	- many decay modes accessible (γγ, ZZ, WW, ττ, bb)
	- *yy* and *ZZ* yield excellent mass resolution (~1%)
- → detector performance crucial to all analyses (!)
● detector performance crucial to all analyses (!)

• rapid increase in luminosity

- **→ pileup approaching design levels in 2011**
	- mainly because of 50 *ns* operation
	- expectation was to exceed design level in 2012
- **→ concerns about pileup robustness and** performance of object reconstruction
	- experiments did intensive software development in preparation for 2012 data taking

Updates to Tracking

•CPU scales non-linear with pileup

- ➡ combinatorial explosion
	- CMS ~50% in tracking (e/γ dominated by special tracking too)
	- ATLAS \sim 70% in tracking
- e.g. CMS gained factor 2-3 in CPU
	- optimisation of pattern for 30 pileup
	- as well technical optimisation (memory)
	- similar optimisation done in ATLAS

•pileup robustness and performance

- ➡ improve track selections to control fakes
- **■** more robust tracking cuts for object reconstruction
	- e.g., tracking for conversions in ATLAS optimised to improve pileup stability (*H*→γγ)

Updates to Vertexing and Jet/MET

•primary vertexing

- **■** more robust selections and algorithm updates
- \rightarrow still visible effects of vertex merging at high μ
- \rightarrow Σ p_T based vertex tagging less and less optimal (see MC)

• tracking as a tool for pileup control

- **■** combining calorimeter and tracking information
	- CMS jets, \sharp _T and *t* based on Particle Flow
	- ATLAS used vertexing for pileup jet tagging (JVF and variants of it)
- \rightarrow such techniques will be even more important in the future

Tracking with Electron Brem. Recovery

• strategy for brem. recovery

- **restrict recovery to regions pointing to** electromagnetic clusters (RoI)
- \rightarrow pattern: allow for large energy loss in combinatorial Kalman flter !"" # \$%& () + "
	- adjust noise term for electrons
- \rightarrow global- χ^2 fitter allows for brem. point
- **adapt ambiguity processing (etc.) to ensure** e.g. b-tagging is not affected
- **→ use full fledged Gaussian-Sum Filter in electron** identifcation code

• deployed before 2012

- **→** improvements especially at low p_T (< 15 GeV) \sim 15 dev)
	- limiting factor for *H*→*ZZ**→*4e*
- **→ significant efficiency gain for Higgs discovery**
	- similar techniques used in CMS

CERN Seminar July 4th, 2012: the Higgs

•fantastic success (!!!)

- \rightarrow software and computing had its share in it ...
- ➡ full chain worked excellent:
	- from detector $+$ trigger to
	- prompt calibration,
	- Tier-0 reconstruction,
	- GRID distribution and
	- fast distributed analysis !

Results are preliminary:

- 2012 data recorded until 2 weeks ago
- xz larger event pile-up
- \Box new, improved analyses deployed for the first time

H \rightarrow γγ and H \rightarrow 4l: high-sensitivity at low-m_H; high mass-resolution; pile-up robust \Box analyses improved to increase sensitivity \rightarrow new results from 2011 data all the data recorded so far in 2012 have been analyzed \rightarrow results are presented here for the first time

Other low-mass channels: $H \rightarrow WW^{(*)} \rightarrow WW$, $H \rightarrow \pi r$, W/ZH $\rightarrow W/Z$ bb:

- \Box E_T^{miss} in final state \rightarrow less robust to pile-up
- worse mass resolution, no signal "peak" in some cases
- \square complex mixture of backgroup
- \rightarrow understanding of the detector advanced, but results not yet
- \rightarrow 2011 results used here for the

Marrakech: Andi, Andreas, Daniel, me, Heather Preparing for Run-2: First Upgrades of the Offline Software

Markus Elsing

Run-2 has already started !

• LHC beam is back!

