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Lessons from early Data Taking

ATLAS HL-LHC event in ITK tracker
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Outline of Part 5

• recap expectations on tracking performance

•commissioning of detector and tracking

➡ material studies, alignment

• short outlook on future of tracking in ATLAS
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Expected Performance

•excellent preparation before startup
➡ more than 10 years of simulation and test beam
➡ cosmics data taking in 2008 and 2009
➡ payed off at startup year !

• detailed simulation studies
➡ document expected performance in TDRs
➡ few of the known critical items:

• material effects limit efficiency and resolution at low pt

• good (local) alignment for b-tagging
• momentum scale and alignment “weak modes”

➡ focus for commissioning of tracking and vertexing
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Expected Difficulties ? - Yes

•ATLAS detector paper MC study:
➡ ideal Z mass resolution 2.6 GeV
➡ misalign MC by 100 μm, re-align using:

• high-pT muons and cosmics
➡ Z mass resolution degraded to 3.9 GeV (!)

• need to use external constraints to improve

• cosmics study using split tracks
➡ good performance overall

• cosmics are mostly in the barrel (!)
• done with the alignment at the time...

➡ but: at higher pT the data starts to        
diverge from MC

•what was the reason ?
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track

Layer 0

Layer 1

Alignment and Weak Modes

•global-χ2 alignment
➡ diagonalize alignment matrix (36k x 36k)
➡ enables studies of Eigenvalue spectrum

• well constraint :         local movements
• less well constaint :  overall deformations
• not constraint :          global transform

•weak modes affect pT-scale:
➡ overall deformations that leave Δχ2~0
➡ examples

•b-tagging:
➡ mostly sensitive to local movements

• beam spot constraint in alignment 
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•! Created four global systematic ID misalignments “by-hand”. 

•! 2 magnitudes: “Large” & “Small”. SCT outer layer shift shown.  

Global Systematic ID Misalignments 
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Toy Monte Carlo Study of Weak Modes

•used ad-hoc alignment sets with weak modes (2006)
➡ 9 ‘easy’ modes introduced by hand
➡ rerun reconstruction to study effect on Z and J/ψ mass
➡ compare against nominal Monte Carlo

•qualitatively one sees clear effects...
➡ some modes affect the mass resolution
➡ relative effect on J/ψ much smaller, much larger effect on Z
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Material vs Momentum Resolution

• let’s remind ourselves:
➡ resolution model: σ(q/pT)= a ⊕ b/pT

• a describes intrinsic resolution
• huge multiple scattering term b

➡ at ~50 GeV the intrinsic resolution equals the 
multiple scattering term
• similar effects for CMS, but 4T B-%eld helps 

➡ in practice J/ψ is material dominated !
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- Parameterization of the Inner Detector and Muon System -
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Figure 6.5: Fits of the pT dependence for the five track parameters in the Inner Detector using
the E-G-N model.
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Weak Modes and Momentum Scale

• let’s try to understand the toy MC results
➡ why is the Z mass so much more sensitive ?

•weak modes biases the curvature (q/pT)

➡ this means, the curvature bias scales with momentum

• invariant mass of a 2 body decay
➡ scales with momentum and opening angle

➡ neglecting the momentum difference between the 2 decay products
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•! Created four global systematic ID misalignments “by-hand”. 

•! 2 magnitudes: “Large” & “Small”. SCT outer layer shift shown.  

Global Systematic ID Misalignments 
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Interpretation of J/ψ and Z in Toy MC

• let’s put in some numbers for J/ψ and Z:
➡ for simplicity assume p ~ 50 GeV and γ ~ 180o for Z→μμ
➡ let’s assume average P ~ 5 GeV for the muons from J/ψ

• factor 10 in curvature compared to muon from Z→μμ
➡ using J/ψ mass and P ~ 5 GeV one gets

• typical opening angle γ = 35o

• hence, a factor 3 smaller √(...) term than for Z→μμ

• therefore, effect on m(J/ψ) is in(ated by factor 30 for mZ
➡ J/ψ mass scale shift by 0.2% translates into 6% on mZ

9

m ~ p √ 2 - 2 cos γ 
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•ATLAS 2012: H→4l mass scale ?
➡ H→ZZ*→4μ has a high and a low mass μμ-pair
➡ H→4μ mass scale uncertainty:

• low mass μμ pair doesn’t contribute much
• dominated by Z→μμ, which we do control well

➡ illustrates importance to control weak modes !
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DAY ONE: Excitement with "rst beams... 
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Commissioning

•LHC has done fantastic since !
➡ pileup in 2012 exceeding LHC design   

(at 50 nsec)

• a long way from %rst collisions                                                                                    
to physics
➡ commission full readout chain                          

(detector, trigger, DAQ)
➡ calibrate and align the detector
➡ optimize the tracking performance,                                                            

allow for changing levels of pileup
➡ ...

