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About this Lecture
•this lecture was originally written for physics students 
➡ but it is not required to be a physicist to follow this lecture (I think) 
➡ I will speak more about concepts and techniques, so don't get lost in details 

which I will flag as such 
➡ some (basic) knowledge on statistics helps for the mathematical details 

•don't be afraid to stop me and ask 
➡ it is probably me not explaining things well enough 

• I may take too many things for granted or may use slang 
➡ we want to make this as useful as possible for YOU 

➡ further reading: http://elsing.web.cern.ch/elsing/teaching.html

http://elsing.web.cern.ch/elsing/teaching.html
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Event Reconstruction

➡ LHC experiments are giant "cameras" to take "pictures" of p-p collisions 
• taking a picture every 25 nsec (40 MHz) with 100 million channels 

➡ task of the reconstruction is the interpretation of the picture ! 
• answer the question: which particles were produced ?
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4Markus Elsing

Event Reconstruction “in a Nutshell”

•typical HEP detector 
➡ tracker to measure 

charged particles 
➡ e.m. and hadronic 

calorimeter to measure 
energy of particles (jets) 

➡ muon spectrometer to 
detect muons penetrating 
the rest of the detector
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Event Reconstruction “in a Nutshell”

• solenoid magnet 
➡ b-field to bend charge 

particle trajectories
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•photons 
➡ shower in e.m. calorimeter 
➡ (ideally) no charged particle 

seen in tracker 

• neutrons 
➡ showers in hadronic 

calorimeter 
➡ no particle seen in tracker

Event Reconstruction “in a Nutshell”
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•electrons 
➡ shower in e.m. calorimeter 
➡ a charged particle seen in 

tracker 

•protons/pions 
➡ particle seen in tracker 
➡ and leave a showers in 

hadronic calorimeter

Event Reconstruction “in a Nutshell”
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•muons 
➡ charged particle seen in 

tracker 
➡ little energy seen in 

calorimeters 
➡ particle seen in muon 

spectrometer

Event Reconstruction “in a Nutshell”
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•neutrinos 
➡ leave undetected 
➡ missing transverse  energy 

• jets 
➡ bundle of showers in 

calorimeter 
➡ bundle of charged particles 

in tracker 

• vertex

Jet

Event Reconstruction “in a Nutshell”
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In Reality ?

ZZ*→4μ candidate

... a bit more complicated
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Introduction
•in this lecture I will discuss the most complex and CPU 

consuming aspect of event reconstruction at the LHC 
➡ finding trajectories (tracks) of charged particles produced in p-p collisions 

•will have to introduce various techniques for 
➡ pattern recognition, detector geometry, track fitting, extrapolation ... 
➡ including mathematical concepts and aspects of software design

... so why does
it matter ?
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The Tracking Problem
•particles produce in a p-p interaction leave a cloud of hits in 

the  detector
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The Tracking Problem
•particles produce in a p-p interaction leave a cloud of hits in 

the  detector

• tracking software 
is used to 
reconstruct their 
trajectories
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Role of Tracking Software
•optimal tracking software 
➡ required to fully explore performance of detector  

•example: DELPHI Experiment at LEP 
➡ silicon vertex detector upgrade 

• initially not used in tracking to resolve dense jets 
• pattern mistakes in jet-chamber limit performance
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Role of Tracking Software
•optimal tracking software 
➡ required to fully explore performance of detector  

•example: DELPHI Experiment at LEP 
➡ silicon vertex detector upgrade 

• initially not used in tracking to resolve dense jets 
• pattern mistakes in jet-chamber limit performance
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➡ 1994: redesign of tracking software 
• start track finding in vertex detector 

➡ factor ~ 2.5 more D* signal after reprocessing   
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• reminder: (first lecture by Helge Meinhard) 
➡ LHC is a high luminosity machine 

• proton bunches collide every               
25 (50) nsec in experiments 

• each time > 20 p-p interactions are 
observed ! (event pileup) 

➡ our detectors see hits from particles 
produced by all > 20 p-p interactions 
• ~100 particles per p-p interaction 
• each charged particle leaves ~50 hits
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Tracking at the LHC ? pileup display shown by Helge
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Tracking at the LHC ? pileup display shown by Helge
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LHC design➡ this is how 1 pp 
collisions looks like
• now imagine      

30 of them 
overlapping

• task of tracking 
software is to 
resolve the 
mess ...
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Tracking at the LHC ?

•track reconstruction 
➡ combinatorial problem grows with pileup 
➡ naturally resource driver (CPU/memory) 

•the million dollar question: 
➡ how to reconstruct LH-LHC events within resources ? (pileup ~ 140-200) 

•more than 10 years of R&D on LHC tracking software 
➡ we knew that tracking at the LHC is going to be challenging 

• building on techniques developed for previous experiments  
➡ processor technologies will change in the future 

• need to rethink some of the design decisions we did 
• adapt software to explore modern CPUs:                                           vectorisation, multi-

threading, data locality...

many integrated 
cores

• Intel’s MIC (aka Intel Xeon Phi) is in its first generation

• 61 x86_64 cores @ ~1GHz

• 16GB of memory

• Coprocessor architecture

• Cache coherent, but no out of order execution

• 512 bit registers (8 double or 16 float)

• Memory per core: 256MB

• Maximum performance needs 4 threads per core: 64MB 
per thread

7

ATLAS 
Run-1 Software

CPU vs pileup

LHC@25	  nsec

LHC@50	  nsec

Intel Xenon Phi

ATLAS HL-LHC event in new tracker

event display 
from title page

...see bonus slides
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Outline of this Lecture
•Tracking Detectors 
➡ semiconductor tracker 
➡ drift tubes 

•Charged Particle Trajectories and Extrapolation 
➡ trajectory representations and trajectory following in a realistic detector 
➡ detector description, navigation and simulation toolkits 

•Track Fitting 
➡ classical least square track fit and a Kalman filter track fit 
➡ examples for advanced techniques 

•Track Finding 
➡ search strategies, Hough transforms, progressive track finding, ambiguity solution 

•ATLAS Track Reconstruction
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Tracking Detectors
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Passage of Particles through Matter

•any device that is to detect a particle must interact with it in 
some way 
➡ well, almost... 
➡ in many experiments neutrinos are measured by missing transverse momentum




 




 
  






for completeness 
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Interactions most relevant to Tracking
Type particles parameter characteristics effect

all charged 
particle

effective density 
A/Z * 𝜌

small effect in 
tracker, small 

dependence on 
p

increases 
momentum 
uncertainty

all charged 
particle

radiation length 
X0

almost gaussian 
average effect 0, 
depends ~ 1/p 

deflects particles, 
increases 

measurement 
uncertainty

all charged 
particle, 

dominant for e

radiation length 
X0

energy loss 
proportional ~E, 

highly non-
gaussian, 

depends ~1/m2

introduces 
measurement 

bias and 
inefficiency

all hadronic 
particles

nuclear 
interaction length 

𝛬0

incoming 
particle lost, 

rather constant 
effect in p

main source of 
track 

reconstruction 
inefficiency

Multiple Scattering

Ionisation loss

Bremsstrahlung

Hadronic Int.

➡ tracking detectors explore effects like ionisation to measure charged particles 
• let's discuss the basic principles of semiconductor trackers and drift tubes
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S e m i c o n d u c t o r   T r a c k e r s



•schema of a silicon diode (p-n junction) 
➡ doping silicon cristal semiconductor to implant        

excess electrons or "holes"

16Markus Elsing

Semiconductors as Particle Detectors
Si atom with 4 
valence electrons
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Semiconductors as Particle Detectors
Si atom with 4 
valence electronsexcess 

electron

donor impurity 
examples:  As, P

• n doping adds electro-phile atoms
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Semiconductors as Particle Detectors
Si atom with 4 
valence electrons

excess 
"hole"

acceptor impurity 
examples: B, Al, In 

excess 
electron

donor impurity 
examples:  As, P

• p doping adds electro-phobe atoms
• n doping adds electro-phile atoms
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Semiconductors as Particle Detectors
Si atom with 4 
valence electrons

excess 
"hole"

acceptor impurity 
examples: B, Al, In 

excess 
electron

donor impurity 
examples:  As, P

! ▬ ▬

▬ ▬

!

!!

p+  hole 
carrier

n – electron 
carrier

e acceptor impurity e donor impurity

! !

!!

▬ ▬

▬ ▬

➡ both materials together form a diode
• p doping adds electro-phobe atoms
• n doping adds electro-phile atoms
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Semiconductors as Particle Detectors
Si atom with 4 
valence electrons

excess 
"hole"

acceptor impurity 
examples: B, Al, In 

excess 
electron

donor impurity 
examples:  As, P

! ▬ ▬

▬ ▬

!

!!

p+  hole 
carrier n – electron 

carrier

e acceptor impurity e donor impurity

▬

▬

!

!

non-conducting 
depletion zone 

➡ both materials together form a diode
• p doping adds electro-phobe atoms
• n doping adds electro-phile atoms

• recombination in junction creates depletion zone, 
acts as potential barrier against doping potential
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Semiconductors as Particle Detectors
Si atom with 4 
valence electrons

excess 
"hole"

acceptor impurity 
examples: B, Al, In 

excess 
electron

donor impurity 
examples:  As, P

! ▬ ▬

▬ ▬

!

!!

p+  hole 
carrier n – electron 

carrier

non-conducting 
depletion zone 

e acceptor impurity e donor impurity
+–

➡ both materials together form a diode
• p doping adds electro-phobe atoms
• n doping adds electro-phile atoms

• recombination in junction creates depletion zone, 
acts as potential barrier against doping potential

• apply reverse bias voltage to enlarge potential barrier 
in depletion zone, increases its resistance further



•basic schema of a silicon detector 
➡ many reverse biased large diodes on a silicon wafer 

• allows for small structures, typical pitch is 50 μm
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Semiconductors as Particle Detectors

25
0 

µm

50 µm

charged 
particle

E

B

n-bulk

p-doped

n+-doped

readout chip
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Semiconductors as Particle Detectors

25
0 
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50 µm
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➡ traversing charged particle ionises silicon  
• creates electron-hole pairs, drifting in E-field to 

electrodes leading to measurable signals in diodes

ho
le
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readout chip
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Semiconductors as Particle Detectors
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➡ traversing charged particle ionises silicon  
• creates electron-hole pairs, drifting in E-field to 

electrodes leading to measurable signals in diodes
• Lorentz angle θL deflection in presence of B-field
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readout chip



•basic schema of a silicon detector 
➡ many reverse biased large diodes on a silicon wafer 

• allows for small structures, typical pitch is 50 μm

17Markus Elsing

Semiconductors as Particle Detectors

25
0 

µm

50 µm

charged 
particle

E

B

θL

α

n-bulk

p-doped

n+-doped

➡ traversing charged particle ionises silicon  
• creates electron-hole pairs, drifting in E-field to 

electrodes leading to measurable signals in diodes
• Lorentz angle θL deflection in presence of B-field

ho
le

s→

readout chip

•2 types: silicon strips and pixels 
➡ strip module: 50 μm pitch, wafers with ~6 cm diodes 

• needs 2 modules to measure both coordinates 
➡ pixel module: e.g. 50x400 μm pixel, analog readout 

• clusters measures precisely both coordinates

2 strip modules stereo 
angle pixel module

clusters
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CMS Tracker
•largest silicon tracker ever built 

➡ Pixels: 66M channels, 100x150 μm2 Pixel 
➡ strip detector: ~23m3, 210m2 of Si area,    

10.7M channels

The world largest Silicon Tracker

3

TIB
Inner Barrel
4 layers TID

Inner Disks
3+3 disks

TEC Endcap
9+9 disks

Tracker 
Support 
Tube

TOB
Outer Barrel
6 layers

L~5.4m
∅~2.4m

PXL
Pixel Detector
3 layers, 2+2 disks

Pixel Detector
66M channels

100x150 μm2 pixel
LHC radiation resistant

Si-Strip detector
~23m3; ~200m2 of Si area;

~9x106 channels;
LHC radiation resistant
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Gas Detectors - Drift Tubes
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Classical Gas Detectors - Drift Tubes
•detection technique for charged particles 
➡ used in muon systems and ATLAS TRT

anode wire 
(HV+)

cathode (HV–)

nobel 
gas

TRT:  Kapton tubes,       ∅ =   4 mm 
MDT: Aluminium tubes,  ∅ = 30 mm
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Classical Gas Detectors - Drift Tubes
•detection technique for charged particles 
➡ used in muon systems and ATLAS TRT

charged particle

anode wire 
(HV+)

cathode (HV–)

nobel 
gas

ionised 
electrons 
drifting to wire

ions  
drift to 
cathode

TRT:  Kapton tubes,       ∅ =   4 mm 
MDT: Aluminium tubes,  ∅ = 30 mm

•particles traversing tube ionises the gas 
➡ deposited charge drifts to anode wire in electric (E) field 

• charge amplification in high E-field in vicinity of wire 
leads to large signal pulse 

• Lorentz angle deflection in B-field (not shown)
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Classical Gas Detectors - Drift Tubes
•detection technique for charged particles 
➡ used in muon systems and ATLAS TRT

charged particle

anode wire 
(HV+)

cathode (HV–)

nobel 
gas

ionised 
electrons 
drifting to wire

ions  
drift to 
cathode

drift circle

TRT:  Kapton tubes,       ∅ =   4 mm 
MDT: Aluminium tubes,  ∅ = 30 mm

•particles traversing tube ionises the gas 
➡ deposited charge drifts to anode wire in electric (E) field 

• charge amplification in high E-field in vicinity of wire 
leads to large signal pulse 

• Lorentz angle deflection in B-field (not shown)
➡ measure time of signal pulse to determine drift circle 

• fast signal detection (vD~30 ns/mm) 
• resolution of O(100 μm) on measured radius
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Classical Gas Detectors - Drift Tubes

E
kathode tube

anode wire

•track reconstruction from drift circles 
➡ obtain drift radii from measured times 
➡ combined several measurements to find track 

• resolve left-right ambiguity (dotted line)

•detection technique for charged particles 
➡ used in muon systems and ATLAS TRT

•particles traversing tube ionises the gas 
➡ deposited charge drifts to anode wire in electric (E) field 

• charge amplification in high E-field in vicinity of wire 
leads to large signal pulse 

• Lorentz angle deflection in B-field (not shown)
➡ measure time of signal pulse to determine drift circle 

• fast signal detection (vD~30 ns/mm) 
• resolution of O(100 μm) on measured radius

right side of ambiguity 
has large residual

➡ ATLAS TRT: as well electron identification using transition radiation
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ATLAS Inner Detector

•barrel track passes: 
➡ 4(!) Pixel layers 
➡ 4x2 silicon Strips on 

stereo modules 
➡ ~36 TRT 4mm straws

•expanded view of barrel 
➡ IBL was installed 2014 !

