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Introduction: Vertexing

•b- and c-hadron lifetime
➡ ≈1-1.5 psec (B) and ≈0.4-1psec (D)
➡ tracks have signi"cant impact 

parameter, d0 and z0
➡ might form a reconstructed 

secondary vertex
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•Example:
➡ a fully reconstructed Bs→Dsμν→KKπμν 

event from LHCb
➡ primary, secondary and tertiary vertex 
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Event Pileup

•not to forget minimum bias event pileup
➡ nuisance that needs to be managed
➡ affects not only tracking, but as well jet+MET reconstruction, b-tagging, ... 
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CMS event with 78 pileup
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Outline of Part 4

•discuss vertex "tting technique

➡ Least Square and Kalman Filter vertex "tter

➡ adaptive vertex "tting, vertex "nding, ZVTOP

•examples for vertexing applications

➡ primary vertexing

➡ Jet-Vertex-Fraction

➡ b-tagging techniques
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• task of a vertex "t:
➡ estimate the vertex position ν (and the parameters pk at the 

vertex) from a set of measured track parameters qk

•measurement model (similar to track "t)
➡ in mathematical terms:

➡ in practice: hi is derived from trajectory model                                    
and propagator f :

➡ commonly used is perigee representation for hi

Vertex Fitting
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~ dependency of track parameters on
   vertex and parameters at vertex 

with:

Jacobians:

~ error of qi (noise term)  

qi = hi (v, pi )+εi
hi

εi

Ai =
∂hi (v, pi )

∂v
Bi =

∂hi (v, pi )
∂pi

hi = f o %q v, pi( )
v = (vx,vy,vz )
pi = (θi,φi,Qi Pi )

with:

p2

p4p3

p1

vertex  ν

q2q1

q4q3

reference surface
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Track linearization
� The Kalman filter needs as input the Jacobians and the track parameter initial values 

which provide a description of the single track linearized around a point.
� We computed the jacobian of the track parameters respect to position and momentum 

of the track at the vertex in the point of the expansion  for ATLAS parameterization for 
the first time (calculation done with Kirill Prokofiev).
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Least Square Vertex Fit
➡ let’s look at the math again....
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with:

linearize the problem:

+ higher terms

minimizing the linearized χ2 gives the following set of equations:

⇒

χ 2 = Δqi
TGi

i
∑ Δqi Δqi = qi − hi (v, pi )

covariance of the measured qiVi =Gi
−1

this yields:

hi (v, pi ) ≅ hi (v0, pi,0 )+ Aiδv+Biδpi

χ 2 = hi (v0, pi,0 )+ Aiδv+Biδpi( )T Gi
i
∑ hi (v0, pi,0 )+ Aiδv+Biδpi( )

v→ v0 +δv pi → pi,0 +δpiand

∂χ 2

∂v
= 0 ⇒

∂χ 2

∂pi
= 0 Bi

TGiAi ⋅δv+Bi
TGiBi ⋅δpi = Bi

TGi ⋅ Δqi,0

Ai
TGiAi

i
∑
"

#
$

%

&
'⋅δv+ Ai

TGiBi
i
∑ ⋅δpi = Ai

TGi ⋅
i
∑ Δqi,0

Δqi,0 = qi − hi (v0, pi,0 )with:

➡ system of (i+1) linear matrix equations which can be solved



Markus Elsing

Least Square Vertex Fit
➡ so let’s solve the system...
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Bi
TGiAi ⋅δv+Bi

TGiBi ⋅δpi = Bi
TGi ⋅ Δqi,0

Ai
TGiAi

i
∑
"

#
$

%

&
'⋅δv+ Ai

TGiBi
i
∑ ⋅δpi = Ai

TGi ⋅
i
∑ Δqi,0 (1)

(2)

transform (2) to replace δpi in equation (1), gives:

δv =C ⋅ Ai
TGB

i ⋅
i
∑ Δqi,0 with: Gi

B =Gi −GiBi
TWiBiGi

Wi = Bi
TGiBi( )