• basis of commissioning the 
tracking is excellent work 
done on the detector !
➡ let’s brie(y discuss a few examples...
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CMS beam
splash eventTiming of the Detector

• timing in the detector is crucial 
➡ to be ready for 50/25 nsec operation
➡ time of (ight is large compared to LHC 

event rate
➡ precise timing required to be fully efficient 

(time walk in silicon detectors, etc.)

•work started before collisions
➡ cosmics and beam splash events were 

extremely useful
➡ %ne tuning with collision events
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Detector Calibration
•careful calibration of detectors
➡ required to reach design performance
➡ online (thresholds,...) and offline
➡ monitoring of variations with time

•examples:
➡ TRT: R-t relation and high threshold probability
➡ analog information from silicon detectors

• allows to measure dE/dx
• required to explore power of analog clustering
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Detector Calibration
•measure Lorentz angle
➡ cluster sizes vs track incident angle

• study cluster properties 
➡ resolutions
➡ charge sharing...

• study dead and noisy channels
➡ excellent performance after masking known 

noisy channel
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Detector Calibration

•study detector efficiencies
➡ identify dead channels, chips, modules
➡ typically > 95% of detectors are operational

• in general, detectors are behaving 
excellent
➡ very high efficiencies of the sensors (>98%)   

and very low noise
➡ CMS saw small efficiency loss (0.2-0.4%) with 

increasing luminosity already in 2010
• occupancy increase effecting readout
• ATLAS replaces readout cards this shutdown

•not limiting tracking performance
➡ correct simulation to reproduce calibrated 

detector performance
➡ allow for known defects and inefficiencies in 

reconstruction 

15
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Beam Backgrounds and Radiation Effects

•CMS saw backgrounds in Pixels
➡ induced by low level beam loss into detector

• consistent with beam-gas interactions
➡ risk for desynchronization of readout

• radiation effects on silicon
➡ monitor leakage current and cross talk
➡ example: ATLAS

• φ = 2.43⋅1012 ⋅(1 MeV neq)/fb-1 at b- Layer
• type inversion at ~10 fb-1

16
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Neural Net Pixel Clustering

•novel technique, motivation:
➡ high track density in jets leads to cluster merging
➡ limits tracking in jets and b-tagging performance

• algorithm to split merge clusters
➡ neural network (NN) based technique

• explores analog Pixel information
➡ run 5 networks:

• NN1: probability a cluster is 1/2/>2 tracks
• NN2: best position for each (sub)cluster
• NN3: error estimate for cluster
• NN4+5: redo NN2+3 using track prediction

➡ adapt pattern recognition

•performance improvements (17.0.0)
➡ improved cluster resolution
➡ dramatic reduction in rate of shared B-layer hits 

and therefore improved tracking in core of jets
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Tracking Commissioning
•at startup (same after LS1 for new IBL)
➡ use commissioning settings

• ensure “robustness”
• allow for dead/noise modules
• error scaling to re(ect calibration + alignment

➡ %rst physics was minimum bias
• tracking with very low pT thresholds, no pileup

• study behavior of  reconstruction
➡ seeding / candidate %tting / ambiguity / etc.
➡ compare simulation to data
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Tracking Commissioning
•detailed studies of properties of 

reconstructed tracks
➡ hit associations, %t quality, etc.
➡ leading towards %rst publications

• tracking systematics driven by material 
uncertainties 
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Material Studies using K0s

•crucial to understand tracking 
performance

•mass and width of K0s is sensitive to 
material description
➡ one of the %rst signals people looked at
➡ can study effects vs η,ϕ,pT and decay radius
➡ sensitive to integrated effects in data/MC
➡ can simulate effect of wrong material in MC (10%/20%)
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Figure 1: Comparison of measured and predicted K0s mass spectrum. Top plot: barrel detector region
(both tracks satisfy |! | < 1.2). Bottom plot: combined endcap regions (both tracks satisfy |! | > 1.2).
The black circles are data, while the histograms show Monte Carlo simulation (normalised to data). The
red line is the line-shape function (see text) fitted to data.
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Material Studies using J/ψ