➡ machine ready for 13 *TeV* operations

• Run-2 until 2018

- **→ expect L**_{int} ~ 120 *fb⁻¹* with L_{peak} ~ 1.7*10³⁴ *cm⁻²s⁻¹*
	- need to be prepared for event pileup of 40
- \rightarrow about factor $>$ ~2 in interesting cross sections
	- expect twice trigger rates for same thresholds

• substantial discovery potential for high-mass objects running at 13 *TeV*

- \rightarrow already with 1 *fb⁻¹* and m(system) > ~2 *TeV*
- \rightarrow across all searches for \sim 10 *fb⁻¹*

• continue to explore the rich LHC

physics program

➡ Higgs, top, Standard Model, *b*-physics, ...

Markus Elsing

Pixel Upgrades for Run-2

• aim is to mitigate effects of Run-2/3 pileup

- **→ ATLAS: IBL ready 2015, CMS: new 4 layer Pixels for 2017**
- **→ both experiments add low mass Pixel layer close to beam**
	- improves impact parameter resolution
- **additional hit to reduce fakes and/or improve efficiency**
	- and use 4th layer in seeding to reduce CPU

• significant improvements on b-tagging

 \rightarrow at 50 pileup both experiments recover b-tagging performance like without pileup, or even improve upon it

4 layer CMS Pixel Upgrade for 2017

Computing Constraints for Run-2

• unlike Run-1, computing resources will be limited !

- **→ assumption is a constant computing budget**
- **■** interplay of technology advancement, market price and needed replacements

• motivation for LS1 software upgrades

- ➡ ensure that Tier-0 can process 1 *kHz* trigger rate
- **→ optimise disk usage** (e.g. ATLAS new Analysis Model)
- •biggest problem will be disk !

ATLAS New Analysis Model for Run-2

• several issues with Run-1 model

- **analysis ntuples duplicate AOD (disk!)**
- **→ production of ntuples costly (time!)**
- ➡ analysers develop in ROOT (compatibility !)

•"small" revolution for ATLAS

- **new format (xAOD) readable in ROOT**
	- branch-wise reading at ROOT speed
	- object decoration with user data
- \rightarrow centrally produce skims for analysers
	- train production model
	- smart slimming of xAOD objects
- → analysis tools transparently usable in ROOT and ATHENA
	- ROOT based and ATHENA based analysis software releases

• changes for other experiments are less extreme

→ similar pressure to reduce resource needs

Tracking Developments towards Run-2

- •ATLAS and CMS focus on technology and strategy to improve CURRENT algorithms
	- ➡ improve software technology, including:
		- simplify EDM design to be less OO ("hip" 10 years ago)
		- ATLAS migrated to Eigen faster vector+matrix algebra (CMS was already using SMatrix)
		- vectorised trigonometric functions (CMS: VDT or ATLAS: intel math lib)
		- work on CPU hot spots (e.g. ATLAS replaced F90 by C++ for B-feld service)
	- **tune reconstruction strategy** (very similar in ATLAS and CMS):
		- optimise iterative track finding strategy for 40 pileup
		- ATLAS modified track seeding to explore 4th Pixel layer
		- CMS added cluster-shape flter against out-of-time pileup

• hence, mix of SIMD and algorithm tuning

→ CMS made their tracking as well thread-safe

Tuning the Tracking Strategy

- optimal seeding strategy depends on level of pileup (ATLAS)
	- **fraction of seeds to give a good track candidate:**

- hence start with SSS at 40 pileup ! **Example 2008 parts (global) pattern recognition**, $\frac{1}{2}$
	- **→** further increase good seed fraction using 4th hit further increase good seed fraction us

• takes benefit from new Insertable B-Layer (IBL)

• final ATLAS Run-2 seeding strategy final ATLAS Run-

➡ signifcant speedup at 40 pileup (and 25 *ns*)

CPU for Reconstruction

•sum of tracking and general software improvements

- **→ improved software technology, including:**
	- tracking related improvements
	- new 64 bit compilers, new tcmalloc
- → tune reconstruction strategy (very similar in ATLAS and CMS)
	- optimise track fnding strategy for 40 pileup
	- faster versions of things like FastJet, ...
	- addressing other CPU hot spots in reconstruction

• huge gains achieved !