ATLAS upgrade 
Insertable B-Layer

BARREL VIEW
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Electron Identification in the ATLAS TRT
➡ e/π separation via transition radiation: polymer (PP) fibers/foils interleaved with drift tubes

23

charged particle

anode wire 
(HV+)

cathode (HV–)

noble 
gas

fibers or foils

ATLAS Inner Tracking System

barrel TRT module

radiator

straws

51 cm

144 cm

TR 
increases 
signal 

transition radiation

➡ electrons radiate → higher signal  
• PID info by counting high-threshold 

hits component precisely
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for completeness 
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Charged Particle Trajectories 
and Extrapolation
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A Trajectory of a Charged Particle
➡ in a solenoid B field a charged particle 

trajectory is describing a helix 
• a circle in the plane perpendicular to 

the field (Rϕ) 
• a path (not a line) at constant polar 

angle (θ) in the Rz plane  

➡ a trajectory in space is defined by                  
5 parameters 
• the local position (l1,l2) on a plane,         

a cylinder, ..., on the surface or 
reference system  

• the direction in θ and ϕ plus the 
curvature Q/PT 

➡ ATLAS choice:                                                                                             
Surface Types

cylinder plane trapezoid disk

wire (line) vertex (perigee)

track

Layer 0

Layer 1

zrp = (l1, l2,θ,φ,Q P)
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The Perigee Parameterization

•helix representation w.r.t. a vertex 

•commonly used 
➡ e.g. to express track parameters near the production vertex 
➡ alternative: e.g. on plane surface

p

track

d0

ex

ey

ez

p
T

x-y plane

z0

φ

θ

perigee:

rp = (d0,Δz,θ,φ,Q P)
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The Perigee Parameterization

•helix representation w.r.t. a vertex 

•commonly used 
➡ e.g. to express track parameters near the production vertex 
➡ alternative: e.g. on plane surface

A Salzburger / Artemis School on Calibration and performance of ATLAS detectors / ID reconstruction - part I /  16-09-2008  

Track Parameters

p

track

d
0

e
x

e
y

e
z

p
T

x-y plane

z
0

!

"

p

track

e
x

e
y

e
z

p
T

x-y plane
!

""

l
x

l
y

l
y

lx

! the trajectory of a charged particle in magnetic field can (at any point) be

parameterised through five parameters

! ATLAS choice                               , accomplished by 5x5 covariance C 

two local variables (depends on surface), localisation w.r.t. surface

three global variables for momentum representation

! one track parameters

flavor per surface type

! different from

classical helix

representation

to comply with

ID and MS magnetic

field

4

covariances, but excludes obviously the hit collection. A simple refit such a slimmed track after it
has ben read from the persistent storage would recreate the full track information as achieved in the
original event reconstruction. The flexible TSOS container design of the Track class was hereby a
key feature, since it allows to create a track collection of stripped hits and a Perigee representation2

that is then written to disk. The track collection size could be significantly reduced (depending on
the track collection, the reduction factor varies between 6 to 10).

Representation for Physics Analysis Few analyses based on data taken with the ATLAS detector
will directly incorporate the Track objects. The Track itself is, in general, not more than a trajectory
representation of the particle when passing through the detector, while the — for the event analysis
— most important representation of the particle as a four momentum vector at the production vertex
is not given by the Track; neither is particle identification3 nor the vertex association performed at
the stage of track reconstruction. In the ATLAS EDM, the Track information is represented as a
TrackParticle object for further use in a particle-oriented event analysis. Vertex fitting with or
without constraints can be performed on TrackParticle objects, but needs the extrapolation engine
to express the trajectory with respect to the (iteratively fitted) vertex position. To enhance common
tracking tools to work together with the TrackParticle object (which combines a broader bundle
of aspects to be dealt with in event reconstruction), without breaking the philosophy of keeping the
tracking modules independent from specific reconstruction algorithms, a new TrackParticleBase
class has been introduced that concentrates the tracking-relevant information and builds the new
interface for tracking tools. These tools are designed to operated also on event reconstruction and
analysis level; a detailed description of the new TrackParticleBase class can be found in Sec. 4.

2 Trajectory Parameterisation: The ParametersBase class

The parameterisation of a particle trajectory with respect to a given surface is inevitable for track
reconstruction. It can be done in many di�erent ways, for a charged trajectory in magnetic field a
minimal set of five parameters has to be chosen; it can be reduced by one parameter for a trajectory
representation in a no-field environment or a neutral particle that follows a straight line. This is, since
the charge q and the momentum magnitude p are superfluous for the purely geometrical description of
a line. For constrained vertex fitting that includes both charged and neutral particle traces, however,
the momentum (hypothesis) is necessary — see Sec. 5.
The trajectory parameterisations for both neutral and charged particles are thus realised in the ATLAS
tracking EDM as a set of five parameters

x = (l1, l2, ⇥, �, c/p)T , (1)

when l1 and l2 denote the local coordinate expression on the given surface (and thus depend on the
surface type), ⇥ and � are the azimuthal and polar angle, respectively, and c is defined as

c =

�
⌅⇤

⌅⇥

q if q �= 0,

1 if q = 0.
(2)

For every surface type that is defined in the ATLAS reconstruction geometry [4], a dedicated pa-
rameterisation exists, realised by a specific class to ensure an unambiguous identification of the given
measurement frame. In track fitting — since the trajectory itself can not be measured, but only a lo-
calisation at discrete points in the detector can be done — a set of measurement mapping functions hj

is needed to map the track parameterisation on a measurement surface to the measured coordinates
and thus to establish a predicted measurement4. This yields for the single predicted measurement

2This is for the simple convenience of the user that is not forced to refit the track collection if the focus is only drawn
onto the impact parameterisation.

3Only a ParticleHypothesis exists for the steering of material e�ects integration.
4Since the two most common track fitting techniques, the least squares method and the Kalman filter are both linear

estimators, these measurement functions are even required to be linear, or at least approximated by a linear function.

plane
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Following the Particle Trajectory
•basic problems to be solved in order                                              

to follow a track through a detector: 
➡ next detector module that it intersects ? 
➡ what are its parameters on this surface ? 

• what is the uncertainty of those parameters ? 
➡ for how much material do I have to correct for ? 

•requires: 
➡ a detector geometry 

• surfaces for active detectors 
• passive material layers  

➡ a method to discover which is the next surface (navigation) 
➡ a propagator to calculate the new parameters and its errors 

• often referred to as “track model” 

•for a constant B-field (or no field) 
➡ an analytical formula can be calculated for an intersection of a helix (or a straight 

line) on simple surfaces (plane, cylinder, vertex,...)

track parameters
with uncertainty
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to follow a track through a detector: 
➡ next detector module that it intersects ? 
➡ what are its parameters on this surface ? 

• what is the uncertainty of those parameters ? 
➡ for how much material do I have to correct for ? 
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➡ a detector geometry 

• surfaces for active detectors 
• passive material layers  

➡ a method to discover which is the next surface (navigation) 
➡ a propagator to calculate the new parameters and its errors 

• often referred to as “track model” 

•for a constant B-field (or no field) 
➡ an analytical formula can be calculated for an intersection of a helix (or a straight 

line) on simple surfaces (plane, cylinder, vertex,...)

Module 1

Material LayerModule 1

Material LayerModule 1

Module 2

track parameters
with uncertainty
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Effects of Material and realistic B-Field
•realistic non-homogeneous B-field 
➡ analytical helix propagation has to be replaced by 

numerical B-field integration along the path of the 
trajectory 

➡ in ATLAS and CMS a 4th order adaptive Runge-
Kutta-Nystrom approach is used 

➡ propagates covariance matrix in parallel                                                   
(Bugge, Myrheim, 1981, NIM 179, p.365) 

- for experts: muon reconstruction in ATLAS+CMS uses the STEP track model with 
continuous energy loss and multiple scattering 

•energy loss 
➡ use most probably energy loss for x/X0 
➡ correct momentum (curvature) and its covariance 

•multiple scattering 
➡ increases uncertainty on direction of track 
➡ for given x/X0 traversed add term to covariances of 

θ and ϕ on a material “layer”

B field

from L. Ropelewski
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Illustration of Multiple Scattering Effect
•toy simulation 
➡ simulation of single particle traversing a set of individual thin material layers 

• single scattering steps accumulate Nparticles

d0
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•toy simulation 
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• single scattering steps accumulate Nparticles

d0

➡ repeat N times: 
• central limit theorem predicts 

gaussian distribution
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Illustration of Multiple Scattering Effect
•toy simulation 
➡ simulation of single particle traversing a set of individual thin material layers 

• single scattering steps accumulate Nparticles

d0

➡ repeat N times: 
• central limit theorem predicts 

gaussian distribution

• sometimes we experience the effect  
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The Track Extrapolation Package

•a transport engine used 
in tracking software 
➡ central tool for pattern 

recognition, track fitting, etc. 
➡ parameter transport from 

surface to surface, including 
covariance 

➡ encapsulates the track model, 
geometry and material 
corrections

B-field
map

geometry

material 
effects

Extrapolation Package
new parameters + covariance

transport
engine

navigator

propagator

parameters + covariance

track following in mathematical terms:

charged particle. The track model, i.e., the shape of the
trajectory, can be used to interpolate between the mea-
surements and create a road around the trajectory. Mea-
surements inside the boundaries of the road constitute
the track candidate. The number of measurements and
the quality of the subsequent track fit are used to evalu-
ate the correctness of the track hypothesis.

4. Track following

A related approach is track following, which starts
from a track seed. Most of the times, the seed is a short
track segment built from a few measurements. In addi-
tion it can be constrained to point to the interaction
region. Seeds can be constructed in the inner region
of the tracking detector close to the interaction region,
where the measurements frequently are of very high
precision, or in the outer region, where the track density
is lower. From the seed, the track is extrapolated to the
next detector layer containing a measurement. The mea-
surement closest to the predicted track is included in
the track candidate. This procedure is iterated until too
many detector layers with missing measurements are en-

countered or until the end of the detector system is
reached.

B. Track fitting

The track fit aims at estimating a set or vector of pa-
rameters representing the kinematic state of a charged
particle from the information contained in the various
position measurements in the track candidate. Since
these positions are stochastic quantities with uncertain-
ties attached to them, the estimation amounts to some
kind of statistical procedure. In addition to estimated
values of the track parameters, the track fit also provides
a measure of the uncertainty of these values in terms of
the covariance matrix of the track parameter vector.
Most estimation methods can be decomposed into a set
of basic building blocks, and the methods differ in the
logic of how these blocks are combined.

1. Track parametrization

If tied to a surface, five parameters are sufficient to
uniquely describe the state of a charged particle. The
actual choice of track parameters depends on, e.g., the
geometry of the tracking detector. In a detector consist-
ing of cylindrical detector layers, the reference surface is
often cylindrical and makes the radius times the azi-
muthal angle !R!" the natural choice of one of the po-
sition parameters. In a detector consisting of planar de-
tector layers, however, Cartesian position coordinates
are more frequently used !Frühwirth et al., 2000".

2. Track model

The track model describes how the track parameter or
state vector at a given surface k depends on the state
vector on a different surface i,

qk = fk#i!qi" , !3"

where fk#i is the track propagator from surface i to sur-
face k and q is the state vector. An illustration is shown
in Fig. 3. For simple surfaces, the track model is analyti-
cal in a vanishing magnetic field !straight line" or in a
homogeneous field !helix". If the field is inhomogeneous,

FIG. 2. !Color online" An illustration of track finding with
the Legendre transform. Top: Drift chamber with a multi-
track event with noise level of 50%. Bottom: The correspond-
ing Legendre transform. The circles in Legendre space graphs
denote the points with the highest height, corresponding
to the reconstructed tracks shown in the top graph. From
Alexopoulos et al., 2008.

✏✏✏✶
###$

! !qi qk = fk|i(qi)

surface i surface k

FIG. 3. An illustration of the track model and propagation
concepts. The function fk#i is the track propagator from surface
i to surface k. Its mathematical form depends on the track
model, i.e., the solution of the equation of motion in the actual
magnetic field.
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one has to resort to numerical schemes such as the
Runge-Kutta integration of the equation of motion.

3. Error propagation

During the track parameter estimation procedure,
propagation of the track parameter covariance matrix
along with the track parameters themselves is often re-
quested. The standard procedure for this so-called linear
error propagation is a similarity transformation between
layers i and k,

Ck = Fk!iCiFk!i
T , "4#

where C is the covariance matrix and Fk!i is the Jacobian
matrix of the propagation from layer i to k,

Fk!i =
!qk

!qi
. "5#

For analytical track models the Jacobian is also analyti-
cal "Strandlie and Wittek, 2006#. In inhomogeneous
magnetic fields, the derivatives can be calculated by
purely numerical schemes or by semianalytical propaga-
tion of the derivatives in parallel to the Runge-Kutta
propagation of the track parameters "Bugge and
Myrheim, 1981#.

4. Material effects

The most important effects on the trajectory of
charged particles caused by material present in the de-
tector volume are ionization energy loss and multiple
Coulomb scattering "Amsler et al., 2008#. For light par-
ticles such as electrons, radiation energy loss by brems-
strahlung also plays an important role. The fluctuations
of ionization energy loss are usually quite small, and
such energy loss is therefore normally treated
during track fitting as a deterministic correction to the
state vector "Frühwirth et al., 2000#. Bremsstrahlung en-
ergy loss, on the other hand, suffers from large fluctua-
tions "Bethe and Heitler, 1934# and affects therefore
both the state vector and its covariance matrix. Multiple
Coulomb scattering is an elastic process, which in a thin
scatterer disturbs only the direction of a passing charged
particle; in a sufficiently thick scatterer, the position in a
plane transversal to the incident direction is also
changed "Amsler et al., 2008#. Since the mean value of
the scattering angle and an eventual offset is zero, only
the covariance matrix is updated in order to incorporate
the effects of multiple scattering into the track fitting
procedure.