• J/ψ still mostly sensitive to material
➡ similar studies as with K0s possible
➡ example: CMS study of momentum resolution from %t to J/ψ→μμ signal

➡ excellent CMS mass resolution seen as well in resonances near Y          
(thanks to 4 T "eld)

21

5.3 J/� decays in data 21

parameter value±error
b0 1.61 ± 0.11
b1 (5.0± 0.6)⇥ 10�3

b2 (1.9± 0.3)⇥ 10�2

b3 (1.4± 0.7)⇥ 10�2

b4 1.5± 0.3

Table 3: Results of the resolution fit on ⌅ 40 nb�1 of integrated luminosity using J/� reso-
nances.

Figure 17: Resolution on transverse momentum as measured with ⌅ 40 nb�1 of integrated
luminosity (black line) compared to the Monte Carlo resolution computed from Monte Carlo
truth (red points) and from the fit as described in Section 4.2 (black squares). The gray band
in data represents the error on the fitted function for data computed from the errors on the
parameters.

Finally, it should be noticed that these corrections have been applied for the measurement of the
J/� differential cross section [16] and the measured resolution has been exploited to estimate
the related systematics both in this analysis and in the measurement of the W and Z cross
sections [17].
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Conversions
•detailed tomography of 

material with γ conversions
➡ able to map details in material distribution

• measure difference in data/MC, e.g. PP0 

➡ ultimately should result in a very precise 
estimate of material
• need to control reconstruction efficiency
• calibrate measurement e.g. on “known” 

beam pipe
• needs huge statistics

22
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Hadronic Interactions

•2nd method for a precise tomography 
of detector material
➡ good vertex resolution allows to study %ne details

•material uncertainty in simulation
➡ better than ~5% in central region
➡ at the level of ~10% in most of the endcaps
➡ study of systematics ongoing in experiments
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Status of Material studies

•working group to study material
➡ biggest issue in Pixel PP0 region
➡ SCT extension efficiency not well modeled so far

• SQP are being replaced in LS1
➡ go back to the old ones and corrected geometry !
➡ corrected beam pipe, SCT cooling loops, services

•much better description for MC14 (7.5-10%)!
➡ affects as well the electron shower description in LAr

24
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Detector Alignment with Tracks
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Figure 3. Illustration of shifting and rotating the planes for misalignment.

the transformation from the local to the global frame is wrong. The task of the alignment
procedure is to estimate the relative offset and orientation with respect to the assumed position
and orientation.

Out of the six possible alignment parameters—three shifts and three rotations—we
simulate and estimate two shifts and one rotation in the plane of the detector (two-
dimensional space), those three being the ones to which track reconstruction is most
sensitive. Figure 3 illustrates the two shifts and the rotation. The transformation of a
point m = (x, y) → m′ = (x ′, y ′) from the global frame into the global misaligned frame is
therefore

(x ′, y ′) = R(!φ)(m(x, y) − sglobal) (12)

= R(!φ)

(
m(x, y) −

(
!x

!y

))
, (13)

where

sglobal =
(

!x

!y

)
(14)

is the shift in !x,!y and R(!φ) is a small rotation around z.
The following ranges for the shifts !x and !y and the rotation !φ in the global frame

have been chosen for the simulation:

shift in global x-direction: −0.2 cm < !x < 0.2 cm

shift in global y-direction: −0.2 cm < !y < 0.2 cm

rotation around global z-axis: −0.02 rad < !φ < 0.02 rad.

For each run of the simulation experiment a set of alignment parameters is randomly generated
assuming a uniform distribution in the above ranges.

It should be noted that instead of estimating (!x,!y,!φ) directly we have chosen a
slightly different set of alignment parameters:

a =




!x ′

!y ′

!φ



 with
(

!x ′

!y ′

)
= R(!φ)

(
!x

!y

)
, (15)

where we estimate the shift rotated by !φ rather than the simulated global shift. In the
following we refer to

s′ =
(

!x ′

!y ′

)
(16)

as the global rotated shift. The reason for this choice will be explained after the derivation of
the Jacobians.

(and in for CMS !)