−1

C = Ai
TGB

iAi
i
∑
"

#
$

%

&
'

−1

and covariance of ν

➡ usually one iterates the "t to ensure convergence
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Least Square Vertex Fit
➡ so let’s solve the system...
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Bi
TGiAi ⋅δv+Bi

TGiBi ⋅δpi = Bi
TGi ⋅ Δqi,0

Ai
TGiAi

i
∑
"

#
$

%

&
'⋅δv+ Ai

TGiBi
i
∑ ⋅δpi = Ai

TGi ⋅
i
∑ Δqi,0 (1)

(2)

transform (2) to replace δpi in equation (1), gives:

δv =C ⋅ Ai
TGB

i ⋅
i
∑ Δqi,0 with: Gi

B =Gi −GiBi
TWiBiGi

Wi = Bi
TGiBi( )

−1

C = Ai
TGB

iAi
i
∑
"

#
$

%

&
'

−1

and covariance of ν

➡ usually one iterates the "t to ensure convergence
➡ still have to compute the corrections to pi 

➡ but: can obtain a faster vertex !t, if we neglect the δpi terms
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Least Square Vertex Fit
➡ compute the corrections to pi
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Bi
TGiAi ⋅δv+Bi

TGiBi ⋅δpi = Bi
TGi ⋅ Δqi,0

Ai
TGiAi

i
∑
"

#
$

%

&
'⋅δv+ Ai

TGiBi
i
∑ ⋅δpi = Ai

TGi ⋅
i
∑ Δqi,0 (1)

(2)

use δν in equation (2) to compute δpi , gives:

and covariance of δpi

δpi =WiBi
TGi ⋅ Δqi,0 − Aiδv( )

Di =Wi +WiBi
TGiAiCAi

TGiBiWi

➡ vertex "t is used to improve momentum measurement at 
vertex

➡ used to improve invariant mass resolution for 
reconstructed decays

e.g. J/Ψ signal
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Kalman Filter Notation
➡ the least square vertex "t can as well be written as a progressive "t
➡ results in an extended Kalman Filter vertex "t
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➡ the smoother in this case is equivalent to computing the parameters qi,n 
from the "nal vertex estimate δνn and δpi,n

Vi
B =Vi −BiWiBi

T
with: and

qi,n = hi (v0 +δvn, pi,0 +δpi,n )
cov(qi,n ) = BiWiBi

T +Vi
BGiAiCnAi

TGiV
B
i

and the covariance of δpi,i :

Ci = C−1
i−1 + Ai

TGB
iAi( )

−1
and the covariance of δνi is:

2.update to parameters is:

Di =Wi +WiBi
TGiAiCiAi

TGiBiWi

1.Let’s assume         has been estimated using i-1 tracks. Track i is added
   using the update equations:

δvi−1

Billoir, Fruhwirth, Catlin et al.

δvi =Ci
−1 ⋅ Ci−1δvi−1 + Ai

TGB
i ⋅Δqi,i−1$% &'

δpi,i =WiBi
TGi ⋅ Δqi,i−1 − Aiδvi( )

w
eight m

atrix notation
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➡ beam spot b and its covariance matrix Eb-1 determined externally
➡ use information in "t as external constraint
• straight forward in Kalman Filter vertex "t, its the starting vertex

• in a Least Square vertex "t an additional term is added to the χ2

Beam Spot Constraint Fit
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andδv0 = b C0 = Eb
−1

Bi
TGiAi ⋅δv+Bi

TGiBi ⋅δpi = Bi
TGi ⋅ Δqi,0

(1’)

(2)

χ 2 = Δqi
TGi

i
∑ Δqi + (b− v)

T Eb(b− v)

minimizing the linearize χ2 leads to the modified set of equations: 

Eb + Ai
TGiAi

i
∑

"

#
$

%

&
'⋅δv+ Ai

TGiBi
i
∑ ⋅δpi = Eb(b− v0 )+ Ai

TGi ⋅
i
∑ Δqi,0

which can be solved as before...
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Adaptive Vertex Fitter

•adaptive technique
➡ concept used for adaptive track "tting
➡ can be applied as well on vertex "tting

•algorithm is called Adaptive 
Vertex Fitter
➡ ATLAS and CMS vertexing packages
➡ implemented as iterative, reweighted 

Kalman "lter
• wnk is weight of track k w.r.t. vertex n
• outlying tracks are down-weighted 

automatically
➡ robust "tter !