5. Measurement model

The measurement model hk describes the functional
dependence of the measured quantities in layer k, mk,
on the state vector at the same layer,

mk = hk"qk# . "6#

The vector of measurements mk usually consists of the
measured positions but can also contain other quanti-
ties, e.g., measurements of direction or even momentum.

During the estimation procedure the Jacobian Hk of this
transformation is often needed,

Hk =
!mk

!qk
. "7#

In many cases the Jacobian contains only rotations and
projections and can thus be computed analytically.

a. Least-squares methods for track fitting

The overwhelming majority of experimental imple-
mentations use some kind of linear least-squares ap-
proach for the task of track fitting. The linear global
least-squares method is optimal if the track model is lin-
ear, i.e., if the track propagator fk!i from detector layer i
to detector layer k is a linear function of the state vector
qi and if all probability densities encountered during the
estimation procedure are Gaussian. If the track propa-
gator is nonlinear, the linear least-squares method is still
the optimal linear estimator. However, although least-
squares estimators are easy to compute, they lack ro-
bustness "Rousseeuw and Leroy, 1987#.

The starting point for deriving the global least-squares
method is the functional relationship between the initial
state q0 of the particle at the reference surface and the
vector of measurements mk at detector layer k,

mk = dk"q0# + !k, "8#

where dk is a composition of the measurement model
function mk=hk"qk# and the track propagator functions

dk = hk ! fk!k−1 ! ¯ ! f2!1 ! f1!0. "9#

The term !k is stochastic and contains all multiple Cou-
lomb scattering up to layer k as well as the measurement
error of mk. A linear estimator requires a linearized
track model, and for this the Jacobian Dk of dk is
needed,

Dk = HkFk!k−1 ¯ F2!1F1!0, "10#

where H is the Jacobian of h and F is the Jacobian of f.
The observations mk, the functions dk, the Jacobians

Dk, and the noise !k can each be arranged in a single
vector or matrix,

m = $m1

]
mn

%, d = $d1

]
dn
%, D = $D1

]
Dn

%, ! = $!1

]
!n
% ,

"11#

where n is the total number of measurement layers. The
model now becomes

m = d"q0# + ! , "12#

and the linearized version is

m = Dq0 + c + ! , "13#

where c is a constant vector. The global least-squares
estimate of q0 is given by
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Detector Geometry
•interactions in detector 

material limiting tracking 
performance 
➡ LHC detectors are complex 

• require a very detailed description  
of their geometry 

➡ experiments developed geometry 
models (translation into G4 simulation) 
• huge number of volumes 

•physics requirement to 
reach LHC goals                  
(e.g. W mass) 
➡ control material close to beam pipe                                      

at % level

model placed volumes

ALICE Root 4.3 M

ATLAS GeoModel 4.8 M

CMS DDD 2.7 M

LHCb LHCb Det.Des. 18.5 M

a “picture” of the ATLAS Pixels

G4 simulation
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Weighing Detectors during Construction
•huge effort in experiments 
➡ put each individual detector part on 

balance and compare with model 
• CMS and ATLAS measured weight of 

their tracker and all of its components 
➡ correct the geometry implementation in 

simulation and reconstruction

CMS estimated from 
measurements

simulation

active Pixels 2598 g 2455 g

full detector 6350 kg 6173 kg

ATLAS estimated from 
measurements

simulation

Pixel package 201 kg  197 kg

SCT detector 672 ±15 kg  672 kg

TRT detector 2961 ±14 kg 2962 kg

Prelim
inary

Weighing'detectors'during'construction
Weigh&assembled&parts&where&possible,&to&cross&check.
eg.&Measured&ATLAS&TRT,&and&TRT+SCT&after&insertion.

Pippa&Wells,&CERN9&May&2011 44
example: ATLAS TRT 
measured before and 

after insertion of the SCT

14 Oct 2006 12:1 AR ANRV290-NS56-10.tex XMLPublishSM(2004/02/24) P1: KUV

390 FROIDEVAUX ! SPHICAS

on the material budget led to risky technical solutions for cooling and power,
involving hard-to-validate thin-walled aluminum, copper/nickel, or titanium pipes
and polyimide/aluminum tapes rather than the less risky but heavier stainless steel
pipes and polyimide/copper tapes.

Many of the systems’ aspects were discovered as the detailed design progressed,
rather than foreseen early on, and this has led to difficult retrofitting exercises
and sometimes to technical solutions more complex and risky than those that
would be devised from a clean slate today. Some substrates for the electronics of
the silicon modules barely existed in terms of conceptual design when the front-
end electronics chip was ready for production. This is one example of a specific
and critical component that was not always incorporated into the detailed design
of the system from the beginning.

Another more general example stems from the engineering choices made for
the implementation of the on-detector and off-detector cooling systems: There are
about as many on-detector cooling schemes and pipe material choices as there are
detector components (three in ATLAS and four in CMS). The cooling systems
are all operating under severe on-detector space limitations and at high pressure
(from three to six bars). These systems range from room-temperature monophase
C6F14 for the ATLAS TRT to cold monophase C6F14 for the CMS tracker and
to cold evaporative C3F8 for the ATLAS SCT and pixels. Although one fervently
hopes that all these schemes will operate successfully once commissioned in situ, it
is fair to say a posteriori that this is one area where a stronger and more centralized
engineering effort would have probably produced a more uniform and less risky
set of solutions.

Table 5 shows how optimistic the estimates of the material budget of the ATLAS
and CMS trackers were at the time of the Technical Proposals in 1994 and how
they have evolved since then to the values quoted in early 2006, a time when most
of the tracker components have been manufactured, much of the integration work

TABLE 5 Evolution of the amount of material expected in the ATLAS and CMS trackers
from 1994 to 2006

ATLAS CMS
Date η ≈ 0 η ≈ 1.7 η ≈ 0 η ≈ 1.7

1994 (Technical Proposals) 0.20 0.70 0.15 0.60

1997 (Technical Design Reports) 0.25 1.50 0.25 0.85

2006 (End of construction) 0.35 1.35 0.35 1.50

The numbers are given in fractions of radiation lengths (X/X0). Note that for ATLAS, the reduction in material from 1997
to 2006 at η ≈ 1.7 is due to the rerouting of pixel services from an integrated barrel tracker layout with pixel services
along the barrel LAr cryostat, to an independent pixel layout with pixel services routed at much lower radius and entering
a patch panel outside the acceptance of the tracker (this material appears now at η ≈ 3). Note also that the numbers for
CMS represent almost all the material seen by particles before entering the active part of the crystal calorimeter, whereas
they do not for ATLAS, in which particles see in addition the barrel LAr cryostat and the solenoid coil (amounting to
approximately 2 X0 at η = 0), or the end-cap LAr cryostat at the larger rapidities.
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Full and Fast (Tracking) Geometries
•complex G4 geometries not 

optimal for reconstruction 
➡ simplified tracking geometries 
➡ material surfaces, field volumes 

•reduced number of 
volumes 
➡ blending details of material onto 

simple surfaces/volumes 
➡ surfaces with 2D material density 

maps, templates per Si sensor...

G4 tracking

ALICE 4.3 M same *1

ATLAS 4.8 M 10.2K *2

CMS 2.7 M   3.8K *2

LHCb 18.5 M 30

ATLAS

ATLAS

*1 ALICE uses full geometry (TGeo)
*2 plus a surface per Si sensor

ATLAS

ATLAS
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Embedded Navigation Schemes
•embedded navigation scheme in 

tracking geometries 
➡ G4 navigation uses voxelisation as generic 

navigation mechanism 
➡ embedded navigation for simplified models 

• used in pattern recognition, extrapolation, 
track fitting and fast simulation 

•example: ATLAS 
➡ developed geometry of connected volumes 
➡ boundary surfaces connect neighbouring 

volumes to predict next step

ATLAS G4 tracking ratio

crossed volumes 
in tracker 474 95 5

time in 
SI2K sec 19.1 2.3 8.4

(neutral geantinos, no field lookups)

A.Salzburger

Volume
      A

Volume
     B

Volume
     C

Surface CB

Su
rf

ac
e 

A
B

Su
rf
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e 

A
C

nAC

nCB

t1

t2
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Detour: Simulation (Geant4)
•Geant4 is based upon 
➡ stack to keep track of all particles produced and stack manager 
➡ extrapolation system to propagate each particle: 

• transport engine with navigation 
• geometry model  
• B-field 

➡ set of physics processes describing interaction of particles with matter 
➡ a user application interface, ...

push
primaries

add secondaries produced

loop
over

particlesparticle
stack

stack
manager

transport
engine

B-field
map

geometry

physicsphysicsphysicsphysics
physics

processes

user
application

Geant4 and record hits

see lecture
by John Apostolakis

same concept as for 
track reconstruction

for completeness 
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Fast Simulation

•CPU needs for full G4 
exceeds computing models 
➡ simulation strategies of experiments 

mix full G4 and fast simulation  

•fast simulation engines 
➡ fast calo. simulation (parameterisation, 

showers libraries, ...) 
➡ simplified tracking geometries 
➡ simplify physics processes w.r.t. G4 
➡ output in same data model as full sim. 
➡ able to run full reconstruction 

(+trigger)

G4 fast sim.

CMS 360 0.8

ATLAS 1990 7.4

• ttbar events, in kSI2K sec 
• G4 differences: calo.modeling , phys.list, η cuts, b-field

R

R

z

z

CMS Full Simulation

CMS Fast Simulation

z

for completeness 
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Back to Tracking: Track  Fitting
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Track Fitting
•measurements mk of a track 
➡ in mathematical terms a model: 

➡ in practice those mk are clusters, drift circles, ...

A Salzburger / Artemis School on Calibration and performance of ATLAS detectors / ID reconstruction - part I /  16-09-2008  

Track Reconstruction steps #classical$

! first (global) pattern recognition, 

finding hits associated to one track

! track fit (estimation of track 

parameters and errors): {x,C}

! more difficult with noise and hits from

secondary particles

! possibility of fake reconstruction

! in modern track reconstruction, this 

classical picture does not work 

anymore

~ functional dependency of  
   measurement on e.g. track angle 

one has to resort to numerical schemes such as the
Runge-Kutta integration of the equation of motion.

3. Error propagation

During the track parameter estimation procedure,
propagation of the track parameter covariance matrix
along with the track parameters themselves is often re-
quested. The standard procedure for this so-called linear
error propagation is a similarity transformation between
layers i and k,

Ck = Fk!iCiFk!i
T , "4#

where C is the covariance matrix and Fk!i is the Jacobian
matrix of the propagation from layer i to k,

Fk!i =
!qk

!qi
. "5#

For analytical track models the Jacobian is also analyti-
cal "Strandlie and Wittek, 2006#. In inhomogeneous
magnetic fields, the derivatives can be calculated by
purely numerical schemes or by semianalytical propaga-
tion of the derivatives in parallel to the Runge-Kutta
propagation of the track parameters "Bugge and
Myrheim, 1981#.

4. Material effects

The most important effects on the trajectory of
charged particles caused by material present in the de-
tector volume are ionization energy loss and multiple
Coulomb scattering "Amsler et al., 2008#. For light par-
ticles such as electrons, radiation energy loss by brems-
strahlung also plays an important role. The fluctuations
of ionization energy loss are usually quite small, and
such energy loss is therefore normally treated
during track fitting as a deterministic correction to the
state vector "Frühwirth et al., 2000#. Bremsstrahlung en-
ergy loss, on the other hand, suffers from large fluctua-
tions "Bethe and Heitler, 1934# and affects therefore
both the state vector and its covariance matrix. Multiple
Coulomb scattering is an elastic process, which in a thin
scatterer disturbs only the direction of a passing charged
particle; in a sufficiently thick scatterer, the position in a
plane transversal to the incident direction is also
changed "Amsler et al., 2008#. Since the mean value of
the scattering angle and an eventual offset is zero, only
the covariance matrix is updated in order to incorporate
the effects of multiple scattering into the track fitting
procedure.

5. Measurement model

The measurement model hk describes the functional
dependence of the measured quantities in layer k, mk,
on the state vector at the same layer,

mk = hk"qk# . "6#

The vector of measurements mk usually consists of the
measured positions but can also contain other quanti-
ties, e.g., measurements of direction or even momentum.

During the estimation procedure the Jacobian Hk of this
transformation is often needed,

Hk =
!mk

!qk
. "7#

In many cases the Jacobian contains only rotations and
projections and can thus be computed analytically.

a. Least-squares methods for track fitting

The overwhelming majority of experimental imple-
mentations use some kind of linear least-squares ap-
proach for the task of track fitting. The linear global
least-squares method is optimal if the track model is lin-
ear, i.e., if the track propagator fk!i from detector layer i
to detector layer k is a linear function of the state vector
qi and if all probability densities encountered during the
estimation procedure are Gaussian. If the track propa-
gator is nonlinear, the linear least-squares method is still
the optimal linear estimator. However, although least-
squares estimators are easy to compute, they lack ro-
bustness "Rousseeuw and Leroy, 1987#.

The starting point for deriving the global least-squares
method is the functional relationship between the initial
state q0 of the particle at the reference surface and the
vector of measurements mk at detector layer k,

mk = dk"q0# + !k, "8#

where dk is a composition of the measurement model
function mk=hk"qk# and the track propagator functions

dk = hk ! fk!k−1 ! ¯ ! f2!1 ! f1!0. "9#

The term !k is stochastic and contains all multiple Cou-
lomb scattering up to layer k as well as the measurement
error of mk. A linear estimator requires a linearized
track model, and for this the Jacobian Dk of dk is
needed,

Dk = HkFk!k−1 ¯ F2!1F1!0, "10#

where H is the Jacobian of h and F is the Jacobian of f.
The observations mk, the functions dk, the Jacobians

Dk, and the noise !k can each be arranged in a single
vector or matrix,

m = $m1

]
mn

%, d = $d1

]
dn
%, D = $D1

]
Dn

%, ! = $!1

]
!n
% ,

"11#

where n is the total number of measurement layers. The
model now becomes

m = d"q0# + ! , "12#

and the linearized version is

m = Dq0 + c + ! , "13#

where c is a constant vector. The global least-squares
estimate of q0 is given by
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with:

one has to resort to numerical schemes such as the
Runge-Kutta integration of the equation of motion.