- \rightarrow ATLAS reports overall factor $>$ 4 in CPU time
	- touched >1000 packages for factor 5 in tracking
- **→ CMS reports overall factor > 2 in CPU time**
	- on top of their 2011/12 improvements
	- as well dominated by tracking improvements
- ➡ both experiments within 1 *kHz* Tier-0 budget
	- required to keep single lepton triggers

Markus Elsing

Tracking in dense Jets

• problem of cluster merging

- merging when track separation reaches single Pixel size
- **→ during track reconstruction shared clusters are** penalised to reduce fakes and duplicate tracks

• artifcial neural network (NN)

- \rightarrow identify merged clusters and splitting them
- **→ during Run-I these were duplicated**
	- though with different cluster positions
- \rightarrow performance in these environments was known to be suboptimal

• crucial in many areas:

- \rightarrow b-tagging (especially at high momenta)
- \rightarrow jet calibration and particle flow
- ➡ 3-prong τ identifcation

Markus Elsing merged Pixel clusters

$\frac{1}{2}$ 0.06 $\frac{1}{2}$ 0 residual before and after splitting

Run-2 Tracking in dense Jets

• new strategy delays NN cluster splitting

- **■** pattern runs with merged clusters to find all candidates
- **■** split clusters in ambiguity solution using tracks
	- more information used to improve splitting performance
- ➡ improve logic to allow sharing (un-"splitable") clusters

• significant improvement at high-pT

- **tau 3-prong inefficiency halved**
- ➡ b-tagging efficiency doubled

(CMS uses new splitting in clustering for Run-2)

Truth Jet p_T [GeV]

1 B-Jet Efficiency B-Jet Efficiency *ATLAS* Preliminary TIDE $0.9⁺$ Simulation, \sqrt{s} =13 TeV, Z'(3 TeV) ▲ Baseline 0.8<mark>는 IP3D</mark> 0.7 0.6 0.5 0.4 0.3 0.25 0.1 0 0 200 400 600 800 1000 1200 1400

Software for Detector Upgrades

Markus Elsing

LHC Upgrade Physics Goals

• Higgs couplings and properties

- \rightarrow few % on couplings possible with 3000(350) pb-1
- ➡ new channels opening up (e.g. *H*→μμ)
- ➡ measure *ttH* and 30% on Higgs self coupling

• study vector boson scattering

- ➡ Higgs restores unitarity in VV scattering around 1 *TeV*
- extend reach for new physics searches
	- **e.g. for 3rd generation squarks and gauginos**

• LHCb physics reach with 50 *fb-1*

- ➡ unique for new physics searches in *Bs* system
	- precision measurement of *B(s)*→μμ
	- few % in CP violating ϕ_s from $B_s \rightarrow \phi \phi$
	- CP violation in *B_s→J/Ψ*φ
- → unprecedented charm yields
	- search for CP violation in charm decays

Markus Elsing

LHC Upgrade Program

• Phase-1 upgrades (2018→)

- **LHCb and ALICE trigger-less readout**
- ➡ CMS and ATLAS ready for 350 *fb-1*
- Phase-2 upgrades (2023→)
	- HL-LHC upgrades for CMS and ATLAS for 3000 fb-¹

• software plays key role in this program

- \rightarrow physics prospects, detector design, TDRs...
- **■** preparing offline and trigger for detector upgrades itself

 \rightarrow Access very small x values

THE CONDENSIGNATION Framework

• option: ➡ Fiber Tracker to replace Inner (Si) and Outer Tracker

• Silicon Trackers \rightarrow Si strips (replace all)

> • VELO ➡ Si strips (replace all) **→ pixel or strips options**

Replace Internal Tracking System \rightarrow Improve IP resolution to measure meson and baryon down to P_t ~ 0

> Replace FE and RO of TOF/PHOS/TRD

Very forward EM + Hadron Calorimeter?