•extension for Multi-Vertex-Fitter
➡ vertices compete for tracks

12

tracks

outlying track

adaptive fitter

linear fitter

nal !z" directions: the standard deviation of a Gaussian
fitted to the distribution, the half-width of the symmetric
interval covering 95% of the distribution, and the stan-
dard deviation of a Gaussian fitted to the standardized
residuals !pulls".

In the low-multiplicity decay of the Bs the AVF is only
slightly better than the KF. In the high-multiplicity pri-
mary vertex of the tt̄H events the AVF improves the
resolution by about 30% and reduces the tails signifi-
cantly. The estimated error, as indicated by the standard
deviation of the pulls, is also much improved. Of course,
the AVF is always slower than the KF.

The AVF can also be used to construct a general pur-
pose vertex finder, the adaptive vertex reconstructor
!AVR" !Waltenberger, 2008". Concisely stated, the AVR
is an iterated AVF. The flow chart in Fig. 19 defines the
algorithm in more detail. A study of its performance in
the context of b tagging in CMS is reported by Walten-
berger !2008".

The single-vertex AVF can be extended without diffi-
culty to a multivertex fitter !MVF" !Frühwirth and Walt-
enberger, 2004" with N!1 vertices. The vertices now
compete for the tracks. Consequently, the weight of
track k with respect to vertex n is computed by

wnk =
e−"nk

2 /2T

e−"cut
2 /2T + #

i=1

N

e−"ik
2 /2T

, !86"

where "ik
2 is the weighted distance of track k from the

current position of vertex i, "cut
2 is the cutoff, and T is the

temperature parameter $see also Eq. !69"%. If there is a
competing vertex nearby, the weight function of a track
changes drastically as compared to the AVF. Figure 20
shows the weight wnk of a track k with respect to a ver-
tex n if there is a competing vertex i at a distance of
"ik

2 =1. Even for "nk
2 =0 the weight wnk is now only about

0.6 at a temperature T=1. It is only at very small tem-
peratures that the algorithm decides unambiguously in
favor of the closer vertex.

The MVF is implemented in the vertex reconstruction
software of CMS and ATLAS !Costa, 2007". The adap-
tive algorithms described in this section are also avail-
able in the experiment independent vertex reconstruc-
tion toolbox RAVE !Waltenberger and Moser, 2006;
Waltenberger, Mitaroff, and Moser, 2007".

IV. DETECTOR ALIGNMENT

A. Introduction

The models used for the estimation of track param-
eters $see Eq. !12"% and vertex parameters $see Eq. !28"%
comprise a deterministic part, describing the motion of a
charged particle in a magnetic field, and a stochastic
part, describing the observation errors and the interac-
tion of a charged particle with the material of the detec-
tor. There is, however, an additional source of uncer-
tainty not taken into account so far, namely, the limited
knowledge of the precise location and orientation of the
sensitive elements of the detector. Determining the loca-
tion and orientation to the required precision is called
detector alignment. In some cases deformations of the
sensitive elements, such as sagging or bending, also have
to be determined.