6 parameters per module
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Detector Alignment
•alignment strategy
➡ starting point is detailed survey
➡ hardware alignment systems

• e.g. CMS tracker, ALTAS muons
➡ alignment stream with high-pt tracks
➡ de%ne different levels of granularity       

level 1 (e.g.SCT barrel) to level 3 (module)
➡ global-χ2 and local alignment

• also allow for
➡ Pixel model deformations

• survey data or %t
➡ Pixel stave bowing
➡ TRT wire alignment
➡ movements of the detector
➡ ...

26
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Local Misalignments 

•module to module misalignments
➡ very good constraint from overlapping modules
➡ drives residuals and impact parameter 

resolutions

• alignment is sensitive to module 
distortions (not a (at shape)
➡ ATLAS is using survey data for Pixels
➡ CMS will allow for module bowing soon
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Module bow
During survey the curvature 
of each long side of the 
module was measured (R+, R-)

We assume that the surface 
that connects the two arcs is 
made by straight lines
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Impact Parameter Resolution

•driven by local misalignments
➡ quickly approaching design resolutions
➡ some small problems still visible

• hence apply some error scaling in %t

• vertexing and b-tagging
➡ fast commissioning helped by well                                                                      

constraint local alignment
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•%eld tilt in ATLAS visible in K0s + J/ψ 
mass bias vs ϕ
➡ results in a sine modulation in mass in opposite 

directions in both endcaps
➡ corrected by 0.55 mrad %eld rotation around y 

axis
➡ consistent with survey constraints

B-Field Tilt vs Nominal ?
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Evidence for Weak Modes ?
• “weak modes” are global deformations
➡ leave %t-χ2 nearly unchanged
➡ affect momentum scale, e.g. Z-mass resolution
➡ several techniques to control weak modes 

• electron E/p using calorimeter
• muon momentum in tracker vs muon spectrometer
• TRT to constrain Silicon alignment  (ATLAS)

• limiting performance in data
➡ ATLAS saw modulation in Z mass vs ϕ(μ+) in endcaps
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Todays Alignment Systematics ?

•momentum bias is very small !
➡ less than 0.1 TeV-1 , much better than muon spectrometer systematics !
➡ source for double sin structure not understood yet...

• still a lot to be improved...
➡ additional TRT deformations in the endcaps
➡ evidence for SCT module deformation effects, not yet corrected for 
➡ Pixel digitization does not describe data shapes, cluster z calibration is crap
➡ evidence for Pixel endcap deformation

31Anthony Morley

Momentum Biases

• Momentum biases in the ID are quite small 

• Sources of biases under investigation

• Sagitta biases persist despite residuals being minimised

• Symmetry seems to suggest something else going one

• Clustering biases?? 

• Scale likely to be alignment related
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Primary Vertex Resolution from Data
•primary vertex is input to b-tagging, etc.
➡ need to understand precisely the resolution in data

• split vertex technique
➡ data driven method
➡ split vertex in 2 and study difference in the                       

2 %tted positions as function of n tracks
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Performance of Primary Vertex reconstruction
Event-by-event reconstruction of primary vertices is important: beam spot 

measurement, pile-up, b-tagging. PV algorithm is an Adaptive Kalman Filter.

Data-driven method to 
measure efficiency and 
position resolutions

17
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Insertable B Layer (IBL)

•4th pixel layer for Phase-0
➡ add low mass layer closer to beam,                                                 

with smaller pixel size
• improve tracking, vertexing, b-tagging and                              τ-

reconstruction

➡ recovers from defects, especially in                                 
present b-layer

➡ FE-I4b overcomes bandwidth limitations                                       
of present FE-I3

➡ improves tracking, vertexing, b-tagging and                             
τ-reconstruction at high pileup

• commissioning and optimization
➡ detector commissioning work similar to 2009

• timing, calibration, alignment needs to be done
➡ adapt Neural Network clustering

• we have planar and 3D sensors !
➡ modify tracking to take bene%t from 4th Pixel layer
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Future ATLAS Tracking ?

• track reconstruction
➡ combinatorics grows with pileup
➡ naturally resource driver (CPU/memory)

•million dollar question:
➡ how to reconstruct ITK within resources ?