VHMPID: Cherenkov + EM \rightarrow PID up to 20 GeV/c

LHCb Detector Upgrades in LS2

ALICE Upgrades during LS2

•Outer Tracker ➡ straw tubes (replace readout)

• LLT Trigger Scheme \rightarrow up to 40 MHz into HLT with full reconstruction ➡ output 20KHz

> •Calorimeter ➡ PMTs (reduce PMT gain, eplace readout)

> > (during LS1)

New Muon Forward Tracker? Measure u IP

TPC: replace wire chambers with GEM chambers

Replace Muons FE

• Muons ➡ MWPC (almost compatible)

 \bullet RICH 1 \rightarrow HPD

 \circ Study Quark Gluon Plasma with Pb-Pb collisions : 6 x 10²⁷ Hz/cm² \rightarrow 10 nb⁻¹ - Increase DAQ acquisition rate (current 5 kHz) to register all interactions ≥ 50 kHz

(replace HPDs and readout)

Technical Design Report

CERN

Hardware based Tracking ?

• current ATLAS trigger chain

- ➡ Level-1: hardware based (~50 *kHz*)
- Level-2: software based with regional access to full granularity data (~5 *kHz*) tracking
- ➡ Event Filter: software trigger (~500 *Hz*)

• ATLAS installs FTK during Run-2

- **► hardware track reconstruction for Level-2 Trigger**
	- associative memory (AM) chips to find patterns
	- FPGA based track parameter estimation
	- "Hit Worrier" (HW) to remove fakes
- slice installed for 2015, full coverage in 2016
	- will replace software based Level-2 tracking in ATLAS
- ➡ full event track reconstruction at latency of ~ 100 μ*s*
	- fast track confrmation of Level-1 triggers
	- particle flow like tau tagging
	- fast b-jet tagging

'ERN

- pileup corrections for jets and missing E_T
- **■** excellent performance for Level-2 purposes
	- track efficiency is 90-95% w.r.t. offline
	- track refit using full fitter recovers offline resolution

Markus Elsing

enters

here

Inner Tracker Upgrades for HL-LHC

•CMS Inner Tracker

 r [mm]

1000

 800

600

- **→ Strip tracker replacement**
	- several layouts under consideration
	- short strips in *R*ϕ, macro-pixels in *^z*
- \rightarrow Level-1 track trigger with high p_T stubs
	- correlate 2 sensors, threshold~ *2 GeV*
	- pattern in FPGA or AM chips, FPGA fit
- \rightarrow Pixels: extend η coverage to 4 (!)

•ATLAS Inner Tracker

Software and Manpower

• software follows a natural life cycle

- **→ building up the software for an experiment**
- \rightarrow start of operations and data taking

140

120

100

80

60

20

→ data analysis and detector upgrades

• loss of software manpower in ATLAS/CMS

- **■** (mostly) students and postdocs moved on to do physics
	- same trend like in previous experiments
- **→ like CDF/D0 Run-2, LHC upgrade program is ambitious**
	- need to find sufficient manpower to develop the software for the upgrade

Cuencours

yan zon zi

Marrakech: Andi, Andreas, Daniel, me, Heather Future Offline Software Challenges

the million dollar question: how to process HL-LHC events

Markus Elsing

Future Computing Needs

• increase in raw data samples

- **→ driven by ALICE trigger-less readout**
	- mostly for their online disk buffer
- **→ ATLAS and CMS increase of trigger rate** and event size (pileup)

• total disk needs scales with raw

- → current models are above constant budget, hence need:
	- smaller data formats
	- new analysis models
	- use more tape (cheaper, continues to scale)
	- less replicas (use growing network bandwidth)

•CPU needs less certain

- **→ best estimates are factors above budget**
	- based on current applications and models

Processor Technology looking for something do do: • Vector registers

• Moore's law is still alive ve cores and contact the cores of the cores and cores are \sim

- **→** number of transistors still doubles every 2 years $\frac{1}{2}$ ii doubles every z years
and no longer increasing
	- no free lunch, clock speed no longer increasing _'d ho longer increasing
- → lots of transistors looking for something to do: g ior some anny to
	- vector registers
	- out of order execution
	- hyper threading
	- multiple cores
- **■** increase theoretical performance of processors
	- increase theoretical performance of processors
• hard to achieve this performance with HEP applications

• many-core processors, including GPGPUs

- **→ e.g. Intel Xeon Phi, Nvidia Tesla**
- → lots of cores with less memory
• same for ADM or ATOM based systems
	- same for ARM or ATOM based systems
- sarie for Anivi of Arolyi based systems

 challenge will be to adapt HEP software
	- need to parallelise applications (multi-threading)
(GAUDI-HIVE and CMSSW multi-threading a step in this direction)
		- (GAUDI-HIVE and CMSSW multi-threading a step in this direction)
	- change memory model for objects, more vectorisation, ...