3. Error propagation

During the track parameter estimation procedure,
propagation of the track parameter covariance matrix
along with the track parameters themselves is often re-
quested. The standard procedure for this so-called linear
error propagation is a similarity transformation between
layers i and k,

Ck = Fk!iCiFk!i
T , "4#

where C is the covariance matrix and Fk!i is the Jacobian
matrix of the propagation from layer i to k,

Fk!i =
!qk

!qi
. "5#

For analytical track models the Jacobian is also analyti-
cal "Strandlie and Wittek, 2006#. In inhomogeneous
magnetic fields, the derivatives can be calculated by
purely numerical schemes or by semianalytical propaga-
tion of the derivatives in parallel to the Runge-Kutta
propagation of the track parameters "Bugge and
Myrheim, 1981#.

4. Material effects

The most important effects on the trajectory of
charged particles caused by material present in the de-
tector volume are ionization energy loss and multiple
Coulomb scattering "Amsler et al., 2008#. For light par-
ticles such as electrons, radiation energy loss by brems-
strahlung also plays an important role. The fluctuations
of ionization energy loss are usually quite small, and
such energy loss is therefore normally treated
during track fitting as a deterministic correction to the
state vector "Frühwirth et al., 2000#. Bremsstrahlung en-
ergy loss, on the other hand, suffers from large fluctua-
tions "Bethe and Heitler, 1934# and affects therefore
both the state vector and its covariance matrix. Multiple
Coulomb scattering is an elastic process, which in a thin
scatterer disturbs only the direction of a passing charged
particle; in a sufficiently thick scatterer, the position in a
plane transversal to the incident direction is also
changed "Amsler et al., 2008#. Since the mean value of
the scattering angle and an eventual offset is zero, only
the covariance matrix is updated in order to incorporate
the effects of multiple scattering into the track fitting
procedure.

5. Measurement model

The measurement model hk describes the functional
dependence of the measured quantities in layer k, mk,
on the state vector at the same layer,

mk = hk"qk# . "6#

The vector of measurements mk usually consists of the
measured positions but can also contain other quanti-
ties, e.g., measurements of direction or even momentum.

During the estimation procedure the Jacobian Hk of this
transformation is often needed,

Hk =
!mk

!qk
. "7#

In many cases the Jacobian contains only rotations and
projections and can thus be computed analytically.

a. Least-squares methods for track fitting

The overwhelming majority of experimental imple-
mentations use some kind of linear least-squares ap-
proach for the task of track fitting. The linear global
least-squares method is optimal if the track model is lin-
ear, i.e., if the track propagator fk!i from detector layer i
to detector layer k is a linear function of the state vector
qi and if all probability densities encountered during the
estimation procedure are Gaussian. If the track propa-
gator is nonlinear, the linear least-squares method is still
the optimal linear estimator. However, although least-
squares estimators are easy to compute, they lack ro-
bustness "Rousseeuw and Leroy, 1987#.

The starting point for deriving the global least-squares
method is the functional relationship between the initial
state q0 of the particle at the reference surface and the
vector of measurements mk at detector layer k,

mk = dk"q0# + !k, "8#

where dk is a composition of the measurement model
function mk=hk"qk# and the track propagator functions

dk = hk ! fk!k−1 ! ¯ ! f2!1 ! f1!0. "9#

The term !k is stochastic and contains all multiple Cou-
lomb scattering up to layer k as well as the measurement
error of mk. A linear estimator requires a linearized
track model, and for this the Jacobian Dk of dk is
needed,

Dk = HkFk!k−1 ¯ F2!1F1!0, "10#

where H is the Jacobian of h and F is the Jacobian of f.
The observations mk, the functions dk, the Jacobians

Dk, and the noise !k can each be arranged in a single
vector or matrix,

m = $m1

]
mn

%, d = $d1

]
dn
%, D = $D1

]
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%, ! = $!1

]
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% ,

"11#

where n is the total number of measurement layers. The
model now becomes

m = d"q0# + ! , "12#

and the linearized version is

m = Dq0 + c + ! , "13#

where c is a constant vector. The global least-squares
estimate of q0 is given by
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one has to resort to numerical schemes such as the
Runge-Kutta integration of the equation of motion.

3. Error propagation

During the track parameter estimation procedure,
propagation of the track parameter covariance matrix
along with the track parameters themselves is often re-
quested. The standard procedure for this so-called linear
error propagation is a similarity transformation between
layers i and k,

Ck = Fk!iCiFk!i
T , "4#

where C is the covariance matrix and Fk!i is the Jacobian
matrix of the propagation from layer i to k,

Fk!i =
!qk

!qi
. "5#

For analytical track models the Jacobian is also analyti-
cal "Strandlie and Wittek, 2006#. In inhomogeneous
magnetic fields, the derivatives can be calculated by
purely numerical schemes or by semianalytical propaga-
tion of the derivatives in parallel to the Runge-Kutta
propagation of the track parameters "Bugge and
Myrheim, 1981#.

4. Material effects

The most important effects on the trajectory of
charged particles caused by material present in the de-
tector volume are ionization energy loss and multiple
Coulomb scattering "Amsler et al., 2008#. For light par-
ticles such as electrons, radiation energy loss by brems-
strahlung also plays an important role. The fluctuations
of ionization energy loss are usually quite small, and
such energy loss is therefore normally treated
during track fitting as a deterministic correction to the
state vector "Frühwirth et al., 2000#. Bremsstrahlung en-
ergy loss, on the other hand, suffers from large fluctua-
tions "Bethe and Heitler, 1934# and affects therefore
both the state vector and its covariance matrix. Multiple
Coulomb scattering is an elastic process, which in a thin
scatterer disturbs only the direction of a passing charged
particle; in a sufficiently thick scatterer, the position in a
plane transversal to the incident direction is also
changed "Amsler et al., 2008#. Since the mean value of
the scattering angle and an eventual offset is zero, only
the covariance matrix is updated in order to incorporate
the effects of multiple scattering into the track fitting
procedure.

5. Measurement model

The measurement model hk describes the functional
dependence of the measured quantities in layer k, mk,
on the state vector at the same layer,

mk = hk"qk# . "6#

The vector of measurements mk usually consists of the
measured positions but can also contain other quanti-
ties, e.g., measurements of direction or even momentum.

During the estimation procedure the Jacobian Hk of this
transformation is often needed,

Hk =
!mk

!qk
. "7#

In many cases the Jacobian contains only rotations and
projections and can thus be computed analytically.

a. Least-squares methods for track fitting

The overwhelming majority of experimental imple-
mentations use some kind of linear least-squares ap-
proach for the task of track fitting. The linear global
least-squares method is optimal if the track model is lin-
ear, i.e., if the track propagator fk!i from detector layer i
to detector layer k is a linear function of the state vector
qi and if all probability densities encountered during the
estimation procedure are Gaussian. If the track propa-
gator is nonlinear, the linear least-squares method is still
the optimal linear estimator. However, although least-
squares estimators are easy to compute, they lack ro-
bustness "Rousseeuw and Leroy, 1987#.

The starting point for deriving the global least-squares
method is the functional relationship between the initial
state q0 of the particle at the reference surface and the
vector of measurements mk at detector layer k,

mk = dk"q0# + !k, "8#

where dk is a composition of the measurement model
function mk=hk"qk# and the track propagator functions

dk = hk ! fk!k−1 ! ¯ ! f2!1 ! f1!0. "9#

The term !k is stochastic and contains all multiple Cou-
lomb scattering up to layer k as well as the measurement
error of mk. A linear estimator requires a linearized
track model, and for this the Jacobian Dk of dk is
needed,

Dk = HkFk!k−1 ¯ F2!1F1!0, "10#

where H is the Jacobian of h and F is the Jacobian of f.
The observations mk, the functions dk, the Jacobians

Dk, and the noise !k can each be arranged in a single
vector or matrix,

m = $m1

]
mn

%, d = $d1

]
dn
%, D = $D1

]
Dn

%, ! = $!1

]
!n
% ,

"11#

where n is the total number of measurement layers. The
model now becomes

m = d"q0# + ! , "12#

and the linearized version is

m = Dq0 + c + ! , "13#

where c is a constant vector. The global least-squares
estimate of q0 is given by
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~ Jacobian, often contains only 
   rotations and projections

one has to resort to numerical schemes such as the
Runge-Kutta integration of the equation of motion.

3. Error propagation

During the track parameter estimation procedure,
propagation of the track parameter covariance matrix
along with the track parameters themselves is often re-
quested. The standard procedure for this so-called linear
error propagation is a similarity transformation between
layers i and k,

Ck = Fk!iCiFk!i
T , "4#

where C is the covariance matrix and Fk!i is the Jacobian
matrix of the propagation from layer i to k,

Fk!i =
!qk

!qi
. "5#

For analytical track models the Jacobian is also analyti-
cal "Strandlie and Wittek, 2006#. In inhomogeneous
magnetic fields, the derivatives can be calculated by
purely numerical schemes or by semianalytical propaga-
tion of the derivatives in parallel to the Runge-Kutta
propagation of the track parameters "Bugge and
Myrheim, 1981#.

4. Material effects

The most important effects on the trajectory of
charged particles caused by material present in the de-
tector volume are ionization energy loss and multiple
Coulomb scattering "Amsler et al., 2008#. For light par-
ticles such as electrons, radiation energy loss by brems-
strahlung also plays an important role. The fluctuations
of ionization energy loss are usually quite small, and
such energy loss is therefore normally treated
during track fitting as a deterministic correction to the
state vector "Frühwirth et al., 2000#. Bremsstrahlung en-
ergy loss, on the other hand, suffers from large fluctua-
tions "Bethe and Heitler, 1934# and affects therefore
both the state vector and its covariance matrix. Multiple
Coulomb scattering is an elastic process, which in a thin
scatterer disturbs only the direction of a passing charged
particle; in a sufficiently thick scatterer, the position in a
plane transversal to the incident direction is also
changed "Amsler et al., 2008#. Since the mean value of
the scattering angle and an eventual offset is zero, only
the covariance matrix is updated in order to incorporate
the effects of multiple scattering into the track fitting
procedure.

5. Measurement model

The measurement model hk describes the functional
dependence of the measured quantities in layer k, mk,
on the state vector at the same layer,

mk = hk"qk# . "6#

The vector of measurements mk usually consists of the
measured positions but can also contain other quanti-
ties, e.g., measurements of direction or even momentum.

During the estimation procedure the Jacobian Hk of this
transformation is often needed,

Hk =
!mk

!qk
. "7#

In many cases the Jacobian contains only rotations and
projections and can thus be computed analytically.

a. Least-squares methods for track fitting

The overwhelming majority of experimental imple-
mentations use some kind of linear least-squares ap-
proach for the task of track fitting. The linear global
least-squares method is optimal if the track model is lin-
ear, i.e., if the track propagator fk!i from detector layer i
to detector layer k is a linear function of the state vector
qi and if all probability densities encountered during the
estimation procedure are Gaussian. If the track propa-
gator is nonlinear, the linear least-squares method is still
the optimal linear estimator. However, although least-
squares estimators are easy to compute, they lack ro-
bustness "Rousseeuw and Leroy, 1987#.

The starting point for deriving the global least-squares
method is the functional relationship between the initial
state q0 of the particle at the reference surface and the
vector of measurements mk at detector layer k,

mk = dk"q0# + !k, "8#

where dk is a composition of the measurement model
function mk=hk"qk# and the track propagator functions

dk = hk ! fk!k−1 ! ¯ ! f2!1 ! f1!0. "9#

The term !k is stochastic and contains all multiple Cou-
lomb scattering up to layer k as well as the measurement
error of mk. A linear estimator requires a linearized
track model, and for this the Jacobian Dk of dk is
needed,

Dk = HkFk!k−1 ¯ F2!1F1!0, "10#

where H is the Jacobian of h and F is the Jacobian of f.
The observations mk, the functions dk, the Jacobians

Dk, and the noise !k can each be arranged in a single
vector or matrix,

m = $m1

]
mn

%, d = $d1

]
dn
%, D = $D1

]
Dn

%, ! = $!1

]
!n
% ,

"11#

where n is the total number of measurement layers. The
model now becomes

m = d"q0# + ! , "12#

and the linearized version is

m = Dq0 + c + ! , "13#

where c is a constant vector. The global least-squares
estimate of q0 is given by

1424 Are Strandlie and Rudolf Frühwirth: Track and vertex reconstruction: From …

Rev. Mod. Phys., Vol. 82, No. 2, April–June 2010

one has to resort to numerical schemes such as the
Runge-Kutta integration of the equation of motion.

3. Error propagation

During the track parameter estimation procedure,
propagation of the track parameter covariance matrix
along with the track parameters themselves is often re-
quested. The standard procedure for this so-called linear
error propagation is a similarity transformation between
layers i and k,

Ck = Fk!iCiFk!i
T , "4#

where C is the covariance matrix and Fk!i is the Jacobian
matrix of the propagation from layer i to k,

Fk!i =
!qk

!qi
. "5#

For analytical track models the Jacobian is also analyti-
cal "Strandlie and Wittek, 2006#. In inhomogeneous
magnetic fields, the derivatives can be calculated by
purely numerical schemes or by semianalytical propaga-
tion of the derivatives in parallel to the Runge-Kutta
propagation of the track parameters "Bugge and
Myrheim, 1981#.

4. Material effects

The most important effects on the trajectory of
charged particles caused by material present in the de-
tector volume are ionization energy loss and multiple
Coulomb scattering "Amsler et al., 2008#. For light par-
ticles such as electrons, radiation energy loss by brems-
strahlung also plays an important role. The fluctuations
of ionization energy loss are usually quite small, and
such energy loss is therefore normally treated
during track fitting as a deterministic correction to the
state vector "Frühwirth et al., 2000#. Bremsstrahlung en-
ergy loss, on the other hand, suffers from large fluctua-
tions "Bethe and Heitler, 1934# and affects therefore
both the state vector and its covariance matrix. Multiple
Coulomb scattering is an elastic process, which in a thin
scatterer disturbs only the direction of a passing charged
particle; in a sufficiently thick scatterer, the position in a
plane transversal to the incident direction is also
changed "Amsler et al., 2008#. Since the mean value of
the scattering angle and an eventual offset is zero, only
the covariance matrix is updated in order to incorporate
the effects of multiple scattering into the track fitting
procedure.