There are various possibilities for the treatment of
alignment corrections, ranging from simple translations
and rotations, equivalent to those of a rigid body, to
more complex deformations such as bends or twists. In a
solid-state detector such as a silicon tracker the fre-
quency of realignment depends mainly on the mechani-
cal stability, which in turn depends on the temperature
and on the magnetic field. In a gaseous detector such as
a time projection chamber !TPC", tracks may be dis-
torted not only because of a mechanical deformation but
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FIG. 19. Flow chart of the AVR based on the AVF. Adapted from Waltenberger, 2008.
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Inspecting Outliers

• common problem:
➡ "t quality is bad, want to identify the χ2 contribution of each track to 

overall "t (and to track with largest contribution)
➡ compare χ2 of "t to all tracks with the χ2 of "t with 1 track less:

•application: iterative vertex !nder
➡ "t all tracks into 1 vertex
➡ remove worst track one by one, until "t χ2 is acceptable
➡ take removed tracks and try to "nd next vertex
➡ repeat until no further vertex with at least 2 tracks can be found

13

track χ2

Δχ 2
i = Δqi

T ⋅Gi ⋅
i
∑ Δqi + Δqi − Aiδv( )T ⋅Gi

BAiC
−1Ai

TGB
i ⋅ Δqi − Aiδv( )

change to χ2  from including it in δν



Markus Elsing

Other Vertex Finding Strategies

•vertex z-scan
➡ used e.g. in primary vertex "nding
➡ histogram technique
➡ search for peaks in z0 of tracks extrapolated to beam line
➡ seed vertex "tter with matching tracks

•half sample mode algorithm
➡ "nd points of closest approach between all track pairs
➡ in each of the 3 projections:
A. try all the intervals which cover 50 % of the                                                                            

points and take the smallest one                                                                               
(in this case number 3)

B. continue iterating until you have ≤ 3 points                                                                  
left

C. take the mean of the 2 or 3 remaining                                                                         
points

➡ de"nes vertex seed, "nd matching tracks...

14

A.
1.

2.
3.

4.

1.
2.
3.

5.

B .
C.
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Topological Vertex Finder (ZVTOP)

•example for an inclusive vertex "nder
➡ very powerful, developed by SLD

•3 dimensional vertex search
➡ construct for each track Gaussian probability tube fi(ν)

• r  is point of closest approach of track i to point ν
➡ "nd all points where fi(ν)  is signi"cant for 2 tracks
➡ de"ne vertex probability function V(ν) around those 

points

• search for maxima, merge nearby vertex candidates
• run vertex "t on them

•SLD used ZVTOP as well to construct    
an inclusive b-jet tagger

15

set of consecutive bins separated by a distance smaller
than a threshold !z. After a cleaning procedure, the z
positions of the clusters are recomputed as a weighted
zIP average of the remaining tracks, the weights being
the inverse squared errors of the longitudinal impact
points. The primary vertex is identified as the cluster
with the largest sum of squared transverse momenta.

The second method described by Cucciarelli !2005" is
a hierarchical clustering of the divisive kind. The tracks
are ordered by increasing zIP, and the ordered list is
scanned. A cluster is terminated when the gap between
two consecutive tracks exceeds a threshold, and a new
cluster is started. For each initial cluster, an iterative
procedure is applied to discard incompatible tracks. The
discarded tracks are recovered to form a new cluster,
and the same procedure is applied again until there are
less than two remaining tracks.

In the general case, clustering proceeds in space. Vari-
ous clustering methods of both the hierarchical and non-
hierarchical types have been evaluated in the context of
vertex finding !Waltenberger, 2004". In hierarchical ag-
glomerative clustering each track starts out as a single
cluster. Clusters are merged iteratively on the basis of a
distance measure. The shortest distance in space be-
tween two tracks is peculiar insofar as it does not satisfy
the triangle inequality: if tracks a and b are close and
tracks b and c are close, it does not follow that tracks a
and c are close as well. The distance between two clus-
ters of tracks should therefore be defined as the maxi-
mum of the individual pairwise distances, known as
complete linkage in the clustering literature. Divisive
clustering starts out with a single cluster containing all
tracks. Further division of this cluster can be based on
repeated vertex estimation with identification of outli-
ers. Some examples of the approach are described in
Sec. II.D.3.