Massively parallel Tracking ?

- ATLAS/CMS tracking strategy is for early rejection The CMS tracking relies on iterations (*steps*) of the tracking procedure; each step works on the remaining non-Table 1. Relevant parameters of the six iterative tracking steps in $\mathcal{L}^{\mathcal{A}}$ the reconstruction in the reconstruction in this paper campaign description in this paper r_{max} size along the *z* axis and *d*⁰ and *z*⁰ are the transverse (i.e. in the *xy* plane) and longitudinal
	- **→ iterative tracking: avoid combinatorial overhead as much as possible!** impact to the second to the second to the final quark are final quark and to the final quality contribution to
		- early rejection requires strategic candidate processing and hit removal
	- **→** not a heavily parallel approach, it is a **SEQUENTIAL** approach! \overline{D} triplet pixel \overline{D} cm $\overline{D$ FQUENTIAL approach !

Married, M • implications for making it massively parallel? α pair α parallel 2.0 cm α **5 pair Tobels 1.6 6.0 cm 30.0 cm 30.0**

→ Armdahl's law at work:

$$
Time_{\parallel} = Para / N + Seq
$$

- → iterative tracking: small parallel part Para, heavy on sequential Seq *atu, neavy* on sequential seq
	- hence, if we want to gain by a large N threads, we need to reduce Seq Through the control of the course of the control of the c

• CMS study: run combinatorial filter in parallel for seeds

a fed compressive on early rejection but still limit combinatorial overhead \blacksquare thitar in narallal for seads \blacksquare $\frac{1}{100}$

- → find compromise on early rejection, but still limit combinatorial overhead ac sun in the completed of overrieur
	- as a result, one spends somewhat more CPU, main gain is in memory

■ promising if one uses additional processing power that otherwise would not be usable (many core processors) or if latency is the main issue (trigger)

Tracking Algorithms for High Pileup

• alternative tracking techniques for parallelisation?

→ CMS investigated using Hough Transforms, limited by multiple scattering

• tracking according to physics needs?

■ idea: run different tracking inside/outside Region-of-Interest

- best possible tracking for signal event or region
- faster, approximate tracking on pileup and underlying event (extreme: truth guided tracking on MC to avoid pattern overhead)
- experiments already started doing this in Run-1!
	- CMS runs tracking passes to recover efficiency for muons
	- ATLAS runs brem. recovery for tracks pointing to EM clusters

Markus Elsing

- \rightarrow and for Run-2
	- ATLAS regional tracking for photon conversions
	- both experiments have dedicated tracking in jets

• need more R&D on future algorithms

Region-of-

Interest

Detector Simulation

- •simulation limited by CPU
	- **avoid MC limiting physics precision**
	- ➡ need to increase GRID "MC luminosity"
- major software technology developments in simulation
	- ➡ Geant 4.10 introduces multi-threading support
	- **Geant V redesign to explore vectorisation**
- •ATLAS Integrated Simulation Framework (ISF)
	- ➡ mixes fast and full sim. in one event
		- spend time on important event aspects
	- **towards complete fast software chain**
		- avoid digit. and reco. bottleneck
		- directly produce analysis formats (disk)

ATLAS Level-2 GPU Tracking Prototype

• as an example for a complete tracking chain on GPUs

- \rightarrow from raw to tracks
- \rightarrow currently many such R&D activities in CMS and ATLAS

head. hit hit hit trailer head. hit hit trailer Pixel clusterization on GPU

- Two new algorithms for parallel execution: ections of hits
	- for algorithm **B** fast AND operation for symmetrical eader, trailer, actual