5. Measurement model

The measurement model hk describes the functional
dependence of the measured quantities in layer k, mk,
on the state vector at the same layer,

mk = hk"qk# . "6#

The vector of measurements mk usually consists of the
measured positions but can also contain other quanti-
ties, e.g., measurements of direction or even momentum.

During the estimation procedure the Jacobian Hk of this
transformation is often needed,

Hk =
!mk

!qk
. "7#

In many cases the Jacobian contains only rotations and
projections and can thus be computed analytically.

a. Least-squares methods for track fitting

The overwhelming majority of experimental imple-
mentations use some kind of linear least-squares ap-
proach for the task of track fitting. The linear global
least-squares method is optimal if the track model is lin-
ear, i.e., if the track propagator fk!i from detector layer i
to detector layer k is a linear function of the state vector
qi and if all probability densities encountered during the
estimation procedure are Gaussian. If the track propa-
gator is nonlinear, the linear least-squares method is still
the optimal linear estimator. However, although least-
squares estimators are easy to compute, they lack ro-
bustness "Rousseeuw and Leroy, 1987#.

The starting point for deriving the global least-squares
method is the functional relationship between the initial
state q0 of the particle at the reference surface and the
vector of measurements mk at detector layer k,

mk = dk"q0# + !k, "8#

where dk is a composition of the measurement model
function mk=hk"qk# and the track propagator functions

dk = hk ! fk!k−1 ! ¯ ! f2!1 ! f1!0. "9#

The term !k is stochastic and contains all multiple Cou-
lomb scattering up to layer k as well as the measurement
error of mk. A linear estimator requires a linearized
track model, and for this the Jacobian Dk of dk is
needed,

Dk = HkFk!k−1 ¯ F2!1F1!0, "10#

where H is the Jacobian of h and F is the Jacobian of f.
The observations mk, the functions dk, the Jacobians

Dk, and the noise !k can each be arranged in a single
vector or matrix,

m = $m1

]
mn

%, d = $d1

]
dn
%, D = $D1

]
Dn

%, ! = $!1

]
!n
% ,

"11#

where n is the total number of measurement layers. The
model now becomes

m = d"q0# + ! , "12#

and the linearized version is

m = Dq0 + c + ! , "13#

where c is a constant vector. The global least-squares
estimate of q0 is given by
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~ error (noise term)  
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Track Fitting
•measurements mk of a track 
➡ in mathematical terms a model: 

➡ in practice those mk are clusters, drift circles, ...
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Track Reconstruction steps #classical$

! first (global) pattern recognition, 

finding hits associated to one track

! track fit (estimation of track 

parameters and errors): {x,C}

! more difficult with noise and hits from

secondary particles

! possibility of fake reconstruction

! in modern track reconstruction, this 

classical picture does not work 

anymore

~ functional dependency of  
   measurement on e.g. track angle 

one has to resort to numerical schemes such as the
Runge-Kutta integration of the equation of motion.

3. Error propagation

During the track parameter estimation procedure,
propagation of the track parameter covariance matrix
along with the track parameters themselves is often re-
quested. The standard procedure for this so-called linear
error propagation is a similarity transformation between
layers i and k,

Ck = Fk!iCiFk!i
T , "4#

where C is the covariance matrix and Fk!i is the Jacobian
matrix of the propagation from layer i to k,

Fk!i =
!qk

!qi
. "5#

For analytical track models the Jacobian is also analyti-
cal "Strandlie and Wittek, 2006#. In inhomogeneous
magnetic fields, the derivatives can be calculated by
purely numerical schemes or by semianalytical propaga-
tion of the derivatives in parallel to the Runge-Kutta
propagation of the track parameters "Bugge and
Myrheim, 1981#.

4. Material effects

The most important effects on the trajectory of
charged particles caused by material present in the de-
tector volume are ionization energy loss and multiple
Coulomb scattering "Amsler et al., 2008#. For light par-
ticles such as electrons, radiation energy loss by brems-
strahlung also plays an important role. The fluctuations
of ionization energy loss are usually quite small, and
such energy loss is therefore normally treated
during track fitting as a deterministic correction to the
state vector "Frühwirth et al., 2000#. Bremsstrahlung en-
ergy loss, on the other hand, suffers from large fluctua-
tions "Bethe and Heitler, 1934# and affects therefore
both the state vector and its covariance matrix. Multiple
Coulomb scattering is an elastic process, which in a thin
scatterer disturbs only the direction of a passing charged
particle; in a sufficiently thick scatterer, the position in a
plane transversal to the incident direction is also
changed "Amsler et al., 2008#. Since the mean value of
the scattering angle and an eventual offset is zero, only
the covariance matrix is updated in order to incorporate
the effects of multiple scattering into the track fitting
procedure.

5. Measurement model

The measurement model hk describes the functional
dependence of the measured quantities in layer k, mk,
on the state vector at the same layer,

mk = hk"qk# . "6#

The vector of measurements mk usually consists of the
measured positions but can also contain other quanti-
ties, e.g., measurements of direction or even momentum.

During the estimation procedure the Jacobian Hk of this
transformation is often needed,

Hk =
!mk

!qk
. "7#

In many cases the Jacobian contains only rotations and
projections and can thus be computed analytically.

a. Least-squares methods for track fitting

The overwhelming majority of experimental imple-
mentations use some kind of linear least-squares ap-
proach for the task of track fitting. The linear global
least-squares method is optimal if the track model is lin-
ear, i.e., if the track propagator fk!i from detector layer i
to detector layer k is a linear function of the state vector
qi and if all probability densities encountered during the
estimation procedure are Gaussian. If the track propa-
gator is nonlinear, the linear least-squares method is still
the optimal linear estimator. However, although least-
squares estimators are easy to compute, they lack ro-
bustness "Rousseeuw and Leroy, 1987#.

The starting point for deriving the global least-squares
method is the functional relationship between the initial
state q0 of the particle at the reference surface and the
vector of measurements mk at detector layer k,

mk = dk"q0# + !k, "8#

where dk is a composition of the measurement model
function mk=hk"qk# and the track propagator functions

dk = hk ! fk!k−1 ! ¯ ! f2!1 ! f1!0. "9#

The term !k is stochastic and contains all multiple Cou-
lomb scattering up to layer k as well as the measurement
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~ error (noise term)  

•examples for fitting techniques 
➡ Least Square track fit or Kalman Filter track fit 
➡ more specialised versions: Gaussian Sum Filter or Deterministic Annealing Filters

•task of a track fit 
➡ estimate the track parameters from a set                                                                                                     of 

measurements



39Markus Elsing

Classical Least Square Track Fit
•construct and minimise the χ2 function:

Carl Friedrich Gauss is credited with developing the fundamentals of 
the basis for least-squares analysis in 1795 at the age of eighteen. 

Legendre was the first to publish the method, however.

New  Tracking

A Salzburger / Artemis School on Calibration and performance of ATLAS detectors / ID reconstruction - part I /  16-09-2008  

Global Chi% Fitter
! all measurements are included in the fit at once (global)

! minimisation carried out on chi2 function 

4-6 Chapter 4 • Track Reconstruction

often linearised through an Taylor expansion to first order at an approximative solution that
is given through the seed parameters of the fit x0,I , yielding

f(x0) = f(x0,I) +
⌅f

⌅x
|x=x0,I (x� x0,I) + O((x� x0,I)2). (4.13)

Material Effects Integration in the global Track Fit

In Eq. (4.8) the system evolution has been used without the random disturbances due to
interaction of the particle with the detector material. While the deterministic treatment of
energy loss (⇥ Chap. 7) is accounted for in the track extrapolation process, the stochastic
behavior of the multiple scattering (and in some applications also energy loss effects) has to
dealt with separately in the global ⇤2 function. This is done by introducing the deflection
angle �j as an additional parameter to the fit. The global ⇤2 function then becomes

⇤2 =
�

i

[mi � hi(fi(x0, {�j}i))]2

⇥2
i

+
�

j

�2
j

⇥2
MS,j

. (4.14)

The contribution of the fitted scattering angle to the global ⇤2 function has to be evidently
regulated by the expected range of the scattering process due to the traversed material. In
the broadest sense, the scattering contribution is therefore also dependent on the initial state
vector x0, since the traversed material is clearly a function of the trajectory7. In some ap-
plications, such as dedicated electron fitting of in the presence of large amounts of material,
also the energy loss can be introduced as a fit parameter. The according straggling error is
then, in general, difficult to describe theoretically and is often taken from a parameterisation.

4.3.2 The Kalman Filter

While global fitting techniques have been amongst the first methods that have been used in
the reconstruction of high energy physics events, iterative fitting methods have been only
introduced to event reconstruction during the era of LEP data taking between 1989 and 2001.
The first progressive methods have been proposed by Billoir [4.3], still being — in the begin-
ning — of limited performance in comparison to the widely spread least squares method.
Only the realisation [4.4] that the progressive fit is identical to the first part of the well known
Kalman filter application, a technique that has been used for many years in signal process-
ing and radar tracking, and thus the integration of the full Kalman filter mechanism evoked
its big success in track reconstruction of high energy physics experiments. A notation in
analogy to [4.4] is in the following chosen for the convenience of the reader.
The Kalman filter is a recursive procedure for estimating the state parameters of a discrete,
linear dynamic system. In track fitting, this system is given by the measurements {mi}
that are caused by one particle when traversing the detector while being disturbed through
interactions with the detector material.
We will, as a first step, limit the discussion to the linear Kalman filter, i.e. we assume that
the track extrapolation in the system evolution is a linear function of the state vector x. The
extension of the Kalman filter to a non-linear system will be discussed subsequently.

7It is worth mentioning that all successive predicted measurements {mpred
i } to the scattering surface at sj

with i > j have to take the scattered direction into account when evaluating the system evolution.
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3. Error propagation
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quested. The standard procedure for this so-called linear
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For analytical track models the Jacobian is also analyti-
cal "Strandlie and Wittek, 2006#. In inhomogeneous
magnetic fields, the derivatives can be calculated by
purely numerical schemes or by semianalytical propaga-
tion of the derivatives in parallel to the Runge-Kutta
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ticles such as electrons, radiation energy loss by brems-
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During the estimation procedure the Jacobian Hk of this
transformation is often needed,

Hk =
!mk

!qk
. "7#

In many cases the Jacobian contains only rotations and
projections and can thus be computed analytically.

a. Least-squares methods for track fitting

The overwhelming majority of experimental imple-
mentations use some kind of linear least-squares ap-
proach for the task of track fitting. The linear global
least-squares method is optimal if the track model is lin-
ear, i.e., if the track propagator fk!i from detector layer i
to detector layer k is a linear function of the state vector
qi and if all probability densities encountered during the
estimation procedure are Gaussian. If the track propa-
gator is nonlinear, the linear least-squares method is still
the optimal linear estimator. However, although least-
squares estimators are easy to compute, they lack ro-
bustness "Rousseeuw and Leroy, 1987#.

The starting point for deriving the global least-squares
method is the functional relationship between the initial
state q0 of the particle at the reference surface and the
vector of measurements mk at detector layer k,

mk = dk"q0# + !k, "8#

where dk is a composition of the measurement model
function mk=hk"qk# and the track propagator functions

dk = hk ! fk!k−1 ! ¯ ! f2!1 ! f1!0. "9#

The term !k is stochastic and contains all multiple Cou-
lomb scattering up to layer k as well as the measurement
error of mk. A linear estimator requires a linearized
track model, and for this the Jacobian Dk of dk is
needed,

Dk = HkFk!k−1 ¯ F2!1F1!0, "10#

where H is the Jacobian of h and F is the Jacobian of f.
The observations mk, the functions dk, the Jacobians

Dk, and the noise !k can each be arranged in a single
vector or matrix,

m = $m1

]
mn

%, d = $d1

]
dn
%, D = $D1

]
Dn

%, ! = $!1

]
!n
% ,

"11#

where n is the total number of measurement layers. The
model now becomes

m = d"q0# + ! , "12#

and the linearized version is

m = Dq0 + c + ! , "13#

where c is a constant vector. The global least-squares
estimate of q0 is given by
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minimising the linearised χ2 yields:
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Global Chi% Fitter
! all measurements are included in the fit at once (global)

! minimisation carried out on chi2 function 
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often linearised through an Taylor expansion to first order at an approximative solution that
is given through the seed parameters of the fit x0,I , yielding

f(x0) = f(x0,I) +
⌅f

⌅x
|x=x0,I (x� x0,I) + O((x� x0,I)2). (4.13)

Material Effects Integration in the global Track Fit

In Eq. (4.8) the system evolution has been used without the random disturbances due to
interaction of the particle with the detector material. While the deterministic treatment of
energy loss (⇥ Chap. 7) is accounted for in the track extrapolation process, the stochastic
behavior of the multiple scattering (and in some applications also energy loss effects) has to
dealt with separately in the global ⇤2 function. This is done by introducing the deflection
angle �j as an additional parameter to the fit. The global ⇤2 function then becomes

⇤2 =
�

i

[mi � hi(fi(x0, {�j}i))]2

⇥2
i

+
�

j

�2
j

⇥2
MS,j

. (4.14)

The contribution of the fitted scattering angle to the global ⇤2 function has to be evidently
regulated by the expected range of the scattering process due to the traversed material. In
the broadest sense, the scattering contribution is therefore also dependent on the initial state
vector x0, since the traversed material is clearly a function of the trajectory7. In some ap-
plications, such as dedicated electron fitting of in the presence of large amounts of material,
also the energy loss can be introduced as a fit parameter. The according straggling error is
then, in general, difficult to describe theoretically and is often taken from a parameterisation.