• this is not a new question !
➡ we knew that tracking at the LHC is going to be a problem

• we aim at improving over something that is highly optimized
➡ but processor technologies are changing

• need to rethink some of the design decisions we did
• will require vectorization and multi-threading
• improve data locality (avoid cache misses)
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CPU vs pileup
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 LS1 Developments

•work on technology to improve CURRENT algorithms
➡ modi%ed track seeding to explore 4th Pixel layer
➡ Eigen migration - faster vector+matrix algebra
➡ use vectorized trigonometric functions (VDT, intel math lib)
➡ F90 to C++ for the b-%eld
➡ simplify EDM design to be less OO (was the “hip” thing 10 years ago)
➡ xAOD: a new analysis EDM, maybe more... (may allow for data locality)

•work will continue beyond this, examples:
➡ (auto-)vectorize Runge-Kutta, %tter, etc. and take full bene%t from Eigen
➡ use only curvilinear frame inside extrapolator
➡ faster tools like reference Kalman %lter...

• hence, mix of SIMD and algorithm tuning

•may give us a factor 2 (maybe more...)
➡ further speedups probably requires “new” thinking

35
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Alternative Tracking Algorithms

•examples for algorithms in literature
➡ conformal transforms: e.g. Hough transforms

• scale ~ linear with pileup, need memory
• used in track seeded and TRT segment %nding
• no successful application for full Pixels+SCT

➡ still transforms: V-trees
• scale ~ linear with pileup
• used in IDSCAN for Level-2 tracking
• intrinsically pointing, need primary vertex

➡ cellular automaton
• used by some experiments, example Belle II 

(not their default tracking code !)
• idea is to evolve 3 hit combinations into tracks
• it’s a combinatorial algorithm that could be 

parallelized
• Belle II example uses things like “high 

occupancy bypasses” in their algorithm (ow ?

•we probably need new ideas !
36

−2 0 2 4 6
0

1

2

3

4

5

6

7

8

x

y

Image space

0 2 4 6 8
−1

0

1

2

3

4

5

6

7

u

v

Parameter space

Spotlight on 

• Developed in Vienna by Jakob (grad student of Rudi) 

VXD-Stand-Alone 

slide 
from 

Belle II

Hough 
transform



Markus Elsing

The ISF Idea for Tracking ?

• ISF mixes different simulations
➡ spend more times on important event aspects
➡ dramatically reduces effects of pileup

• this idea is to do the same for tracking !
➡ hence elaborate tracking for regions of interest (RoI)

• best performance for physics objects costs CPU
➡ fast tracking for underlying event and pileup

• good enough for primary vertexing and for particle 
(ow / jet corrections

•we do this successfully since 2012 (!)
➡ calorimeter seeded brem. recovery for electrons
➡ GSF later in e/gamma reconstruction

•we are discussing TRT back tracking
➡ only for EM RoIs is logical option for pileup >> design
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E.Ritsch, A.Salzburger

Electron reconstruction efficiency (8 TeV)

Improved track-cluster matching and selection of best-matching track
? Based on �R and �Rresc (track momentum rescaled to measured cluster

energy)
? Presence of pixel hits taken into account in selection of best match

Reconstruction efficiency improved in particular at low pT and at high ⌘

Kerstin Tackmann (DESY) Report from e/gamma October 29, 2013 6 / 17

A.Salzburger
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Truth Tracking from MC

•invented for fast simulation (ISF)
➡ MC truth based hit %lter to %nd tracks
➡ replace pattern recognition

•good results achieved
➡ real pattern is very efficient and very pure

• modeling of hit association mostly ok
➡ models main source of inefficiencies well

• this is hadronic interactions in material (G4)
➡ uses full %t, so resolution come out right
➡ and it is fast (trivial) !

• still, corrections are needed
➡ especially double track resolution

• affects jet cores, taus, maybe 140 pileup (?)
➡ corrections may be topology dependent

• clearly a tool for fast sim, more ?
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R.Jansky et al.

Thursday, October 31, 2013 R. Jansky

reconstruction time 
vs pileup
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Opportunities to improve Performance

•tau RoI reconstruction
➡ use e.g. Multi Track Fitter to resolve 1 prong 

and 3 prong taus, including conversions

• try to improve in high-pT jet RoI
➡ see work of TIDE working group

• more elaborate tracking to recover tracks
• especially relevant for pT > 500 GeV

•work on candidate algorithms
➡ example is MTF (robust %tting, slow)
➡ alternative is full ambiguity (slow !)
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Track migration at low-pt
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Conversions

Tracking 
inefficiency

Tau track multiplicity in Ztautau split into true decay modes
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Let’s Summarize...

•gave overview of lessons with early data

➡ how to reach design performance for calibration, tracking, alignment, 
vertexing

• some outlook on future tracking developments

• that’s it - hope you found the lectures to be useful
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