2. Topological vertex finding

A very general topological vertex finder !ZVTOP"
was proposed by Jackson !1997". It is related to the Ra-
don transform, which is a continuous version of the
Hough transform used for track finding !see Sec. II.A".
The search for vertices is based on a function V!v" which
quantifies the probability of a vertex at location v. For
each track a Gaussian probability tube fi!v" is con-
structed by

fi!v" = exp#−
1
2

!v − r"TVi
−1!v − r"$ , !26"

where r is the point of closest approach of track i to
point v and Vi is the covariance matrix of the track at r.

The vertex function V!v" is defined taking into ac-
count that in the neighborhood of a vertex the value of
fi!v" must be significant for at least two tracks,

V!v" = %
i=0

n

fi!v" − %
i=0

n

f i
2!v"&%

i=0

n

fi!v" . !27"

Due to the second term on the right-hand side, V!v"
'0 in regions where fi!v" is significant for only one
track. The form of V!v" can be modified to fold in
known physics information about probable vertex loca-
tions. For instance, V!v" can be augmented by a further
function f0!v" describing the location and spread of the
interaction point. In addition, V!v" may be modified by a
factor dependent on the angular location of the point v.

Vertex finding amounts to finding local maxima of
the function V!v". The search starts at the calculated
maxima of the products fi!v"fj!v" for all track pairs. For
each of these points the nearest maximum of V!v" is
found. These maxima are clustered together to form
candidate vertex regions.

3. Minimum spanning tree

A recent extension to the ZVTOP algorithm uses the
graph-theoretical concept of the minimum spanning tree
!MST" !Kruskal, 1956". The ZVMST vertex finder !Hil-
lert, 2008" has two stages. In the first, a small number of
likely vertex positions are chosen on the basis of func-
tion !27". In the second, tracks are assigned to these pre-
liminary vertices.

The first stage of ZVMST starts by forming all pos-
sible two-track combinations and discarding bad ones by
means of a "2 cut. The retained combinations are used
to set up a weighted graph, where each node represents
a track, each edge represents a successful vertex fit, and
the weight is equal to the inverse of the vertex function
at this vertex. The graph is passed to an MST algorithm,
which prunes the graph to a tree such that the total sum
of the weights is minimized. The vertices corresponding
to surviving edges are then merged to candidate vertices
on the basis of their proximity in space. In the second
stage of ZVMST tracks are associated to the candidate
vertices based on both the values of the probability
tubes (see Eq. !26") and the values of the vertex func-
tions (see Eq. !27") at the candidate positions.

4. Feed-forward neural networks

Feed-forward neural networks, also called multilayer
perceptrons, are classifiers that learn their decision rules
on a training set of data with known classification. If the
data at hand do not conform to the properties of the
training sample, the network cannot cope with this situ-
ation. Such networks therefore cannot be considered as
adaptive.

Primary vertex finding with a feed-forward neural net-
work was proposed by Lindsey and Denby !1991". The
input to the network was provided by the drift times
of tracks in a planar drift chamber parallel to the collid-
ing proton-antiproton beams. The chamber was divided
into overlapping 18-wire subsections. The 18 wires cor-
respond to the 18 input units of the network. The hidden
layer of the network had 128 neurons and the output

1428 Are Strandlie and Rudolf Frühwirth: Track and vertex reconstruction: From …

Rev. Mod. Phys., Vol. 82, No. 2, April–June 2010

track Gaussian tube function fi(ν)

vertex probability function V(ν)

B vertexprimary
vertex
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•based on inverse Radon transformation
➡ used in PET scans
➡ vertex "nder is essentially a variant of ZVTOP
• see: 2012 J. Phys.: Conf. Ser. 396 022021

➡ potentially faster with high pileup
• evaluated right now e.g. in ATLAS

• steps for vertex "nder:
➡ create 3D track density maps

Medical Imaging inspired Vertexing

16
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gaussian tubes

➡ Fourier transform Gaussian tubes
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Medical Imaging inspired Vertexing
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apply ramp filter