4.3.2 The Kalman Filter

While global fitting techniques have been amongst the first methods that have been used in
the reconstruction of high energy physics events, iterative fitting methods have been only
introduced to event reconstruction during the era of LEP data taking between 1989 and 2001.
The first progressive methods have been proposed by Billoir [4.3], still being — in the begin-
ning — of limited performance in comparison to the widely spread least squares method.
Only the realisation [4.4] that the progressive fit is identical to the first part of the well known
Kalman filter application, a technique that has been used for many years in signal process-
ing and radar tracking, and thus the integration of the full Kalman filter mechanism evoked
its big success in track reconstruction of high energy physics experiments. A notation in
analogy to [4.4] is in the following chosen for the convenience of the reader.
The Kalman filter is a recursive procedure for estimating the state parameters of a discrete,
linear dynamic system. In track fitting, this system is given by the measurements {mi}
that are caused by one particle when traversing the detector while being disturbed through
interactions with the detector material.
We will, as a first step, limit the discussion to the linear Kalman filter, i.e. we assume that
the track extrapolation in the system evolution is a linear function of the state vector x. The
extension of the Kalman filter to a non-linear system will be discussed subsequently.

7It is worth mentioning that all successive predicted measurements {mpred
i } to the scattering surface at sj

with i > j have to take the scattered direction into account when evaluating the system evolution.
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! involves large matrix inversion (CPU consumption)

! seeding problem as in Kalman fitter not given
40Markus Elsing

Classical Least Square Track Fit
•material effects 
➡ can be absorbed in track model fk|i , provided effects are small 
➡ for substantial multiple scatting, allows for scattering angles in the fit •scattering angles 
➡ on each material surface, add 2 angles δθi as fee parameters to the fit 
➡ expected mean of those angles is 0 (!), their covariance Qi  is given by multiple 

scattering in x/X0 •changes to χ2 formula on previous slide 

➡ computationally expensive: need to invert a (5+2*n) matrix 
➡ advantage is that the fitted track precisely follows the                                               

particle trajectory:       (e.g. for ATLAS muon reconstruction)

scattering

θ
scat

χ 2 = Δmk
TGK

−1

k
∑ Δmk + δθi

TQi
−1

i
∑ δθi

Δmk =mk − dk p,δθi( )with:

for completeness 
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The Kalman Filter Track Fit
•a Kalman Filter is a progressive way of performing a least 

square fit 
➡ mathematically equivalent 

•how does the filter work ? 
1. trajectory parameters at point k-1

point&k(1&
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3. update predicted parameters 
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update) 

4. and start over with 1.
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The Kalman Filter Track Fit
•a Kalman Filter is a progressive way of performing a least 

square fit 
➡ mathematically equivalent 

•how does the filter work ? 
1. trajectory parameters at point k-1

point&k(1&

Predic/on&

Filtering&&of&k(th&point&&

Mul/ple&sca9ering&

2. propagate to point k to get 
predicted parameters                                             
(let’s ignore material effects)

3. update predicted parameters 
with measurement k                          
(simple weighted mean or gain matrix 
update) 

4. and start over with 1.

•material effects (multiple scattering and energy loss) 
➡ incorporated in the propagated parameters (prediction)
➡ and therefore enters into the updated parameters at point k
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The Kalman Filter Track Fit
•in mathematical terms: 

➡ alternative to gain matrix approach is a 
weighted mean to obtian pk|k 
• but requires to invert 5x5 matrix 

instead of a matrix of rank(Gk)

Introduction
Track finding
Track fitting

Vertex reconstruction
Conclusions and Outlook

Traditional approach
Adaptive approach

Track fitting: Traditional approach

Prediction and filter step

z

x

z = zk�1 z = zk

surface k � 1 surface k

filtered state
xk�1|k�1

scattering matter

predicted state xk|k�1

filtered state xk|k

measurement mk
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1. propagate pk-1 and its covariance Ck-1 :  

q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks

z

x

z = zk−1 z = zk

surface k − 1 surface k

filtered state
qk−1|k−1

scattering matter

predicted state qk|k−1

filtered state qk|k

measurement mk

FIG. 4. Prediction and filter step of the Kalman filter. The
propagation proceeds in the z direction, while the x coordinate
is measured. Adapted from Regler et al., 1996.
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q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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with Qk ~ noise term (M.S.)  

2. update prediction to get qk|k and Ck|k :  

q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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with Kk ~ gain matrix :

q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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proceeds from layer k+1 to layer k : 

with Ak ~ smoother gain matrix :

q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
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If there is substantial multiple scattering, the esti-
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1985".
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•Kalman Smoother: 
➡ provides full information along track 

➡ equivalent: combine forw./back. filter

for completeness 
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Brem. Fitting for Electrons
•material in tracker 
➡ e-bremsstrahlung and γ-conversions 

•electron efficiency limited 
➡ momentum loss due to bremsstrahlung leads 

to large changes in track curvature 
➡ fit is biased towards small momenta or fails 

completely 

•techniques to allow for 
bremsstrahlung in track fitting 
➡ brem. point in Least Square track fit 
➡ Kalman Filter with dynamic noise adjustment 
➡ Gaussian Sum Filter
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Gaussian Sum Filter
➡ approximate Bethe-Heitler distribution as 

Gaussian mixture 
• state vector after material correction 

becomes sum of Gaussian components 
➡ GSF resembles set of parallel Kalman Filters 

for N components 
• computationally expensive ! 
• default electron fitter in CMS and ATLAS

Gaussian
Sum Filter
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Deterministic Annealing Filters
•robust technique 
➡ developed for fitting with high occupancies 

• e.g. ATLAS TRT with high event pileup 
• reconstruction of 3-prong τ decays 

➡ can deal with several close by hits on a layer 

•adaptive fit 
➡ multiply weight of each hit in layer with 

assignment probability: 

➡ process decreasing temperature T is called 
annealing (iterative) 
• start at high T ~ all hits contribute same 
• at low T             ~ close by hits remain 

➡ can be written as a Multi Track Filter

distorted by the mirror and noise hits.

In a tracking detector embedded in a reasonably homogeneous magnetic field, one
is rather interested in fitting a set of measurements to a circle (if the detector mea-
sures points in a plane perpendicular to the magnetic field axis) or to a helix (if the
detector measures points in space) instead of to a straight line [1]. However, the
energy function that one wants to minimize in the more general case is in principle
the same as the one in Equation (2). The only difference is in the expression of the
distance between the measurement and the track, which will be the distance from
a point to a circle or from a point to a helix, respectively. In order to allow for the
possibility that none of the measurements in a layer are assigned to a track, the
energy function has to be slightly generalized:

E =
M

∑
k=1

[

Sk

(

nk
∑
j=1

s jk · d̂2jk

)

+λ(Sk−1)2
]

. (4)

Let us again assume that the assignment weights s jk take on the binary values 0
or 1, which we also assume for the quantity Sk. If the latter is zero, it means that
none of the measurements in layer k are assigned to the track, whereas a value one
means that one of the measurements is assigned. The quantity λ can be regarded
as a squared cutoff distance, in the sense that it will be energetically preferrable
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Fig. 3. Weight of a measurement as a function of the standardized distance to a track.
The cutoff is still at four standard deviations. A competing hit is positioned one standard
deviation away from the track.
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Adaptive methods

Such a procedure hopefully gives correct measurements 
high weight and wrong measurements low weight.

It is adaptive:
the weight of a measurement depends on the positions 
of the other measurements in the same layer competing 
for inclusion into the fit.

Assume that weights are defined as follows:

change of notation 
in continuous case normalized

distance

with:
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In summary, the DAF is significantly faster and more precise than the optimal,
“conventional” algorithm - a combinatorial Kalman filter. It is equally precise as
and faster than the standard EAA. The DAF is therefore the natural algorithm of
choice for such a complex problem in situations where optimal precision is re-
quired.

The next simulation experiment deals with the reconstruction of pairs of simulated,
nearby tracks in the ATLAS TRT, and the main purpose has been to make a com-
parison between the MTF and our best choice of a single-track algorithm: the DAF.
An example of a pair of simulated tracks in the Rφ-projection is shown in Figure 8.
The main results are shown in Table 2. The baseline for the generalized variance is
a Kalman filter fit to each of the tracks separately, without mirror hits and noise. For
both the DAF and the MTF the tracks are initialized close to their true positions.
The DAF is run to convergence sequentially on each of the tracks in a pair, whereas
the MTF runs on both tracks in parallel. From the results it is obvious that the MTF
yields a significant improvement in precision as compared to the DAF.

In Figure 9 the track pair from Figure 8 is shown again, but now the true track
measurements are indicated by a circle. The position of the tracks fitted by the
MTF are given by the solid lines.
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Fig. 8. One pair of simulated tracks in the ATLAS TRT. In addition to the hits and the
mirror hits of the tracks, 50 % noise has been added. This means that in every second layer
- on average - there is an extra hit together with its corresponding mirror hit.
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Noise Method
level DAF MTF
0% 281 4.52
10% 270 5.35
20% 388 6.26
30% 358 7.19
40% 409 9.50
50% 653 11.66

Table 2
The relative generalized variance of the DAF and the MTF with mirror hits for different
levels of additional noise.

3.2 The CMS Tracker [14]

Both the DAF and the MTF have been implemented in the official reconstruction
framework of CMS [15], and systematic, comparative reconstruction studies of
tracks simulated in the CMS Tracker have been performed 2 . A plot of one quad-

2 All results and most of the figures presented in this section have been taken from the Ph.
D. thesis of M. Winkler[15] (with permission).
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Fig. 9. The same pair of simulated tracks as the one shown in Figure 8. The true track hits
are marked by open circles. The solid lines are the fitted tracks.
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Track Finding
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Track Finding: Can you find the 50 GeV track?Can you find the 50 GeV Track?

cf Aaron Dominguez

you saw this already !
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Track Finding: Can you find the 50 GeV track?Can you find the 50 GeV Track?

cf Aaron Dominguez

here it is...

you saw this already !
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Track Finding
•the task of the track finding  
➡ identify track candidates in event 
➡ cope with the combinatorial 

explosion of possible hit 
combinations 

•different techniques 
➡ rough distinction: local/sequential  

and global/parallel methods 
➡ local method: generate seeds and 

complete them to track candidates 
➡ global method: simultaneous 

clustering of detector hits into track 
candidates 

•some local methods 
➡ track road 
➡ track following 
➡ progressive track finding

Transition
Radiation
Tracker

Silicon
Detectors

TRT Extension

Seed

Silicon
Track

Space Point
Silicon
Track
Candidate

Nominal
Interaction
Point

New  Tracking

•some global methods 
➡ conformal mapping 

• Hough and Legendre transform 
➡ adaptive methods 

• Elastic net, Cellular Automaton ...                              
(will not discuss the latter)
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Conformal Mapping
•Hough transform 
➡ cycles through the origin in x-y 

transform into point in u-v 

• each hit becomes a straight line

Introduction
Track finding
Track fitting

Vertex reconstruction
Conclusions and Outlook

Local methods
Global methods

Track finding: Global methods

Finding circles with the Hough transform
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• The decay length of a short-lived particle can be de-
termined by computing the distance between its esti-
mated production vertex and its estimated decay
vertex.

Similar to track reconstruction, the task of vertex re-
construction can be divided into vertex finding and ver-
tex fitting. The starting point of vertex finding is the set
of all valid tracks provided by the track reconstruction,
represented by a list of track parameter vectors. The
vertex finding algorithms classifies the tracks into vertex
candidates, which are fed into the vertex fit. The output
of the vertex fit is a list of vertices, each entry containing
the estimated vertex position as well as a set of updated
track parameter vectors of the particles associated to
that particular production point. Again the !2 or a re-
lated statistic can be used to test the vertex hypothesis.

A. Track finding

In experimental conditions such as those found in the
LHC experiments, many of the measurements are either
noise or belonging to particles with energy too low to be
interesting from a physics point of view. Therefore,
many hypotheses have to be explored in order to find
the set of interesting track candidates, and track finding
can in general be a cumbersome and time-consuming
procedure. Computational speed is an important issue,
and the choice of algorithms may be dictated by this
fact. Track finding often uses the knowledge of how a
charged particle moves inside the bulk of the detector,
the so-called track model, but can resort to a simpli-
fied version if time consumption is critical. The use of
simplified track models is particularly important for trig-
gering applications, where track finding is part of the
strategy applied in the online selection procedure of
interesting events. Such applications are not considered
in this paper, which will concentrate on methods used
for offline analysis of data, i.e., analysis of data available
on mass storage.

Methods of track finding can in general be classified as
global or local. Global methods treat all measurements
simultaneously, whereas local methods go through the
list of measurements sequentially. Examples of global
approaches presented below are conformal mapping,
Hough transform, and Legendre transform, whereas the
track road and track following methods are regarded as
local.

1. Conformal mapping

The conformal mapping method !Hansroul et al.,
1988" for track finding is based on the fact that circles
going through the origin of a two-dimensional x-y coor-
dinate system map onto straight lines in a u-v coordinate
system by the transformation

u =
x

x2 + y2 , v =
y

x2 + y2 , !1"

where the circles are defined by the circle equation
!x−a"2+ !y−b"2=r2=a2+b2. The straight lines in the u-v
plane are then given by

v =
1

2b
− u

a
b

. !2"

For large values of r or, equivalently, high-momentum
tracks, the straight lines are passing close to the origin,
and track candidates can be obtained by transforming
the measurements in the u-v plane to azimuthal coordi-
nates and collecting the angular part of the measure-
ments in a histogram. Track candidates are found by
searching for peaks in this histogram.

2. Hough and Legendre transforms

In the case of straight lines not necessarily passing
close to the origin, i.e., for tracks in a larger range of
momenta, a more general approach is needed in order
to locate the lines. The Hough transform !Hough, 1959"
is well suited for such a task. The idea is based on a
simple transformation of the equation of a straight line
in an x-y plane, y=cx+d, to another straight line in a c-d
plane, d=−xc+y. The points along the line in the c-d
plane correspond to all possible lines going through the
point !x ,y" in the x-y plane. Points lying along a straight
line in the x-y plane therefore tend to create lines in
the c-d plane crossing at the point which specifies the
actual parameters of that line in the x-y plane. In prac-
tice, the c-d space is often discretized, allowing a set of
bins to be incremented for each of the measurements in
the x-y space. As for the conformal mapping method,
the position of peaks in the histogram provides informa-
tion about the parameters of the lines in the x-y space.
In contrast to the one-dimensional parameter space of
the conformal mapping method, the parameter space is
in this case two dimensional. The Hough transform rap-
idly loses efficiency for finding tracks if one attempts to
move to a parameter space with a dimension higher than
2.