I

thread 0

GPU-based track finding

 Algorithmic workflow inspired by SiTrack:

eveloped

B. The algorithm with cluster size control: *D. Emeliyanov J. Howard*

GPU-based data preparation

Structure-of-Arrays (So<mark>A) Arrays (Soc</mark>) (Soc) (**Example 18 At** $(A^L(i, j))$ **gives the number of walks of** A^{i} **and** B^{k} **@ CERN 4/14** Given cluster size limit L the algorithm calculates he *L*-th power of the hit adjacency matrix A length *L* from hit *i* to hit *j* **Basically, if** $A^L(i, j) \neq 0$ the two hits belongs to he same cluster and the cluster diameter does \log exceed L

Matrix multiplication can be done very efficiently on GPUs. In addition, this algorithm benefits rom all the matrix products being Boolean - bitwise AND is used instead of actual multiplication

eam decoding:

input 1D array

output SoA

word word

thread 2

coding are done in prking on global output

■ significant speedup compared to running same chain on CPU

→ CUDA vs openCL, development and maintenance cost ?

HEP Software Foundation

recent workshop, see as well CHEP

• initiative to raise profile of HEP software projects

- **→ building upon existing and** previous initiatives
	- hepfroge.org
	- Concurrency Forum
	- (less known) US HEP Forum for Computational Excellence
	- previous LCG Application Area
- **→ as well, existing HEP SW projects**
	- Geant4, Root, ...
- **→ hopefully as well GRID software**

• foundation as a bottom-up approach

- **invite participation in projects across experiments and collaboration beyond HEP**
- **→ hope to achieve synergies and bundle expertise on crucial technology developments**
- **■** may host tracking (reconstruction) algorithm forum to foster collaboration

Common Algorithmic Software ?

• examples for common algorithmic software

- **FastJet** de-facto standard for jet finding, distribution as part of LCG externals
- TMVA, RooFit/RooStat, HistFitter, BAT statistics and multivariate analysis
- **→ AIDA tracking primarily targeting ILC / FCC**
- **→ genfit** an implementation of standard track fitting techniques (Belle-II)
- ➡ CMS vertexing suite package of standard vertexing codes (CMS, Belle-II,...)
- ➡ VDT, SMatrix, Eigen vector algebra and math libs

• a real integrated common tracking implementation?

- \rightarrow AIDA is the one aiming at this ...
- **■** integration means picking a data model
	- determines Jacobians in math formulars
- **■** integration means framework interfaces
- **→ best physics performance?**
	- pattern strategy depends on experiment
- manpower on AIDA vs (e.g.) CMS/ATLAS ?
- **→ discussion in ATLAS:**

• make tracking/vertexing suite public ? (for FCC)

Building a "Forum" and a Community ?

• some obvious observations:

- **■** we need to make workshops like Connecting the Dots more regular
	- yearly like BOOST workshops ? every 18 months like CHEP and ACAT ?
- **■** we need to think about dedicated schools to teach algorithms to students
	- we need to invest in future experts (and give them career perspectives)
- **→ do we need some more regular forum alongside the Concurrency Forum?**
	- need will grow once we have more common developments to discuss
	- how often shall we do such a meeting initially ?

• focus on exchange of ideas, techniques, best practices ...?

- **■** at Connecting the Dots meeting, not much enthusiasm across all experiments (but maybe FCC) to migrate to something like a common algorithm stack
- \rightarrow common software projects may grow naturally out of needs we may identify

• created as well a generic HSF mailing list:

<http://hepsoftwarefoundation.org/content/reconstruction-algorithms-forum>

■ to be used to bring together initiatives like Connecting the Dots for tracking and the communities working on boosted object reconstruction and alike

Summary

•building the LHC software and tracking

- took almost a decade to master the challenge
- \rightarrow resulted in sophisticated software stags for the experiments
	- including highly optimised track reconstruction

• excellent performance during Run-1

- \rightarrow full benefit from careful preparation
- **→ good quality data and description in simulation**
	- highly instrumental to fully explore physics reach, including the role of software in the Higgs discovery

•shutdown preparations for Run-2

- **■** even higher pileup and limited computing resources
- **■** first round of software upgrades to mitigate effects

• many more challenges ahead

- Phase-1 and Phase-2 detector upgrades
- ➡ IT technologies are changing dramatically