➡ Fourier transform Gaussian tubes
➡ apply (ramp) k-"lter
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•based on inverse Radon transformation
➡ used in PET scans
➡ vertex "nder is essentially a variant of ZVTOP
• see: 2012 J. Phys.: Conf. Ser. 396 022021

➡ potentially faster with high pileup
• evaluated right now e.g. in ATLAS

• steps for vertex "nder:
➡ create 3D track density maps

Medical Imaging inspired Vertexing
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apply ramp filter

➡ Fourier transform Gaussian tubes
➡ apply (ramp) k-"lter
➡ back transform image
➡ "nd vertex candidates as local maxima
➡ "ts (like ZVTOP)

• sharper image, but more noise
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Vertexing Applications

•primary vertex "nding
➡ reconstruct primary and pileup vertices
➡ ATLAS (and CMS) use an iterative vertex "nder 

and an adaptive "tter

•beam spot routinely determined
➡ averaged over short periods of time
➡ input to primary vertex reconstruction as a 

constraint

•many applications
➡ primary vertex                                                                          

counting (luminosity)
➡ jet energy scale                                                      

correction for in time                                                     
pileup

➡ ...

17

11 reconstructed vertices
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b-Jet Tagging

• several different techniques being explored to tag      
b-(and c-) jets
➡ explore b-(c-) hadron fragmentation, lifetimes, mass and decay properties

•3 categories:
➡ soft lepton tagging
• explore semileptonic b- and c-decays (BR~10%)
• tagging is done using pT of lepton to jet axis

➡ impact parameter tagging
• tagging is done using IP signi"cance w.r.t. PV
• sign impact parameter (IP) w.r.t. jet axis
• done in Rϕ (2D) or in Rϕ+Rz (3D)

➡ secondary vertex (SV) tagging
• reconstruct b-(c-)decay vertex
• use decay length signi"cance
• additional vertex information:                                                                                                   

mass, multiplicity,                                                                                                     
total momentum

18
x

y

z



Markus Elsing

b-Jet Tagging
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• tagging is done using IP signi"cance w.r.t. PV
• sign impact parameter (IP) w.r.t. jet axis
• done in Rϕ (2D) or in Rϕ+Rz (3D)
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b-Jet Tagging
• ‘simple’ tagging techniques
➡ soft lepton tagger
➡ track counting
• count number of tracks signi"cant IP offsets

➡ jet probability
• construct probability that IP signi"cance of 

all tracks in jet is compatible with PV
➡ secondary vertex (SV) tagger
• decay length signi"cance

•more elaborate combined taggers
➡ construct IP based likelihood using b/c/light 

templates (IP2D and IP3D)
➡ combined likelihood taggers using IP and 

secondary vertex information (IP3D+SV0)
➡ use multi-variant techniques to classify jets 

(baseline today)

• similar set of algorithms used by 
experiments

19
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Jet-Fitter as a b-Tagger
• conventional vertex tagger
➡ "ts all displaced tracks into a common 

geometrical vertex

• Jet-Fitter
➡ b-/c-hadron vertices and primary vertex 

approximately on the same axis
➡ "t of 1..N vertices along B-hadron axis
➡ mathematical extension of conventional 

Kalman Filter vertex "tter

•up to 40% better light rejection
➡ much improved control of charm rejection
➡ best b-tagger in ATLAS
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Jet-Vertex-Fraction
•developed at D0
➡ separate jets from signal and pileup events
➡ de"ned fraction of pT of tracks in jets associated 

to primary vertex:

➡ good separation in D0 and at LHC at low pileup

• LHC interaction region is a factor    
~6 smaller than at Tevatron
➡ more confusion at LHC design luminosity 
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Pile-up Jet Energy Scale Corrections
David W. Miller⇤, Su Dong, Ariel Schwartzman