For track finding in drift tubes, the drift circles pro-
vided by the knowledge of the drift distances of each of
the measurements can be transformed to sine curves in
the azimuthal coordinate system by applying a Legendre
transform !Alexopoulos et al., 2008". Peaks at the inter-
sections of several sine curves in this coordinate system
give not only the set of drift tubes hit by the same par-
ticle but also the solution to the left-right ambiguity
problem inherent to this kind of detector system. An
illustration is shown in Fig. 2.

3. Track road

An example of a local approach to track finding is the
so-called track road method. It is initiated with a set of
measurements that could have been created by the same
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• The decay length of a short-lived particle can be de-
termined by computing the distance between its esti-
mated production vertex and its estimated decay
vertex.

Similar to track reconstruction, the task of vertex re-
construction can be divided into vertex finding and ver-
tex fitting. The starting point of vertex finding is the set
of all valid tracks provided by the track reconstruction,
represented by a list of track parameter vectors. The
vertex finding algorithms classifies the tracks into vertex
candidates, which are fed into the vertex fit. The output
of the vertex fit is a list of vertices, each entry containing
the estimated vertex position as well as a set of updated
track parameter vectors of the particles associated to
that particular production point. Again the !2 or a re-
lated statistic can be used to test the vertex hypothesis.

A. Track finding

In experimental conditions such as those found in the
LHC experiments, many of the measurements are either
noise or belonging to particles with energy too low to be
interesting from a physics point of view. Therefore,
many hypotheses have to be explored in order to find
the set of interesting track candidates, and track finding
can in general be a cumbersome and time-consuming
procedure. Computational speed is an important issue,
and the choice of algorithms may be dictated by this
fact. Track finding often uses the knowledge of how a
charged particle moves inside the bulk of the detector,
the so-called track model, but can resort to a simpli-
fied version if time consumption is critical. The use of
simplified track models is particularly important for trig-
gering applications, where track finding is part of the
strategy applied in the online selection procedure of
interesting events. Such applications are not considered
in this paper, which will concentrate on methods used
for offline analysis of data, i.e., analysis of data available
on mass storage.

Methods of track finding can in general be classified as
global or local. Global methods treat all measurements
simultaneously, whereas local methods go through the
list of measurements sequentially. Examples of global
approaches presented below are conformal mapping,
Hough transform, and Legendre transform, whereas the
track road and track following methods are regarded as
local.

1. Conformal mapping

The conformal mapping method !Hansroul et al.,
1988" for track finding is based on the fact that circles
going through the origin of a two-dimensional x-y coor-
dinate system map onto straight lines in a u-v coordinate
system by the transformation

u =
x

x2 + y2 , v =
y

x2 + y2 , !1"

where the circles are defined by the circle equation
!x−a"2+ !y−b"2=r2=a2+b2. The straight lines in the u-v
plane are then given by

v =
1

2b
− u

a
b

. !2"

For large values of r or, equivalently, high-momentum
tracks, the straight lines are passing close to the origin,
and track candidates can be obtained by transforming
the measurements in the u-v plane to azimuthal coordi-
nates and collecting the angular part of the measure-
ments in a histogram. Track candidates are found by
searching for peaks in this histogram.

2. Hough and Legendre transforms

In the case of straight lines not necessarily passing
close to the origin, i.e., for tracks in a larger range of
momenta, a more general approach is needed in order
to locate the lines. The Hough transform !Hough, 1959"
is well suited for such a task. The idea is based on a
simple transformation of the equation of a straight line
in an x-y plane, y=cx+d, to another straight line in a c-d
plane, d=−xc+y. The points along the line in the c-d
plane correspond to all possible lines going through the
point !x ,y" in the x-y plane. Points lying along a straight
line in the x-y plane therefore tend to create lines in
the c-d plane crossing at the point which specifies the
actual parameters of that line in the x-y plane. In prac-
tice, the c-d space is often discretized, allowing a set of
bins to be incremented for each of the measurements in
the x-y space. As for the conformal mapping method,
the position of peaks in the histogram provides informa-
tion about the parameters of the lines in the x-y space.
In contrast to the one-dimensional parameter space of
the conformal mapping method, the parameter space is
in this case two dimensional. The Hough transform rap-
idly loses efficiency for finding tracks if one attempts to
move to a parameter space with a dimension higher than
2.

For track finding in drift tubes, the drift circles pro-
vided by the knowledge of the drift distances of each of
the measurements can be transformed to sine curves in
the azimuthal coordinate system by applying a Legendre
transform !Alexopoulos et al., 2008". Peaks at the inter-
sections of several sine curves in this coordinate system
give not only the set of drift tubes hit by the same par-
ticle but also the solution to the left-right ambiguity
problem inherent to this kind of detector system. An
illustration is shown in Fig. 2.

3. Track road

An example of a local approach to track finding is the
so-called track road method. It is initiated with a set of
measurements that could have been created by the same
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• The decay length of a short-lived particle can be de-
termined by computing the distance between its esti-
mated production vertex and its estimated decay
vertex.

Similar to track reconstruction, the task of vertex re-
construction can be divided into vertex finding and ver-
tex fitting. The starting point of vertex finding is the set
of all valid tracks provided by the track reconstruction,
represented by a list of track parameter vectors. The
vertex finding algorithms classifies the tracks into vertex
candidates, which are fed into the vertex fit. The output
of the vertex fit is a list of vertices, each entry containing
the estimated vertex position as well as a set of updated
track parameter vectors of the particles associated to
that particular production point. Again the !2 or a re-
lated statistic can be used to test the vertex hypothesis.

A. Track finding

In experimental conditions such as those found in the
LHC experiments, many of the measurements are either
noise or belonging to particles with energy too low to be
interesting from a physics point of view. Therefore,
many hypotheses have to be explored in order to find
the set of interesting track candidates, and track finding
can in general be a cumbersome and time-consuming
procedure. Computational speed is an important issue,
and the choice of algorithms may be dictated by this
fact. Track finding often uses the knowledge of how a
charged particle moves inside the bulk of the detector,
the so-called track model, but can resort to a simpli-
fied version if time consumption is critical. The use of
simplified track models is particularly important for trig-
gering applications, where track finding is part of the
strategy applied in the online selection procedure of
interesting events. Such applications are not considered
in this paper, which will concentrate on methods used
for offline analysis of data, i.e., analysis of data available
on mass storage.

Methods of track finding can in general be classified as
global or local. Global methods treat all measurements
simultaneously, whereas local methods go through the
list of measurements sequentially. Examples of global
approaches presented below are conformal mapping,
Hough transform, and Legendre transform, whereas the
track road and track following methods are regarded as
local.

1. Conformal mapping

The conformal mapping method !Hansroul et al.,
1988" for track finding is based on the fact that circles
going through the origin of a two-dimensional x-y coor-
dinate system map onto straight lines in a u-v coordinate
system by the transformation

u =
x

x2 + y2 , v =
y

x2 + y2 , !1"

where the circles are defined by the circle equation
!x−a"2+ !y−b"2=r2=a2+b2. The straight lines in the u-v
plane are then given by

v =
1

2b
− u

a
b

. !2"

For large values of r or, equivalently, high-momentum
tracks, the straight lines are passing close to the origin,
and track candidates can be obtained by transforming
the measurements in the u-v plane to azimuthal coordi-
nates and collecting the angular part of the measure-
ments in a histogram. Track candidates are found by
searching for peaks in this histogram.

2. Hough and Legendre transforms

In the case of straight lines not necessarily passing
close to the origin, i.e., for tracks in a larger range of
momenta, a more general approach is needed in order
to locate the lines. The Hough transform !Hough, 1959"
is well suited for such a task. The idea is based on a
simple transformation of the equation of a straight line
in an x-y plane, y=cx+d, to another straight line in a c-d
plane, d=−xc+y. The points along the line in the c-d
plane correspond to all possible lines going through the
point !x ,y" in the x-y plane. Points lying along a straight
line in the x-y plane therefore tend to create lines in
the c-d plane crossing at the point which specifies the
actual parameters of that line in the x-y plane. In prac-
tice, the c-d space is often discretized, allowing a set of
bins to be incremented for each of the measurements in
the x-y space. As for the conformal mapping method,
the position of peaks in the histogram provides informa-
tion about the parameters of the lines in the x-y space.
In contrast to the one-dimensional parameter space of
the conformal mapping method, the parameter space is
in this case two dimensional. The Hough transform rap-
idly loses efficiency for finding tracks if one attempts to
move to a parameter space with a dimension higher than
2.

For track finding in drift tubes, the drift circles pro-
vided by the knowledge of the drift distances of each of
the measurements can be transformed to sine curves in
the azimuthal coordinate system by applying a Legendre
transform !Alexopoulos et al., 2008". Peaks at the inter-
sections of several sine curves in this coordinate system
give not only the set of drift tubes hit by the same par-
ticle but also the solution to the left-right ambiguity
problem inherent to this kind of detector system. An
illustration is shown in Fig. 2.

3. Track road

An example of a local approach to track finding is the
so-called track road method. It is initiated with a set of
measurements that could have been created by the same
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charged particle. The track model, i.e., the shape of the
trajectory, can be used to interpolate between the mea-
surements and create a road around the trajectory. Mea-
surements inside the boundaries of the road constitute
the track candidate. The number of measurements and
the quality of the subsequent track fit are used to evalu-
ate the correctness of the track hypothesis.

4. Track following

A related approach is track following, which starts
from a track seed. Most of the times, the seed is a short
track segment built from a few measurements. In addi-
tion it can be constrained to point to the interaction
region. Seeds can be constructed in the inner region
of the tracking detector close to the interaction region,
where the measurements frequently are of very high
precision, or in the outer region, where the track density
is lower. From the seed, the track is extrapolated to the
next detector layer containing a measurement. The mea-
surement closest to the predicted track is included in
the track candidate. This procedure is iterated until too
many detector layers with missing measurements are en-

countered or until the end of the detector system is
reached.

B. Track fitting

The track fit aims at estimating a set or vector of pa-
rameters representing the kinematic state of a charged
particle from the information contained in the various
position measurements in the track candidate. Since
these positions are stochastic quantities with uncertain-
ties attached to them, the estimation amounts to some
kind of statistical procedure. In addition to estimated
values of the track parameters, the track fit also provides
a measure of the uncertainty of these values in terms of
the covariance matrix of the track parameter vector.
Most estimation methods can be decomposed into a set
of basic building blocks, and the methods differ in the
logic of how these blocks are combined.

1. Track parametrization

If tied to a surface, five parameters are sufficient to
uniquely describe the state of a charged particle. The
actual choice of track parameters depends on, e.g., the
geometry of the tracking detector. In a detector consist-
ing of cylindrical detector layers, the reference surface is
often cylindrical and makes the radius times the azi-
muthal angle !R!" the natural choice of one of the po-
sition parameters. In a detector consisting of planar de-
tector layers, however, Cartesian position coordinates
are more frequently used !Frühwirth et al., 2000".

2. Track model

The track model describes how the track parameter or
state vector at a given surface k depends on the state
vector on a different surface i,

qk = fk#i!qi" , !3"

where fk#i is the track propagator from surface i to sur-
face k and q is the state vector. An illustration is shown
in Fig. 3. For simple surfaces, the track model is analyti-
cal in a vanishing magnetic field !straight line" or in a
homogeneous field !helix". If the field is inhomogeneous,

FIG. 2. !Color online" An illustration of track finding with
the Legendre transform. Top: Drift chamber with a multi-
track event with noise level of 50%. Bottom: The correspond-
ing Legendre transform. The circles in Legendre space graphs
denote the points with the highest height, corresponding
to the reconstructed tracks shown in the top graph. From
Alexopoulos et al., 2008.

✏✏✏✶
###$

! !qi qk = fk|i(qi)

surface i surface k

FIG. 3. An illustration of the track model and propagation
concepts. The function fk#i is the track propagator from surface
i to surface k. Its mathematical form depends on the track
model, i.e., the solution of the equation of motion in the actual
magnetic field.
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many detector layers with missing measurements are en-

countered or until the end of the detector system is
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B. Track fitting

The track fit aims at estimating a set or vector of pa-
rameters representing the kinematic state of a charged
particle from the information contained in the various
position measurements in the track candidate. Since
these positions are stochastic quantities with uncertain-
ties attached to them, the estimation amounts to some
kind of statistical procedure. In addition to estimated
values of the track parameters, the track fit also provides
a measure of the uncertainty of these values in terms of
the covariance matrix of the track parameter vector.
Most estimation methods can be decomposed into a set
of basic building blocks, and the methods differ in the
logic of how these blocks are combined.

1. Track parametrization

If tied to a surface, five parameters are sufficient to
uniquely describe the state of a charged particle. The
actual choice of track parameters depends on, e.g., the
geometry of the tracking detector. In a detector consist-
ing of cylindrical detector layers, the reference surface is
often cylindrical and makes the radius times the azi-
muthal angle !R!" the natural choice of one of the po-
sition parameters. In a detector consisting of planar de-
tector layers, however, Cartesian position coordinates
are more frequently used !Frühwirth et al., 2000".

2. Track model

The track model describes how the track parameter or
state vector at a given surface k depends on the state
vector on a different surface i,

qk = fk#i!qi" , !3"

where fk#i is the track propagator from surface i to sur-
face k and q is the state vector. An illustration is shown
in Fig. 3. For simple surfaces, the track model is analyti-
cal in a vanishing magnetic field !straight line" or in a
homogeneous field !helix". If the field is inhomogeneous,

FIG. 2. !Color online" An illustration of track finding with
the Legendre transform. Top: Drift chamber with a multi-
track event with noise level of 50%. Bottom: The correspond-
ing Legendre transform. The circles in Legendre space graphs
denote the points with the highest height, corresponding
to the reconstructed tracks shown in the top graph. From
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➡ find seeds ~ combinations of 2-3 hits
➡ extrapolate seed along the likely trajectory
➡ select hits on layers to obtain candidates

sufficient if low
number of hits
near extrapolation
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•Track Road algorithm
➡ find seeds ~ combinations of 2-3 hits
➡ build road along the likely trajectory
➡ select hits on layers to obtain candidates

•Track Following 
➡ find seeds ~ combinations of 2-3 hits
➡ extrapolate seed along the likely trajectory
➡ select hits on layers to obtain candidates

•Progressive Track Finder 
➡ find seeds ~ combinations of 2-3 hits
➡ extrapolate seed to next layer, find 

best hit and update trajectory
➡ repeat until last layers to obtain candidates

better at high
occupancies and
with lots of material
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Local Track Finding

•Track Road algorithm
➡ find seeds ~ combinations of 2-3 hits
➡ build road along the likely trajectory
➡ select hits on layers to obtain candidates

•Track Following 
➡ find seeds ~ combinations of 2-3 hits
➡ extrapolate seed along the likely trajectory
➡ select hits on layers to obtain candidates

•Progressive Track Finder 
➡ find seeds ~ combinations of 2-3 hits
➡ extrapolate seed to next layer, find 

best hit and update trajectory
➡ repeat until last layers to obtain candidates

best of tracking
in jets (ATLAS+CMS)

•Combinatorial Kalman Filter 
➡ extension of a Progressive Track Finder for dense environments 
➡ full combinatorial exploration, follow all hits to find all possible track candidates
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Ambiguity Solution
•track selection cuts 
➡ applied at every stage in reconstruction 
➡ still more candidates than final tracks 

•task of ambiguity solution: 
➡ select good tracks and reject fakes 
➡ construct quality function (“score”) for 

each candidate: 
1. hit content, holes 
2. number of shared hits 
3. fit quality... 