⇤David.Miller@slac.stanford.edu

Concept and introduction
The LHC will eventually attain unprecedented
luminosities at the expense of high numbers
of multiple instantaneous proton-proton col-
lisions or pile-up. These uncorrelated inter-
actions constitute a background to the hard-
scattering physics processes of interest. We
describe both average event-level and jet-by-
jet energy scale corrections for pile-up at the
LHC. The Baseline offset and Jet-vertex frac-
tion (JV F ) corrections described here utilize
various levels of detail about the events and
jets considered to remove event-to-event fluc-
tuations in the overall calorimeter energy and
to improve the jet resolution by using track-
ing information. In addition, JV F can effec-
tively discriminate between jets produced in
the hard-scattering process and those from ad-
ditional interactions.

Pile-up effects on jets
The LHC will enter a never-before-seen era of
high luminosity and pile-up. This will have nu-
merous effects on

• jet finding
• reconstruction

• identification
• energy scale

Additional interactions (measured with the
number of reconstruction vertices) contribute
to the jet response and thus raising the jet en-
ergy scale as well as total jet multiplicity.
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Average pile-up offset corrections: results and performance
Diverse approach to estimating average event-level pile-up corrections:

Estimate the average minimum bias energy in the calorimeter from data and subtract from the
jet. Measure in data as a function of ⌘, luminosity (L) and number of interactions (NPV ).
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Four methods pursued:

1. tower energy
2. random cone

3. �-jet balance
4. Data-MC overlay

Tower-based (here):
Linearly adds tower

energies in random
events.

Random-cone (not
shown): Uses energy

in random cones in
random events.

Only #1 and #2 are implemented.

Performance of the tower-based offset correction at 1032 and 2⇥ 1033 cm�2s�1

We restore the linearity of the response to <1% across the entire range of in-time pile-up compared
to a systematic increase of more than 20% at EM -scale for 1032 (left) and 2⇥ 1033 cm�2s�1 (right).
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Jet-vertex association jet identification and pile-up corrections [1]:
Jet-by-jet approach to pile-up corrections:

JVF[jet1, PV1] = 1 – f 
JVF[jet1, PV2] = f 

JVF[jet2, PV1] = 0 
JVF[jet2, PV2] = 1 

!"#$ !"%$

&'(%$

&'(#$

Z 

1. Associate jets to
primary vertices
(PV) using track-
ing information.

2. Use the fraction
of matched track
momentum
from each vertex
to define JV F .

JV F (jeti, vtxj) =
P

k pT (trkjeti
k , vtxj)

P
n

P
l pT (trkjeti

l , vtxn)

For jet i, JV F is the track pT fraction from
vertex j. For JV F from the selected hard-
scatter PV, we see the distribution below.

Jet identification and discrimination:

JV F provides a high degree of discrimination
between jets from the hard-scattering (HS) and
from pile-up. Above pT > 10 GeV, and for an HS
jet efficiency of 90%, we achieve ⇥23 (⇥39) rejec-

tion for anti-kT (cone) jets. Furthermore, we re-
cover the flat jet multiplicity spectrum vs. pile-
up. This technique has been shown to work for
several physics processes (tt , H! ��, etc) [1].
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Jet-by-jet energy scale corrections at 1033 cm�2s�1

Using a parameterized fit (log-poly.) of jet re-
sponse as a function of JV F we can apply the
JV F jet-energy scale correction for pile-up on a

jet-by-jet basis. Applying this technique to light-
jets in W decays from tt we see a 9% improve-
ment in W -mass resolution.
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Systematics
These methods reduce the systematic effects
from pile-up / JES and bunch structure. Pri-
mary vertex finding and identification, track re-
construction / fakes, with both add systematic
errors to these methods.
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Let’s Summarize...

•discussed vertex "tting and "nding techniques

•b-tagging and other examples for vertexing 
applications

•next is to discuss lessons from early data taking to 
conclude lecture series
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