➡ candidates with best score win 
➡ if too many shared hits, create sub-

tracks if if possible 
➡ in case of ATLAS: as well precise fit 

• DELPHI (LEP), LC-Detector: 
➡ full recursive ambiguity processor  
➡ D.Wicke, M.E.

score
per candidate

sensor hit

module hit

ambiguous hit

hole

a
b

c
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ATLAS Track Reconstruction
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... and in Practice ?
•choice of reconstruction strategy depends on: 
➡ detector technologies 
➡ physics/performance requirements 
➡ occupancy and backgrounds 
➡ technical constraints (CPU, memory) 

•even for same detector setup one looks at 
different types of events: 
➡ test beam 
➡ cosmics 
➡ trigger (regional) 
➡ offline (full scan) 

•track reconstruction used by experiments 
➡ usually apply a combination of different techniques 
➡ often iterative ~ different strategies run one after the other to 

obtain best possible performance within resource constraints

New  Tracking
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NEWT now
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ATLAS NewTracking Software ChainNew  Tracking

pre-precessing 
➡ Pixel+SCT clustering 
➡ TRT drift circle formation 
➡ space points formation

TRT

SCT

Pixel
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➡ precise least square fit 

with full geometry 
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3. fit quality...
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➡ progressive finder 
➡ refit of track and selection
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ATLAS NewTracking Software ChainNew  Tracking

pre-precessing 
➡ Pixel+SCT clustering 
➡ TRT drift circle formation 
➡ space points formation

combinatorial  
track finder 
➡ iterative : 

1. Pixel seeds 
2. Pixel+SCT seeds 
3. SCT seeds 

➡ restricted to roads 
➡ bookkeeping to avoid  

duplicate candidates

ambiguity solution 
➡ precise least square fit 

with full geometry 
➡ selection of best silicon 

tracks using: 
1. hit content, holes 
2. number of shared hits 
3. fit quality...

extension into TRT 
➡ progressive finder 
➡ refit of track and selection

TRT segment finder 
➡ on remaining drift circles 
➡ uses Hough transform

TRT seeded finder 
➡ from TRT into SCT+Pixels 
➡ combinatorial finder

ambiguity solution 
➡ precise fit and selection 
➡ TRT seeded tracks

standalone TRT 
➡ unused TRT segments

vertexing 
➡ primary vertexing 
➡ conversion and V0 search

TRT

SCT

Pixel

since 2012: 
➡ list of selected EM clusters 
➡ seed brem. recovery
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Tracking with Electron Brem. Recovery
•strategy for brem. recovery 
➡ restrict recovery to regions pointing to 

electromagnetic clusters (RoI) 
➡ pattern: allow for large energy loss in 

combinatorial Kalman filter 
• adjust noise term for electrons 

➡ global-χ2 fitter allows for brem. point 
➡ adapt ambiguity processing (etc.) to ensure 

e.g. b-tagging is not affected 
➡ use full fledged Gaussian-Sum Filter in 

electron identification code 

•tracking update deployed in 2012 
➡ improvements especially at low pT (< 15 GeV) 

• limiting factor for H→ZZ*→4e  
➡ significant efficiency gain for Higgs discovery
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Let’s Summarize...
•I introduced the reconstruction in a nutshell and why 

tracking is important for HEP computing 

•I discussed briefly the principles of semiconductor trackers 
and drift tubes 

•then we went over concepts and techniques for track 
extrapolation, fitting and finding 

•and finally we saw how to put things together to implement 
the ATLAS Track Reconstruction
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Bonus Slides... 
LS-1 Tracking Upgrades

ATLAS 
Run-1 Software

CPU vs pileup

LHC@25	  nsec

LHC@50	  nsec

...so what did we do about this so far ?

ATLAS HL-LHC event in new tracker
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Marrakech:   Andi, Andreas, Daniel, me, Heather

 Tracking Developments towards Run-2

•ATLAS and CMS focus on technology and 
strategy to improve CURRENT algorithms 
➡ improve software technology, including: 

• simplify EDM design to be less OO (“hip” 10 years ago) 

• ATLAS migrated to Eigen - faster vector+matrix algebra 
(CMS was already using SMatrix) 

• vectorised trigonometric functions                                      
(CMS: VDT or ATLAS: intel math lib) 

• work on CPU hot spots                                                               
(e.g. ATLAS replaced F90 by C++ for B-field service) 

➡ tune reconstruction strategy (very similar in ATLAS and CMS): 
• optimise iterative track finding strategy for 40 pileup 
• ATLAS modified track seeding to explore 4th Pixel layer       
• CMS added cluster-shape filter against out-of-time pileup 

•hence, mix of SIMD and algorithm tuning 
➡ CMS made their tracking as well thread-safe

61

0

2

4

6

8

10

CLHEP MKL SMatrix Eigen

achieved speed-up 
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•optimal seeding strategy depends on level of pileup (ATLAS) 
➡ fraction of seeds to give a good track candidate: 

• hence start with SSS at 40 pileup ! 
➡ further increase good seed fraction using 4th hit 

• takes benefit from new Insertable B-Layer (IBL) 

•final ATLAS Run-2 seeding strategy 
➡ significant speedup at 40 pileup (and 25 ns)
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Track Reconstruction steps #classical$

! first (global) pattern recognition, 

finding hits associated to one track

! track fit (estimation of track 

parameters and errors): {x,C}

! more difficult with noise and hits from

secondary particles

! possibility of fake reconstruction

! in modern track reconstruction, this 

classical picture does not work 

anymore

62

Tuning the Tracking Strategy

pileup "PPP" "PPS" "PSS" "SSS"
0 57% 26% 29% 66%
40 17% 6% 5% 35%

pileup "PPP+1" "PPS+1" "PSS+1" "SSS+1"
0 79% 53% 52% 86%
40 39% 8% 16% 70%

ATLAS upgrade 
Insertable B-Layer

4th hit seed 
confirmation

seeding efficiency CPU*
"Run-1" 94.0% 9.5 sec
"Run-2" 94.2% 4.7 sec

*on local 
machine

seed-triplets: 
P =  Pixel  
S = Strips
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CPU for Reconstruction
•sum of tracking and general software 

improvements 
➡ improved software technology, including: 

• tracking related improvements 

• new 64 bit compilers, new tcmalloc 

➡ tune reconstruction strategy (very similar in ATLAS and CMS) 
• optimise track finding strategy for 40 pileup 
• faster versions of things like FastJet, ... 
• addressing other CPU hot spots in reconstruction

CPU time vs release

tracking CPU time 
vs release

Run-1

Run-1

Run-1

total CPU time vs pileup

Resource request
250 HS06/13.6
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CPU for Reconstruction
•sum of tracking and general software 

improvements 
➡ improved software technology, including: 

• tracking related improvements 

• new 64 bit compilers, new tcmalloc 

➡ tune reconstruction strategy (very similar in ATLAS and CMS) 
• optimise track finding strategy for 40 pileup 
• faster versions of things like FastJet, ... 
• addressing other CPU hot spots in reconstruction

CPU time vs release

tracking CPU time 
vs release

Run-1

Run-1

Run-2

Run-2
Run-1

Run-3

total CPU time vs pileup

Resource request
250 HS06/13.6

Run-2•huge gains achieved ! 
➡ ATLAS reports overall factor > 4 in CPU time 

• touched >1000 packages for factor 5 in tracking 
➡ CMS reports overall factor > 2 in CPU time 

• on top of their 2011/12 improvements 
• as well dominated by tracking improvements 

➡ both experiments within 1 kHz Tier-0 budget 
• required to keep single lepton triggers
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Technology Challenges

•Moore's law is still alive 
➡ number of transistors still doubles every 2 years 

• no free lunch, clock speed no longer increasing 
➡ lots of transistors looking for something to do: 

• vector registers 
• out of order execution 
• hyper threading 
• multiple cores 

➡ many-core processors, including GPGPUs 
• lots of cores with less memory 

➡ increase theoretical performance of processors 

• challenge will be to adapt HEP software 
➡ hard to exploit theoretical processor performance 

• many of our algorithm strategies are sequential  
➡ need to parallelise applications (multi-threading)                  

(GAUDI-HIVE and CMSSW multi-threading a step in this direction) 
• change memory model for objects, more vectorisation, ...

64

Processor Landscape
• Moore’s law - alive and well: 2 

years → 2 x transistors!

• There is now a lot of transistors 
looking for something do do:!

• Vector registers!

• Out of order execution!

• Multiple Cores!

• Hyperthreading!

• All of these techniques increase 
the theoretical performance of a 
processor!

• But hard to achieve this 
performance (or close to it) with 
HEP applications
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Transistors
Clock
Power
Performance
Performance/W

Moore’s law

Clock speed 
(free lunch)

Moore's law

many integrated 
cores

• Intel’s MIC (aka Intel Xeon Phi) is in its first generation

• 61 x86_64 cores @ ~1GHz

• 16GB of memory

• Coprocessor architecture

• Cache coherent, but no out of order execution

• 512 bit registers (8 double or 16 float)

• Memory per core: 256MB

• Maximum performance needs 4 threads per core: 64MB 
per thread

7

Intel Xeon Phi

Nvidia Tesla

clock speed
(free lunch)

see G.Stewart, CHEP 2015
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Massively parallel 
Tracking ?

•ATLAS/CMS tracking strategy is for early rejection 
➡ iterative tracking: avoid combinatorial overhead as much as possible ! 

• early rejection requires strategic candidate processing and hit removal 
➡ not a heavily parallel approach, it is a SEQUENTIAL approach ! 

• implications for making it massively parallel ? 
➡ Armdahl’s law at work: 

➡ iterative tracking: small parallel part Para, heavy on sequential Seq 
• hence, if we want to gain by a large N threads, we need to reduce Seq 

•hence we need to re-think the algorithmic strategy 
➡ having concurrency in mind from the very start

65

Time|| = Para / N + Seq

Iterative tracking

8

The CMS tracking relies on iterations (steps) of the tracking procedure; 
each step works on the remaining not-yet-associated hits and is optimized 
with respect to the seeding topology and to the final quality cuts.

Iterative tracking. A factor 2.5 of improvement in the CPU time has been obtained by
optimizing the iterative tracking, as detailed in table 2 to be compared with table 1 that
summarizes the baseline configuration of CMSSW 4.2.x. As can be seen, the net e↵ect
is an increase of the e↵ective PT threshold for track reconstruction together with tighter
constraint on impact parameter. This configuration results into a reduced e�ciency for PT

lower than 300MeV/c but an e�ciency for PT greater than 0.9GeV/c larger by ⇠ 1% with
a ⇠ 8% reduction of the fake rate.

Reconstruction of photon conversions. Reconstruction of photon conversion in the tracker
volume is heavily a↵ected by the higher PT threshold and by the tighter impact parameter
cuts since conversion tracks are typically soft and displaced. To recover this loss, a
dedicated seeding has been deployed [6] and the photon conversion reconstruction has been
further optimized resulting in a factor 12 improvement of the CPU time for conversion
reconstruction.

Reconstruction of primary vertices. The reconstruction of primary vertices in the event
has been optimized by integrating into the same module all the di↵erent reconstruction
methods; the removal of the overhead due to the module split we had beforehand was
enough to gain a factor two in CPU time in this specific context.

Reconstruction of nuclear interactions. Similarly to photon conversions, also nuclear
interactions are reconstructed for tracker material studies and to correctly estimate

Table 1. Relevant parameters of the six iterative tracking steps in CMSSW 4.2.x, i.e. before
the reconstruction improvement campaign described in this paper; � represents the beam spot
size along the z axis and d0 and z0 are the transverse (i.e. in the xy plane) and longitudinal
impact parameters, respectively.

#step seed type seed subdetectors P

min
T [ GeV/c] d0 cut z0 cut

0 triplet pixel 0.8 0.2 cm 3.0�
1 pair pixel/TEC 0.6 0.05 cm 0.6 cm
2 triplet pixel 0.075 0.2 cm 3.3�
3 triplet pixel/TIB/TID/TEC 0.25-0.35 2.0 cm 10.0 cm
4 pair TIB/TID/TEC 0.5 2.0 cm 12.0 cm
5 pair TOB/TEC 0.6 6.0 cm 30.0 cm

Table 2. Relevant parameters of the seven tracking iterative steps in CMSSW 4.4.x, after the
first phase of the improvement campaign in fall 2011; in bold the parameters changed with
respect to the corresponding steps in CMSSW 4.2.x (see table 1); step #1 is brand new with
respect to CMSSW 4.2.x; see table 1 caption for symbol definitions.

#step seed type seed subdetectors P

min
T [ GeV/c] d0 cut z0 cut

0 triplet pixel 0.6 0.03 cm 4.0�
1 triplet pixel 0.2 0.03 cm 4.0�
2 pair pixel 0.6 0.01 cm 0.09 cm
3 triplet pixel 0.2 1.0 cm 4.0�
4 triplet pixel/TIB/TID/TEC 0.35-0.5 2.0 cm 10.0 cm
5 pair TIB/TID/TEC 0.6 2.0 cm 10.0 cm
6 pair TOB/TEC 0.6 2.0 cm 30.0 cm

Iterative tracking in 2011 (CMSSW 42x)
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Discussion ...


